1
|
Zhang Z, Wu X, Zou Z, Shen M, Liu Q, Zhangsun Z, Zhao H, Lei W, Wang Z, Dong Y, Yang Y. Heat stroke: Pathogenesis, diagnosis, and current treatment. Ageing Res Rev 2024; 100:102409. [PMID: 38986844 DOI: 10.1016/j.arr.2024.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Recently, the incidence of heat-related illnesses has exhibited a steadily upward trend, which is closely associated with several environmental factors such as climate change and air pollution. The progression of heat-related illnesses is a continuous process and can progress to the terminal period when it transforms into heat stroke, the most severe form. Heat stroke is markedly by a core body temperature above 40°C and central nervous system dysfunction. Current knowledge suggests that the pathogenesis of heat stroke is complex and varied, including inflammatory response, oxidative stress, cell death, and coagulation dysfunction. This review consolidated recent research progress on the pathophysiology and pathogenesis of heat stroke, with a focus on the related molecular mechanisms. In addition, we reviewed common strategies and sorted out the drugs in various preclinical stages for heat stroke, aiming to offer a comprehensive research roadmap for more in-depth researches into the mechanisms of heat stroke and the reduction in the mortality of heat stroke in the future.
Collapse
Affiliation(s)
- Zhe Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Zou
- Department of Neurosurgery, The General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Hainan, 572013, China
| | - Qiong Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ziyin Zhangsun
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | - Yushu Dong
- Department of Neurosurgery, The General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
2
|
Deng Q, Wu C, Parker E, Liu TCY, Duan R, Yang L. Microglia and Astrocytes in Alzheimer's Disease: Significance and Summary of Recent Advances. Aging Dis 2024; 15:1537-1564. [PMID: 37815901 PMCID: PMC11272214 DOI: 10.14336/ad.2023.0907] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease, one of the most common forms of dementia, is characterized by a slow progression of cognitive impairment and neuronal loss. Currently, approved treatments for AD are hindered by various side effects and limited efficacy. Despite considerable research, practical treatments for AD have not been developed. Increasing evidence shows that glial cells, especially microglia and astrocytes, are essential in the initiation and progression of AD. During AD progression, activated resident microglia increases the ability of resting astrocytes to transform into reactive astrocytes, promoting neurodegeneration. Extensive clinical and molecular studies show the involvement of microglia and astrocyte-mediated neuroinflammation in AD pathology, indicating that microglia and astrocytes may be potential therapeutic targets for AD. This review will summarize the significant and recent advances of microglia and astrocytes in the pathogenesis of AD in three parts. First, we will review the typical pathological changes of AD and discuss microglia and astrocytes in terms of function and phenotypic changes. Second, we will describe microglia and astrocytes' physiological and pathological role in AD. These roles include the inflammatory response, "eat me" and "don't eat me" signals, Aβ seeding, propagation, clearance, synapse loss, synaptic pruning, remyelination, and demyelination. Last, we will review the pharmacological and non-pharmacological therapies targeting microglia and astrocytes in AD. We conclude that microglia and astrocytes are essential in the initiation and development of AD. Therefore, understanding the new role of microglia and astrocytes in AD progression is critical for future AD studies and clinical trials. Moreover, pharmacological, and non-pharmacological therapies targeting microglia and astrocytes, with specific studies investigating microglia and astrocyte-mediated neuronal damage and repair, may be a promising research direction for future studies regarding AD treatment and prevention.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Ge XR, Zhao Y, Ren HR, Jiang FW, Liu S, Lou M, Huang YF, Chen MS, Wang JX, Li JL. Phthalate drives splenic inflammatory response via activating HSP60/TLR4/NLRP3 signaling axis-dependent pyroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123610. [PMID: 38382728 DOI: 10.1016/j.envpol.2024.123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
As the most produced phthalate, di-(2-ethylhexyl) phthalate (DEHP) is a widely environmental pollutant primarily used as a plasticizer, which cause the harmful effects on human health. However, the impact of DEHP on spleen and its underlying mechanisms are still unclear. Pyroptosis is a novel form of cell death induced by activating NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes and implicated in pathogenesis of numerous inflammatory diseases. The current study aimed to explore the impact of DEHP on immune inflammatory response in mouse spleen. In this study, the male ICR mice were treated with DEHP (200 mg/kg) for 28 days. Here, DEHP exposure caused abnormal pathohistological and ultrastructural changes, accompanied by inflammatory cells infiltration in mouse spleen. DEHP exposure arouse heat shock response that involves increase of heat shock proteins 60 (HSP60) expression. DEHP also elevated the expressions of toll-like receptor 4 (TLR4) and myeloid differentiation protein 88 (MyD88) proteins, as well as the activation of NF-κB pathway. Moreover, DEHP promoted NLRP3 inflammasome activation and triggered NLRP3 inflammasome-induced pyroptosis. Mechanistically, DEHP drives splenic inflammatory response via activating HSP60/TLR4/NLRP3 signaling axis-dependent pyroptosis. Our findings reveal that targeting HSP60-mediated TLR4/NLRP3 signaling axis may be a promising strategy for inflammatory diseases treatment.
Collapse
Affiliation(s)
- Xin-Ran Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Hao-Ran Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ming Lou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yi-Feng Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Zhao Q, Li H, Li H, Xie F, Zhang J. Research progress of neuroinflammation-related cells in traumatic brain injury: A review. Medicine (Baltimore) 2023; 102:e34009. [PMID: 37352020 PMCID: PMC10289497 DOI: 10.1097/md.0000000000034009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
Neuroinflammation after traumatic brain injury (TBI) is related to chronic neurodegenerative diseases and is one of the causes of acute secondary injury after TBI. Therefore, it is particularly important to clarify the role of cellular mechanisms in the neuroinflammatory response after TBI. The objective of this article is to understand the involvement of cells during the TBI inflammatory response (for instance, astrocytes, microglia, and oligodendrocytes) and shed light on the recent progress in the stimulation and interaction of granulocytes and lymphocytes, to provide a novel approach for clinical research. We searched articles in PubMed published between 1950 and 2023, using the following keywords: TBI, neuroinflammation, inflammatory cells, neuroprotection, clinical. Articles for inclusion in this paper were finalized based on their novelty, representativeness, and relevance to the main arguments of this review. We found that the neuroinflammatory response after TBI includes the activation of glial cells, the release of inflammatory mediators in the brain, and the recruitment of peripheral immune cells. These inflammatory responses not only induce secondary brain damage, but also have a role in repairing the nervous system to some extent. However, not all of the mechanisms of cell-to-cell interactions have been well studied. After TBI, clinical treatment cannot simply suppress the inflammatory response, and the inflammatory phenotype of patients' needs to be defined according to their specific conditions after injury. Clinical trials of personalized inflammation regulation therapy for specific patients should be carried out in order to improve the prognosis of patients.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| |
Collapse
|
5
|
Gu G, Ren J, Zhu B, Shi Z, Feng S, Wei Z. Multiple mechanisms of curcumin targeting spinal cord injury. Biomed Pharmacother 2023; 159:114224. [PMID: 36641925 DOI: 10.1016/j.biopha.2023.114224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/16/2023] Open
Abstract
Spinal cord injury (SCI) is an irreversible disease process with a high disability and mortality rate. After primary spinal cord injury, the secondary injury may occur in sequence, which is composed of ischemia and hypoxia, excitotoxicity, calcium overload, oxidative stress and inflammation, resulting in massive death of parenchymal cells in the injured area, followed by the formation of syringomyelia. Effectively curbing the process of secondary injury can promote nerve repair and improve functional prognosis. As the main active ingredient in turmeric, curcumin can play an important role in reducing inflammation and oxidation, protecting the neurons, and ultimately reducing spinal cord injury. This article reviews the effects of curcumin on the repair of nerve injury, with emphasis on the various mechanisms by which curcumin promotes the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Guangjin Gu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Ren
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhongju Shi
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| | - Zhijian Wei
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Prokosch V, Li P, Shi X. Glaucoma as a Neurodegenerative and Inflammatory Disease. Klin Monbl Augenheilkd 2023; 240:125-129. [PMID: 36265500 DOI: 10.1055/a-1965-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glaucoma is a neurodegenerative disease that leads to irreversible loss of vision through degeneration of the retinal ganglia cells (RGCs). Glaucoma is one of the most frequent causes of blindness in the world. Intraocular pressure is the main risk factor for the occurrence and development of this disease. Treatment is largely based on reducing internal optical pressure. However, some patients may deteriorate or become blind, despite normal or reduced internal optical pressure. The pathophysiological details are still unclear. Neuroinflammatory processes are also apparently an additional cause. In principle, innate or local responses of the adaptive immune system can be distinguished. The reaction of the innate immune system, particularly the local microglial cells, has long been studied. The macroglia with the astrocytes and Müller cells and their homeostatic effects have also long been known. On the other hand, it has long been thought that the retina with its RGZs was inert to adaptive immunological reactions - due to the function of the blood brain barrier. However, this system may be disturbed by antigen presentation, leading to a reaction of the adaptive immune system, with B cell and T cell responses. In this context, the key proteins are presumably heat shock proteins. We now know that neuroinflammation is important in glaucoma, as in other neurodegenerative diseases. It is important to increase our understanding of these phenomena. In this review article, we present our current knowledge of the role of the micro- and macroglia, the adaptive immune system, and the heat shock proteins.
Collapse
Affiliation(s)
- Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Germany
| | - Panpan Li
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Germany
| | - Xin Shi
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Germany
| |
Collapse
|
7
|
Namazi F, Bordbar E, Bakhshaei F, Nazifi S. The effect of Urtica dioica extract on oxidative stress, heat shock proteins, and brain histopathology in multiple sclerosis model. Physiol Rep 2022; 10:e15404. [PMID: 35924324 PMCID: PMC9350467 DOI: 10.14814/phy2.15404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/25/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Multiple sclerosis (MS) results from the destruction of myelin and focal inflammation. The study aimed to evaluate the effect of hydroalcoholic extract of Urtica dioica on oxidative stress, heat shock proteins, and brain histopathology in multiple sclerosis model. Sixty male C57BL/6 mice were divided into six groups of 10. Groups included positive control, negative control, and treatment groups with U. dioica extract at a dose of 50, 100, 200, and 400 mg/kg for 21 days (three times a week). The MS model was developed by a diet containing 0.2% cuprizone for 6 weeks. A section of brains was evaluated with Luxol Fast Blue staining and the other part evaluated with heat shock protein (HSP) kits 60 and 70, total antioxidant capacity (TAC), and malondialdehyde (MDA). In sections of corpus callosum, the highest amount of myelin was observed in the negative controls, while the use of cuprizone in the positive controls caused the destruction and reduction of myelin. The use of U. dioica extract in therapeutic groups except at a dose of 50 mg/kg could reduce myelin degradation to some extent and lead to remyelination. However, myelin levels in treatment groups were not significantly different from any of the negative and positive controls. Although HSP60 decreased in the treatment groups, there was no significant difference between the positive and negative controls. Treatment with this extract significantly reduced the amount of HSP70 compared with the positive controls. The decreased TAC and increased MDA in positive controls indicated oxidative stress, respectively. Furthermore, the extract led to an increase and decrease of TAC and MDA in the treatment groups, respectively. However, only the MDA level was significantly different from that of the positive controls. Therefore, the antioxidant effects of U. dioica extract could decrease cuprizone-induced oxidative stress and be effective in improving demyelination.
Collapse
Affiliation(s)
- Fatemeh Namazi
- Pathology Division, Department of PathobiologySchool of Veterinary Medicine, Shiraz UniversityShirazIran
| | - Elnaz Bordbar
- School of Veterinary MedicineShiraz UniversityShirazIran
| | - Farnoosh Bakhshaei
- Clinical Pathology Division, Department of Clinical SciencesSchool of Veterinary Medicine, Shiraz UniversityShirazIran
| | - Saeed Nazifi
- Clinical Pathology Division, Department of Clinical SciencesSchool of Veterinary Medicine, Shiraz UniversityShirazIran
| |
Collapse
|
8
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis. Glia 2022; 70:1215-1250. [PMID: 35107839 PMCID: PMC9302634 DOI: 10.1002/glia.24148] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
In human demyelinating diseases such as multiple sclerosis (MS), an imbalance between demyelination and remyelination can trigger progressive degenerative processes. The clearance of myelin debris (phagocytosis) from the site of demyelination by microglia is critically important to achieve adequate remyelination and to slow the progression of the disease. However, how microglia phagocytose the myelin debris, and why clearance is impaired in MS, is not fully known; likewise, the role of the microglia in remyelination remains unclear. Recent studies using cuprizone (CPZ) as an animal model of central nervous system demyelination revealed that the up‐regulation of signaling proteins in microglia facilitates effective phagocytosis of myelin debris. Moreover, during demyelination, protective mediators are released from activated microglia, resulting in the acceleration of remyelination in the CPZ model. In contrast, inadequate microglial activation or recruitment to the site of demyelination, and the production of toxic mediators, impairs remyelination resulting in progressive demyelination. In addition to the microglia‐mediated phagocytosis, astrocytes play an important role in the phagocytic process by recruiting microglia to the site of demyelination and producing regenerative mediators. The current review is an update of these emerging findings from the CPZ animal model, discussing the roles of microglia and astrocytes in phagocytosis and myelination.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, Australia
| | - Jens R Coorssen
- Faculty of Applied Health Sciences and Faculty of Mathematics & Science, Brock University, St. Cathari, Canada
| | | |
Collapse
|
9
|
Beretta G, Shala AL. Impact of Heat Shock Proteins in Neurodegeneration: Possible Therapeutical Targets. Ann Neurosci 2022; 29:71-82. [PMID: 35875428 PMCID: PMC9305912 DOI: 10.1177/09727531211070528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/24/2021] [Indexed: 01/20/2023] Open
Abstract
Human neurodegenerative diseases occur as a result of various factors. Regardless of the variety in the etiology of development, many of these diseases are characterized by the accumulation of pathological, misfolded proteins; hence, such diseases are considered as proteinopathies. While plenty of research study has been conducted in order to identify the pathophysiology of these proteinopathies, there is still a lack of understanding in terms of potential therapeutic targets. Molecular chaperones present the main workforce for cellular protection and stress response. Therefore, considering these functions, molecular chaperones present a promising target for research within the field of conformational diseases that arise from proteinopathies. Since the association between neurodegenerative disorders and their long-term consequences is well documented, the need for the development of new therapeutic strategies becomes even more critical. In this review, we summarized the molecular function of heat shock proteins and recent progress on their role, involvement, and other mechanisms related to neurodegeneration caused by different etiological factors. Based on the relevant scientific data, we will highlight the functional classification of heat shock proteins, regulatin, and their therapeutic potential for neurodegenerative disorders.
Collapse
Affiliation(s)
- Giangiacomo Beretta
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Aida Loshaj Shala
- Department of Pharmacy, Faculty of Medicine, University Hasan Prishtina, Pristina, Kosovo
| |
Collapse
|
10
|
Toward the Decipherment of Molecular Interactions in the Diabetic Brain. Biomedicines 2022; 10:biomedicines10010115. [PMID: 35052794 PMCID: PMC8773210 DOI: 10.3390/biomedicines10010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) has been associated with cognitive complications in the brain resulting from acute and chronic metabolic disturbances happening peripherally and centrally. Numerous studies have reported on the morphological, electrophysiological, biochemical, and cognitive changes in the brains of diabetic individuals. The detailed pathophysiological mechanisms implicated in the development of the diabetic cognitive phenotype remain unclear due to intricate molecular changes evolving over time and space. This review provides an insight into recent advances in understanding molecular events in the diabetic brain, focusing on cerebral glucose and insulin uptake, insulin action in the brain, and the role of the brain in the regulation of glucose homeostasis. Fully competent mitochondria are essential for energy metabolism and proper brain function; hence, the potential contribution of mitochondria to the DM-induced impairment of the brain is also discussed.
Collapse
|
11
|
Wallach T, Mossmann ZJ, Szczepek M, Wetzel M, Machado R, Raden M, Miladi M, Kleinau G, Krüger C, Dembny P, Adler D, Zhai Y, Kumbol V, Dzaye O, Schüler J, Futschik M, Backofen R, Scheerer P, Lehnardt S. MicroRNA-100-5p and microRNA-298-5p released from apoptotic cortical neurons are endogenous Toll-like receptor 7/8 ligands that contribute to neurodegeneration. Mol Neurodegener 2021; 16:80. [PMID: 34838071 PMCID: PMC8626928 DOI: 10.1186/s13024-021-00498-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background MicroRNA (miRNA) expression in the brain is altered in neurodegenerative diseases. Recent studies demonstrated that selected miRNAs conventionally regulating gene expression at the post-transcriptional level can act extracellularly as signaling molecules. The identity of miRNA species serving as membrane receptor ligands involved in neuronal apoptosis in the central nervous system (CNS), as well as the miRNAs’ sequence and structure required for this mode of action remained largely unresolved. Methods Using a microarray-based screening approach we analyzed apoptotic cortical neurons of C56BL/6 mice and their supernatant with respect to alterations in miRNA expression/presence. HEK-Blue Toll-like receptor (TLR) 7/8 reporter cells, primary microglia and macrophages derived from human and mouse were employed to test the potential of the identified miRNAs released from apoptotic neurons to serve as signaling molecules for the RNA-sensing receptors. Biophysical and bioinformatical approaches, as well as immunoassays and sequential microscopy were used to analyze the interaction between candidate miRNA and TLR. Immunocytochemical and -histochemical analyses of murine CNS cultures and adult mice intrathecally injected with miRNAs, respectively, were performed to evaluate the impact of miRNA-induced TLR activation on neuronal survival and microglial activation. Results We identified a specific pattern of miRNAs released from apoptotic cortical neurons that activate TLR7 and/or TLR8, depending on sequence and species. Exposure of microglia and macrophages to certain miRNA classes released from apoptotic neurons resulted in the sequence-specific production of distinct cytokines/chemokines and increased phagocytic activity. Out of those miRNAs miR-100-5p and miR-298-5p, which have consistently been linked to neurodegenerative diseases, entered microglia, located to their endosomes, and directly bound to human TLR8. The miRNA-TLR interaction required novel sequence features, but no specific structure formation of mature miRNA. As a consequence of miR-100-5p- and miR-298-5p-induced TLR activation, cortical neurons underwent cell-autonomous apoptosis. Presence of miR-100-5p and miR-298-5p in cerebrospinal fluid led to neurodegeneration and microglial accumulation in the murine cerebral cortex through TLR7 signaling. Conclusion Our data demonstrate that specific miRNAs are released from apoptotic cortical neurons, serve as endogenous TLR7/8 ligands, and thereby trigger further neuronal apoptosis in the CNS. Our findings underline the recently discovered role of miRNAs as extracellular signaling molecules, particularly in the context of neurodegeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00498-5.
Collapse
Affiliation(s)
- Thomas Wallach
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany.
| | - Zoé J Mossmann
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Michal Szczepek
- Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Max Wetzel
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Rui Machado
- Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal
| | - Martin Raden
- Bioinformatics, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Milad Miladi
- Bioinformatics, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Gunnar Kleinau
- Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Paul Dembny
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Drew Adler
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Yuanyuan Zhai
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Victor Kumbol
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Omar Dzaye
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Jutta Schüler
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Matthias Futschik
- Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal.,School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, UK.,MRC London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Rolf Backofen
- Bioinformatics, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Patrick Scheerer
- Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany.,German Centre for Cardiovascular Research, partner site Berlin, Berlin, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany. .,Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany.
| |
Collapse
|
12
|
Chen GP, Xiang K, Sun L, Shi YL, Meng C, Song L, Liu RS, Li WD, Pan HF. TLR3 polymorphisms are associated with the severity of hand, foot, and mouth disease caused by enterovirus A71 in a Chinese children population. J Med Virol 2021; 93:6172-6179. [PMID: 34061379 DOI: 10.1002/jmv.27115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/15/2021] [Accepted: 05/29/2021] [Indexed: 11/07/2022]
Abstract
Hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) is a contagious viral disease, and toll-like receptors (TLRs) play essential roles in resisting the pathogen. The aim of this study was to assess the potential relationship between several TLRs polymorphisms and the HFMD severity in a Chinese children population. A total of 328 Chinese children with HFMD were included in the present study. The polymorphisms of TLR3 (rs3775290, rs3775291, rs3775296, rs1879026, rs5743312, rs5743313, rs5743303, rs13126816, and rs3775292), TLR4 (rs4986790, rs4986791, rs2149356, rs11536889, and rs41426344), TLR7 (rs179009, rs179010, rs179016, rs3853839, rs2302267, rs1634323, and rs5741880), and TLR8 (rs3764880, rs2159377, rs2407992, rs5744080, rs3747414, rs3764879, and rs5744069) genes were selected. The study indicated that individuals with the GG genotype of TLR3 single-nucleotide polymorphism rs1879026 had a higher risk of developing severe cases (GG vs. GT: OR = 1.875; 95% CI, 1.183-2.971; p = .007). Meanwhile, TLR3 rs3775290 CC genotype and C allele were associated with lower disease severity in females (CC vs. CT: OR = 0.350; 95% CI, 0.163-0.751; p = .006; C vs. T: OR = 0.566; 95% CI, 0.332-0.965; p = .036). TLR3 rs3775291 CC genotype showed 2.537 folds higher risk of developing severe cases in females (CC vs. CT: OR = 2.537; 95% CI, 1.108-5.806; p = .026). Moreover, TLR3 rs1879026 GG genotype was found to be related to increased risk of severe cases in males (GG vs. GT: OR = 2.076; 95% CI, 1.144-3.768; p = .016). The current findings show that the genetic variants of TLR3 rs1879026, rs3775290, and rs3775291 are associated with the severity of EV-A71-associated HFMD in a Chinese children population.
Collapse
Affiliation(s)
- Guo-Ping Chen
- Department of Infectious Diseases, Anhui Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Kun Xiang
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Liang Sun
- Department of Infectious Diseases, Fuyang Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Yong-Lin Shi
- Department of Infectious Diseases, Anhui Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Can Meng
- Department of Infectious Diseases, Anhui Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Lv Song
- Department of Infectious Diseases, Anhui Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Rui-Shan Liu
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Wei-Dong Li
- Department of Infectious Diseases, Anhui Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
13
|
Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molecular mechanisms involved are poorly understood. Progress may be accelerated by developing a comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein homeostasis (canonical function) are the ubiquitin–proteasome system and chaperone-mediated autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction of proinflammatory cytokines. This deserves investigation because it may be at the core of neuroinflammation, and elucidation of its mechanism will open roads toward developing efficacious treatments centered on molecular chaperones (i.e., chaperonotherapy). Here, we discuss information available on the role of three members of the CS—heat shock protein (Hsp)60, Hsp70, and Hsp90—in IS modulation and neuroinflammation. These three chaperones occur intra- and extracellularly, with the latter being the most likely involved in neuroinflammation because they can interact with the IS. We discuss some of the interactions, their consequences, and the molecules involved but many aspects are still incompletely elucidated, and we hope that this review will encourage research based on the data presented to pave the way for the development of chaperonotherapy. This may consist of blocking a chaperone that promotes destructive neuroinflammation or replacing or boosting a defective chaperone with cytoprotective activity against neurodegeneration.
Collapse
|
14
|
Schroeder P, Rivalan M, Zaqout S, Krüger C, Schüler J, Long M, Meisel A, Winter Y, Kaindl AM, Lehnardt S. Abnormal brain structure and behavior in MyD88-deficient mice. Brain Behav Immun 2021; 91:181-193. [PMID: 33002631 DOI: 10.1016/j.bbi.2020.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
While the original protein Toll in Drosophila melanogaster regulates both host defense and morphogenesis, the role of its ortholog Toll-like receptors (TLRs), the interleukin 1 receptor (IL-1R) family, and the associated signaling pathways in mammalian brain development and structure is poorly understood. Because the adaptor protein myeloid differentiation primary response protein 88 (MyD88) is essential for downstream signaling of most TLRs and IL-1R, we systematically investigated the effect of MyD88 deficiency on murine brain structure during development and on behavior. In neonatal Myd88-/- mice, neocortical thickness was reduced, while density of cortical neurons was increased. In contrast, microglia, astrocyte, oligodendrocyte, and proliferating cell numbers were unchanged in these mice compared to wild-type mice. In adult Myd88-/- mice, neocortical thickness was unaltered, but neuronal density in neocortex and hippocampus was increased. Neuron arborization was less pronounced in adult Myd88-/- mice compared to wild-type animals. In addition, numbers of microglia and proliferating cells were increased in the neocortex and subventricular zone, respectively, with unaltered astrocyte and oligodendrocyte numbers, and myelinization was enhanced in the adult Myd88-/- neocortex. These morphologic changes in the brain of adult Myd88-/- mice were accompanied by specific behavioral traits, such as decreased locomotor activity, increased anxiety-like behavior, but normal day/light activity, satisfactory learning, short- and long-term spatial memory, potential cognitive inflexibility, and increased hanging and locomotor behavior within their home cage. Taken together, MyD88 deficiency results in morphologic and cellular changes in the mouse brain, as well as in altered natural and specific behaviors. Our data indicate a pathophysiological significance of MyD88 for mammalian CNS development, structure, and function.
Collapse
Affiliation(s)
- Patricia Schroeder
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marion Rivalan
- Institute of Biology, Humboldt-Universität, Berlin, Germany; Animal Outcome Core Facility of the Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität, Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sami Zaqout
- Basic Medical Science Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jutta Schüler
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melissa Long
- Animal Outcome Core Facility of the Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität, Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Meisel
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - York Winter
- Institute of Biology, Humboldt-Universität, Berlin, Germany; Animal Outcome Core Facility of the Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität, Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
15
|
Vernazza S, Tirendi S, Bassi AM, Traverso CE, Saccà SC. Neuroinflammation in Primary Open-Angle Glaucoma. J Clin Med 2020; 9:E3172. [PMID: 33007927 PMCID: PMC7601106 DOI: 10.3390/jcm9103172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is the second leading cause of irreversible blindness worldwide. Increasing evidence suggests oxidative damage and immune response defects are key factors contributing to glaucoma onset. Indeed, both the failure of the trabecular meshwork tissue in the conventional outflow pathway and the neuroinflammation process, which drives the neurodegeneration, seem to be linked to the age-related over-production of free radicals (i.e., mitochondrial dysfunction) and to oxidative stress-linked immunostimulatory signaling. Several previous studies have described a wide range of oxidative stress-related makers which are found in glaucomatous patients, including low levels of antioxidant defences, dysfunction/activation of glial cells, the activation of the NF-κB pathway and the up-regulation of pro-inflammatory cytokines, and so on. However, the intraocular pressure is still currently the only risk factor modifiable by medication or glaucoma surgery. This present review aims to summarize the multiple cellular processes, which promote different risk factors in glaucoma including aging, oxidative stress, trabecular meshwork defects, glial activation response, neurodegenerative insults, and the altered regulation of immune response.
Collapse
Affiliation(s)
| | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| | - Carlo Enrico Traverso
- Clinica Oculistica, DiNOGMI, University of Genoa, 16132 Genoa, Italy;
- Ophthalmology Unit, IRCCS-Polyclinic San Martino Hospital, 16132 Genoa, Italy;
| | | |
Collapse
|
16
|
Ureña-Peralta JR, Pérez-Moraga R, García-García F, Guerri C. Lack of TLR4 modifies the miRNAs profile and attenuates inflammatory signaling pathways. PLoS One 2020; 15:e0237066. [PMID: 32780740 PMCID: PMC7418977 DOI: 10.1371/journal.pone.0237066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
TLR4 is a member of the toll-like receptors (TLR) immune family, which are activated by lipopolysaccharide, ethanol or damaged tissue, among others, by triggering proinflammatory cytokines release and inflammation. Lack of TLR4 protects against inflammatory processes and neuroinflammation linked with several neuropathologies. By considering that miRNAs are key post-transcriptional regulators of the proteins involved in distinct cellular processes, including inflammation, this study aimed to assess the impact of the miRNAs profile in mice cortices lacking the TLR4 response. Using mice cerebral cortices and next-generation sequencing (NGS), the findings showed that lack of TLR4 significantly reduced the quantity and diversity of the miRNAs expressed in WT mice cortices. The results also revealed a significant down-regulation of the miR-200 family, while cluster miR-99b/let-7e/miR-125a was up-regulated in TLR4-KO vs. WT. The bioinformatics and functional analyses demonstrated that TLR4-KO presented the systematic depletion of many pathways closely related to the immune system response, such as cytokine and interleukin signaling, MAPK and ion Channels routes, MyD88 pathways, NF-κβ and TLR7/8 pathways. Our results provide new insights into the molecular and biological processes associated with the protective effects of TLR-KO against inflammatory damage and neuroinflammation, and reveal the relevance of the TLR4 receptors response in many neuropathologies.
Collapse
Affiliation(s)
- Juan R. Ureña-Peralta
- Molecular and cellular pathology of Alcohol Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Raúl Pérez-Moraga
- Bioinformatics & Biostatistics Unit, Prince Felipe Research Center, Valencia, Spain
- Biomedical Imaging Unit FISABIO-CIPF, Prince Felipe Research Center, Valencia, Spain
| | | | - Consuelo Guerri
- Molecular and cellular pathology of Alcohol Laboratory, Prince Felipe Research Center, Valencia, Spain
- * E-mail:
| |
Collapse
|
17
|
Tang J, Tang Y, Yi I, Chen DF. The role of commensal microflora-induced T cell responses in glaucoma neurodegeneration. PROGRESS IN BRAIN RESEARCH 2020; 256:79-97. [PMID: 32958216 DOI: 10.1016/bs.pbr.2020.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last decade, new evidence has become increasingly more compelling that commensal microflora profoundly influences the maturation and function of resident immune cells in host physiology. The concept of gut-retina axis is actively being explored. Studies have revealed a critical role of commensal microbes linked with neuronal stress, immune responses, and neurodegeneration in the retina. Microbial dysbiosis changes the blood-retina barrier permeability and modulates T cell-mediated autoimmunity to contribute to the pathogenesis of retinal diseases, such as glaucoma. Heat shock proteins (HSPs), which are evolutionarily conserved, are thought to function both as neuroprotectant and pathogenic antigens of T cells contributing to cell protection and tissue damage, respectively. Activated microglia recruit and interact with T cells during this process. Glaucoma, characterized by the progressive loss of retinal ganglion cells, is the leading cause of irreversible blindness. With nearly 70 million people suffering glaucoma worldwide, which doubles the number of patients with Alzheimer's disease, it represents the most frequent neurodegenerative disease of the central nervous system (CNS). Thus, understanding the mechanism of neurodegeneration in glaucoma and its association with the function of commensal microflora may help unveil the secrets of many neurodegenerative disorders in the CNS and develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Yizhen Tang
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Irvin Yi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
18
|
Liyanagamage DSNK, Martinus RD. Role of Mitochondrial Stress Protein HSP60 in Diabetes-Induced Neuroinflammation. Mediators Inflamm 2020; 2020:8073516. [PMID: 32410865 PMCID: PMC7201845 DOI: 10.1155/2020/8073516] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is the most common metabolic disorder characterized by hyperglycemia and associated malfunctions of the metabolism of carbohydrates, proteins, and lipids. There is increasing evidence of a relationship between diabetes and vascular dementia. Interestingly, hyperglycemia-linked neuroinflammation in the central nervous system is considered to play a key role during vascular dementia in diabetic patients. However, the mechanisms responsible for the relationship between hyperglycemia and neuroinflammation is not clearly understood. Diabetes-induced alternations in the blood-brain barrier permit high glucose influx into the brain cells via glucose transporters and promote oxidative stress through overproduction of reactive oxygen species. Despite many studies demonstrating a link between oxidative stress and mitochondrial dysfunction, the relationship between mitochondrial dysfunction and neuron inflammation during hyperglycemia remains to be established. In this review, we will focus on diabetes-induced changes in the central nervous system and the role of mitochondrial heat shock protein 60 (HSP60) as an initiator of oxidative stress and potential modulator of neuroinflammation. We suggest that oxidative stress-mediated mitochondrial dysfunction stimulates the upregulation of mitochondrial heat shock protein 60 (HSP60) and ultimately initiates inflammatory pathways by activating pattern recognition receptors. HSP60 also could be a focal point in the development of a biomarker of neuroinflammation as HSP60 is known to be significantly elevated in diabetic patients. Interestingly, extracellular secretion of HSP60 via exosomes suggests that inflammation could spread to neighboring astrocytes by activating pattern recognition receptors of astrocytes via neuronal exosomes containing HSP60. A mechanism for linking neuron and astrocyte inflammation will provide new therapeutic approaches to modulate neuroinflammation and therefore potentially ameliorate the cognitive impairment in diabetic brains associated with vascular dementia.
Collapse
Affiliation(s)
| | - Ryan D. Martinus
- School of Science, Division of Health, Engineering, Computing & Science, The University of Waikato, Hamilton, New Zealand
| |
Collapse
|
19
|
Jiang S, Kametani M, Chen DF. Adaptive Immunity: New Aspects of Pathogenesis Underlying Neurodegeneration in Glaucoma and Optic Neuropathy. Front Immunol 2020; 11:65. [PMID: 32117239 PMCID: PMC7031201 DOI: 10.3389/fimmu.2020.00065] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/10/2020] [Indexed: 01/04/2023] Open
Abstract
Glaucoma is a globally unmet medical challenge and the most prevalent neurodegenerative disease, which permanently damages the optic nerve and retinal ganglion cells (RGCs), leading to irreversible blindness. Present therapies target solely at lowering intraocular ocular pressure (IOP), a major risk factor of the disease; however, elevated IOP is neither necessary nor sufficient to cause glaucoma. Glaucomatous RGC and nerve fiber loss also occur in individuals with normal IOP. Recent studies have provided evidence indicating a link between elevated IOP and T cell-mediated autoimmune responses, particularly that are specific to heat shock proteins (HSPs), underlying the pathogenesis of neurodegeneration in glaucoma. Reactive glial responses and low-grade inflammation may initially represent an adaptive reaction of the retina to primary stress stimuli; whereas, sustained and excessive glial reactions lead to expanded immune responses, including adaptive immunity, that contribute to progressive neural damage in glaucoma. Emerging data suggest a similar mechanism in play in causing neurodegeneration of other forms of optic neuropathy, such as that resulted from acute ischemia and traumatic injuries. These studies may lead to the paradigm shift and offer a new basis for the development of novel mechanism-based diagnosis, therapy, and preventive interventions for glaucoma. As HSPs are induced under various conditions of neural stress and damage in the brain and spinal cord, these findings may have broader implications for our elucidating of the etiology of other neurodegenerative disorders in the central nervous system.
Collapse
Affiliation(s)
- Shuhong Jiang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Marie Kametani
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Cardinal von Widdern J, Hohmann T, Dehghani F. Abnormal Cannabidiol Affects Production of Pro-Inflammatory Mediators and Astrocyte Wound Closure in Primary Astrocytic-Microglial Cocultures. Molecules 2020; 25:E496. [PMID: 31979350 PMCID: PMC7037200 DOI: 10.3390/molecules25030496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal cannabidiol (abn-CBD) exerts neuroprotective effects in vivo and in vitro. In the present study, we investigated the impact of abn-CBD on the glial production of proinflammatory mediators and scar formation within in vitro models. Primary astrocytic-microglial cocultures and astrocytic cultures from neonatal C57BL/6 mice and CB2 receptor knockout mice were stimulated with lipopolysaccharide (LPS), and the concentrations of tumor necrosis factor α (TNFα), interleukin-6 (IL-6) and nitrite were determined. Furthermore, we performed a live cell microscopy-based scratch-wound assay. After LPS stimulation, TNFα, IL-6 and nitrite production was more strongly increased in cocultures than in isolated astrocytes. Abn-CBD treatment attenuated the LPS-induced production of TNFα and nitrite in cocultures, while IL-6 production remained unaltered. In isolated astrocytes, only LPS-induced TNFα production was reduced by abn-CBD. Similar effects were observed after abn-CBD application in cocultures of CB2 knockout mice. Interestingly, LPS-induced TNFα and nitrite levels were far lower in CB2 knockout cultures compared to wildtypes, while IL-6 levels did not differ. In the scratch-wound assay, treatment with abn-CBD decelerated wound closure when microglial cells were present. Our data shows a differential role of abn-CBD for modulation of glial inflammation and astrocytic scar formation. These findings provide new explanations for mechanisms behind the neuroprotective potential of abn-CBD.
Collapse
Affiliation(s)
| | | | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany; (J.C.v.W.); (T.H.)
| |
Collapse
|
21
|
Kang JB, Park DJ, Koh PO. Identification of proteins differentially expressed by glutamate treatment in cerebral cortex of neonatal rats. Lab Anim Res 2019; 35:24. [PMID: 32257912 PMCID: PMC7081608 DOI: 10.1186/s42826-019-0026-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022] Open
Abstract
Glutamate leads to neuronal cell damage by generating neurotoxicity during brain development. The objective of this study is to identify proteins that differently expressed by glutamate treatment in neonatal cerebral cortex. Sprague-Dawley rat pups (post-natal day 7) were intraperitoneally injected with vehicle or glutamate (10 mg/kg). Brain tissues were isolated 4 h after drug treatment and fixed for morphological study. Moreover, cerebral cortices were collected for protein study. Two-dimensional gel electrophoresis and mass spectrometry were carried out to identify specific proteins. We observed severe histopathological changes in glutamate-exposed cerebral cortex. We identified various proteins that differentially expressed by glutamate exposure. Identified proteins were thioredoxin, peroxiredoxin 5, ubiquitin carboxy-terminal hydrolase L1, proteasome subunit alpha proteins, isocitrate dehydrogenase, and heat shock protein 60. Heat shock protein 60 was increased in glutamate exposed condition. However, other proteins were decreased in glutamate-treated animals. These proteins are related to anti-oxidant, protein degradation, metabolism, signal transduction, and anti-apoptotic function. Thus, our findings can suggest that glutamate leads to neonatal cerebral cortex damage by regulation of specific proteins that mediated with various functions.
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| |
Collapse
|
22
|
Dukay B, Csoboz B, Tóth ME. Heat-Shock Proteins in Neuroinflammation. Front Pharmacol 2019; 10:920. [PMID: 31507418 PMCID: PMC6718606 DOI: 10.3389/fphar.2019.00920] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
The heat-shock response, one of the main pro-survival mechanisms of a living organism, has evolved as the biochemical response of cells to cope with heat stress. The most well-characterized aspect of the heat-shock response is the accumulation of a conserved set of proteins termed heat-shock proteins (HSPs). HSPs are key players in protein homeostasis acting as chaperones by aiding the folding and assembly of nascent proteins and protecting against protein aggregation. HSPs have been associated with neurological diseases in the context of their chaperone activity, as they were found to suppress the aggregation of misfolded toxic proteins. In recent times, HSPs have proven to have functions apart from the classical molecular chaperoning in that they play a role in a wider scale of neurological disorders by modulating neuronal survival, inflammation, and disease-specific signaling processes. HSPs are gaining importance based on their ability to fine-tune inflammation and act as immune modulators in various bodily fluids. However, their effect on neuroinflammation processes is not yet fully understood. In this review, we summarize the role of neuroinflammation in acute and chronic pathological conditions affecting the brain. Moreover, we seek to explore the existing literature on HSP-mediated inflammatory function within the central nervous system and compare the function of these proteins when they are localized intracellularly compared to being present in the extracellular milieu.
Collapse
Affiliation(s)
- Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
23
|
Yadav S, Surolia A. Lysozyme elicits pain during nerve injury by neuronal Toll-like receptor 4 activation and has therapeutic potential in neuropathic pain. Sci Transl Med 2019; 11:11/504/eaav4176. [DOI: 10.1126/scitranslmed.aav4176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/04/2018] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
Abstract
The role of neuronal Toll-like receptor 4 (TLR4) in nerve injury is being pursued actively. However, the endogenous activation of neuronal TLR4 during neuroinflammation, in absence of the participation of glial TLR4, remains elusive. Here, we identified lysozyme as an endogenous activator of neuronal TLR4 signaling during nerve injury. Upon nerve injury, enhanced expression of lysozyme promoted neuronal hyperexcitability and neuropathic pain. Injections of lysozyme in healthy rats increased their mechanical and thermal pain sensitivity. Likewise, infusion of spinal cord slices with lysozyme increased neuronal excitability typical of neuropathic pain. Our results also showed that lysozyme activated excitability of both Aδ- and C-fibers. Thus, in addition to the discovery of lysozyme as an endogenous ligand for regulating neuronal TLR4 signaling, this study also lays the foundation of our understanding of its role in nervous system pathologies, providing multiple avenues for treating neuroinflammation.
Collapse
|
24
|
Mallah K, Quanico J, Raffo-Romero A, Cardon T, Aboulouard S, Devos D, Kobeissy F, Zibara K, Salzet M, Fournier I. Mapping Spatiotemporal Microproteomics Landscape in Experimental Model of Traumatic Brain Injury Unveils a link to Parkinson's Disease. Mol Cell Proteomics 2019; 18:1669-1682. [PMID: 31204315 PMCID: PMC6683007 DOI: 10.1074/mcp.ra119.001604] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major health concerns with no clinically-approved FDA drug available for therapeutic intervention. Several genomics and neuroproteomics studies have been employed to decipher the underlying pathological mechanisms involved that can serve as potential neurotherapeutic targets and unveil a possible underlying relation of TBI to other secondary neurological disorders. In this work, we present a novel high throughput systems biology approach using a spatially resolved microproteomics platform conducted on different brain regions in an experimental rat model of moderate of controlled cortical injury (CCI) at a temporal pattern postinjury (1 day, 3 days, 7 days, and 10 days). Mapping the spatiotemporal landscape of signature markers in TBI revealed an overexpression of major protein families known to be implicated in Parkinson's disease (PD) such as GPR158, HGMB1, synaptotagmin and glutamate decarboxylase in the ipsilateral substantia nigra. In silico bioinformatics docking experiments indicated the potential correlation between TBI and PD through alpha-synuclein. In an in vitro model, stimulation with palmitoylcarnitine triggered an inflammatory response in macrophages and a regeneration processes in astrocytes which also further confirmed the in vivo TBI proteomics data. Taken together, this is the first study to assess the microproteomics landscape in TBI, mainly in the substantia nigra, thus revealing a potential predisposition for PD or Parkinsonism post-TBI.
Collapse
Affiliation(s)
- Khalil Mallah
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France; §ER045, PRASE, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Jusal Quanico
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Antonella Raffo-Romero
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Tristan Cardon
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Soulaimane Aboulouard
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - David Devos
- ¶Department of Neurology, Expert center for Parkinson's disease, Department of Pharmacology, University of Lille, CHU LILLE, INSERM UMR_S 1171, LICEND, France
| | - Firas Kobeissy
- ‖Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- §ER045, PRASE, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Michel Salzet
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France.
| | - Isabelle Fournier
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France.
| |
Collapse
|
25
|
Microglial LOX-1/MAPKs/NF-κB positive loop promotes the vicious cycle of neuroinflammation and neural injury. Int Immunopharmacol 2019; 70:187-200. [DOI: 10.1016/j.intimp.2019.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/23/2022]
|
26
|
Li XL, Wang YL, Zheng J, Zhang Y, Zhang XF. Inhibiting expression of HSP60 and TLR4 attenuates paraquat-induced microglial inflammation. Chem Biol Interact 2018; 299:179-185. [PMID: 30584891 DOI: 10.1016/j.cbi.2018.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 12/21/2018] [Indexed: 11/26/2022]
Abstract
Accumulating evidences suggest that heat shock protein 60 (HSP60) and toll-like receptor 4 (TLR4) are involved in triggering inflammatory response in microglia. Paraquat (PQ) evokes microglial inflammation by up-regulating expression of HSP60-TLR4-myeloid differentiation factor 88 (Myd88)-nuclear factor-kappa B (NF-κB) in vitro. The aim of this study is to investigate the potential modulatory roles of HSP60 and TLR4 in PQ-induced inflammation. Before treated with PQ, microglia BV2 cells were pretreated using siRNA to knockdown HSP60 or with specific inhibitor to inhibit TLR4 expression. Expression of TLR4 and MyD88, and nuclear translocation of NF-κB subunit p65 were studied with immunoblotting and immunofluorescence, respectively. Expression of pro-inflammatory factors was assessed with quantitative real-time PCR. Knockdown of HSP60 or inhibition of TLR4 significantly reduced the expression of TLR4 and MyD88 and decreased the accumulation of NF-κB p65 in the nucleus. Gene expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS) were also significantly decreased in response to PQ. These results suggest that HSP60 and TLR4 can modulate intracellular signaling of PQ-induced inflammation. Inhibiting HSP60 or TLR4 reduces significantly the intensity of inflammation in PQ-activated microglia.
Collapse
Affiliation(s)
- Xin-Lei Li
- Department of Human Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Yong-Ling Wang
- Department of Toxicology, Public Health School, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Jing Zheng
- Department of Public Health Monitoring, Heilongjiang Center for Disease Control and Prevention, Harbin, Heilongjiang Province, 150030, PR China
| | - Yang Zhang
- Department of Toxicology, Public Health School, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China.
| | - Xiao-Feng Zhang
- Department of Toxicology, Public Health School, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China.
| |
Collapse
|
27
|
Pandur E, Varga E, Tamási K, Pap R, Nagy J, Sipos K. Effect of Inflammatory Mediators Lipopolysaccharide and Lipoteichoic Acid on Iron Metabolism of Differentiated SH-SY5Y Cells Alters in the Presence of BV-2 Microglia. Int J Mol Sci 2018; 20:ijms20010017. [PMID: 30577543 PMCID: PMC6337407 DOI: 10.3390/ijms20010017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharide (LPS) and lipoteichoic acid (LTA), the Gram-negative and the Gram-positive bacterial cell wall components are important mediators of neuroinflammation in sepsis. LPS and LTA are potent activators of microglial cells which induce the production of various pro-inflammatory cytokines. It has been demonstrated that disturbance of iron homeostasis of the brain is one of the underlying causes of neuronal cell death but the mechanisms contributing to this process are still questionable. In the present study, we established monocultures of differentiated SH-SY5Y cells and co-cultures of differentiated SH-SY5Y cells and BV-2 microglia as neuronal model systems to selectively examine the effect of inflammatory mediators LPS and LTA on iron homeostasis of SH-SY5Y cells both in mono- and co-cultures. We monitored the IL-6 and TNFα secretions of the treated cells and determined the mRNA and protein levels of iron importers (transferrin receptor-1 and divalent metal transporter-1), and iron storing genes (ferritin heavy chain and mitochondrial ferritin). Moreover, we examined the relation between hepcidin secretion and intracellular iron content. Our data revealed that LPS and LTA triggered distinct responses in SH-SY5Y cells by differently changing the expressions of iron uptake, as well as cytosolic and mitochondrial iron storage proteins. Moreover, they increased the total iron contents of the cells but at different rates. The presence of BV-2 microglial cells influenced the reactions of SH-SY5Y cells on both LPS and LTA treatments: iron uptake and iron storage, as well as the neuronal cytokine production have been modulated. Our results demonstrate that BV-2 cells alter the iron metabolism of SH-SY5Y cells, they contribute to the iron accumulation of SH-SY5Y cells by manipulating the effects of LTA and LPS proving that microglia are important regulators of neuronal iron metabolism at neuroinflammation.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| | - Edit Varga
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| | - Kitti Tamási
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| | - Judit Nagy
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pécs, Ifjúság út 13., H-7624 Pécs, Hungary.
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary.
| |
Collapse
|
28
|
Yang Q, Zhou J. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia 2018; 67:1017-1035. [DOI: 10.1002/glia.23571] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Qiao‐qiao Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
| | - Jia‐wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Shanghai 200031 China
| |
Collapse
|
29
|
Thibault PK. Neck vein obstruction: Diagnosis and the role of chronic persistent Chlamydophila pneumoniae infection. Phlebology 2018; 34:372-379. [PMID: 30360684 DOI: 10.1177/0268355518804379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background The objective of this review is to describe the diagnosis of neck vein obstruction and the possible role of chronic persistent Chlamydophila pneumoniae infection in producing the syndrome of chronic cerebrospinal venous obstruction. Method The normal patterns of flow in the neck veins are described and guidelines for interpretation of the quantitative duplex ultrasound examination of the extracranial neck veins are developed. Result An infective cause of neck vein obstruction is proposed and from a literature search of the role of the obligate intracellular bacterium Chlamydophila pneumoniae in vascular and chronic diseases, a diagnostic protocol for confirming chronic persistent Chlamydophila pneumoniae infection, which includes the quantitative duplex ultrasound examination and specific blood tests are suggested. Conclusion Further research to validate this diagnostic protocol is required.
Collapse
|
30
|
Sun Y, Zheng J, Xu Y, Zhang X. Paraquat-induced inflammatory response of microglia through HSP60/TLR4 signaling. Hum Exp Toxicol 2018; 37:1161-1168. [DOI: 10.1177/0960327118758152] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previous studies showed that paraquat (PQ) caused the apoptosis of dopaminergic neurons by inducing the generation of oxygen radical. The purpose of this study is to explore PQ-induced microglial inflammatory response and its underlying molecular mechanisms. The murine microglia BV2 cell line was used. After stimulation with PQ and lipopolysaccharides (positive control), the concentrations of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6) in the culture supernatant and mRNA expression of TNF-α and IL-1β were determined by ELISA and quantitative real-time Polymerase Chain Reaction (PCR), respectively. The protein expression of heat shock protein 60 (HSP60) and toll-like receptor 4 (TLR4), along with the mRNA expression of transcription factors of nuclear factor κB-p65 (NF-κB-p65) and activated protein 1 (AP1, c-fos, and c-jun dimer) were evaluated with western blot and quantitative real-time PCR, respectively. The results showed that PQ activated microglia, which was characterized by increasing the generation and upregulated mRNA expression of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6. In addition, PQ significantly enhanced the expressions of HSP60 and TLR4 proteins in BV2 cells, as well as NF-κB-p65, c-fos, and c-jun mRNA. These findings suggest that PQ can activate microglia and enhance the expression and secretion of pro-inflammatory cytokines in a HSP60/TLR4 signaling, leading to the inflammatory response.
Collapse
Affiliation(s)
- Y Sun
- Department of Toxicology, Public Health School, Harbin Medical University, Harbin, China
| | - J Zheng
- Department of Public Health Monitoring, Heilongjiang Provincial Centre for Disease Control and Prevention, Harbin, China
| | - Y Xu
- Department of Toxicology, Public Health School, Harbin Medical University, Harbin, China
| | - X Zhang
- Department of Toxicology, Public Health School, Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Castro JP, Wardelmann K, Grune T, Kleinridders A. Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism? Front Endocrinol (Lausanne) 2018; 9:196. [PMID: 29755410 PMCID: PMC5932182 DOI: 10.3389/fendo.2018.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.
Collapse
Affiliation(s)
- José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- *Correspondence: José Pedro Castro, ; André Kleinridders,
| | - Kristina Wardelmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - André Kleinridders
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- *Correspondence: José Pedro Castro, ; André Kleinridders,
| |
Collapse
|
32
|
Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, Zhang Z, Hou B, Zhang W, Sun Y, Gu X, Ma Z, Liu Y. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun 2017; 64:195-207. [PMID: 28302458 DOI: 10.1016/j.bbi.2017.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/28/2022] Open
Abstract
Excessive inflammatory responses play important roles in the aggravation of secondary damage to an injured spinal cord. Dexmedetomidine (DEX), a selective α2-adrenoceptor agonist, has recently been implied to be neuroprotective in clinical anesthesia, but the underlying mechanism is elusive. As signaling through Toll-like receptor 4 (TLR4) and nicotinic receptors (nAChRs, notably α7nAChR) play important roles in the pro- and anti-inflammation systems in the central nervous system, respectively, this study investigated whether and how they were modulated by DEX pretreatment in a rat model of spinal cord compression. The model was used to mimic perioperative compressive spinal cord injury (SCI) during spinal correction. DEX preconditioning improved locomotor scores after SCI, which was accompanied by increased α7nAChR and acetylcholine (Ach, an endogenous ligand of α7nAChR) expression as well as PI3K/Akt activation. However, there was a decrease in Ly6h (a negative regulator for α7nAChR trafficking), TLR4, PU.1 (a critical transcriptional regulator of TLR4), HMGB1 (an endogenous ligand of TLR4), and caspase 3-positive cells, which was prevented by intrathecal preconditioning with antagonists of either α2R, α7nAChR or PI3K/Akt. In addition, application of an α7nAChR agonist produced effects similar to those of DEX after SCI, while application of an α7nAChR antagonist reversed these effects. Furthermore, both α7nAChR and TLR4 were mainly co-expressed in NeuN-positive cells of the spinal ventral horn, but not in microglia or astrocytes after SCI. These findings imply that the α2R/PI3K/Akt/Ly6h and α7nAChR/PI3K/Akt/PU.1 cascades are required for upregulated α7nAChR and downregulated TLR4 expression by DEX pretreatment, respectively, which provided a unique insight into understanding DEX-mediated neuroprotection.
Collapse
Affiliation(s)
- Hui Rong
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zhibin Zhao
- Department of Anesthesiology, The First People's Hospital of Lianyungang City, Lianyungang, China
| | - Jiying Feng
- Department of Anesthesiology, The First People's Hospital of Lianyungang City, Lianyungang, China
| | - Yishan Lei
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hao Wu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Rao Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zuoxia Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - YuE Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
33
|
Zhang R, Li Y, Hou X, Miao Z, Wang Y. Neuroprotective effect of heat shock protein 60 on matrine-suppressed microglial activation. Exp Ther Med 2017; 14:1832-1836. [PMID: 28781634 DOI: 10.3892/etm.2017.4691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 04/21/2017] [Indexed: 12/28/2022] Open
Abstract
Matrine (MT) is the primary active alkaloid separated from members of the Sophora genus. Previous studies have reported that MT has anti-inflammatory effects in the central nervous system (CNS). However, the underlying molecular mechanism of the neuroprotective effect of MT remains unclear, particularly the role of heat shock protein 60 (HSP60). Microglia are macrophages in the CNS that serve an essential role in the innate immune system by producing various proinflammatory and neurotoxic factors. In addition, HSP60 is released by activated microglia causing an autoimmune response. The present study aimed to investigate whether MT could inhibit the activation of microglia via suppressing the HSP60 signaling pathway. The results demonstrated that the expression and release of HSP60 in LPS-activated BV2 microglial cells was significantly decreased by MT treatment. Extracellular HSP60 is a ligand of toll like receptor 4 (TLR-4); thus, it was hypothesized that secreted HSP60 could bind to TLR-4 on microglia and activate the TLR-4 signaling pathway. As expected, western blotting and ELISA results revealed that MT significantly inhibited the LPS-induced increase in TLR-4, myeloid differentiation primary response protein MyD88, caspase-3 and tumor necrosis factor-α. In conclusion, the results of the present study provide a novel direction for the prevention and treatment of neurodegenerative diseases characterized by microglial activation.
Collapse
Affiliation(s)
- Rui Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yunhong Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiaolin Hou
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhenhua Miao
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yin Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
34
|
Li Y, Zhang R, Hou X, Zhang Y, Ding F, Li F, Yao Y, Wang Y. Microglia activation triggers oligodendrocyte precursor cells apoptosis via HSP60. Mol Med Rep 2017; 16:603-608. [PMID: 28586011 PMCID: PMC5482110 DOI: 10.3892/mmr.2017.6673] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/20/2017] [Indexed: 12/23/2022] Open
Abstract
Reactive microglia are present in lesions of myelin-associated white matter disorders resulting in injuries to oligodendrocyte precursor cells (OPCs). Therefore, protection of OPCs from injury due to excessive activation of microglia is important in treating these diseases. Heat shock protein 60 (HSP60) has been demonstrated to be released extracellularly in the failing heart upon stress or injury. However, the role of HSP60 in the central nervous system and whether it participates in the toxic effects of microglia on OPCs remains unclear. The present study used the co-culture, cell death assays, binding assays, immunochemistry, western blot and ELISA. HSP60 was demonstrated to be released extracellularly by LPS-activated microglia and to bind to OPCs, triggering OPC apoptosis. When pretreated with toll-like receptor (TLR) 4 blocking antibody, the viability of OPCs increased, while the expression of nuclear factor κB (NFκB), caspase 3 and the release of proinflammatory cytokines triggered by HSP60 decreased. These results suggest that HSP60 released by microglia may mediate OPC apoptosis through binding to TLR4 on the surface of OPCs and subsequently activating the TLR4-NFκB signaling pathway. HSP60 may, therefore, serve as a potential target for treatment of myelin-associated neurodegenerative diseases that are accompanied by microglia activation.
Collapse
Affiliation(s)
- Yunhong Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Rui Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiaolin Hou
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yumei Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Feijia Ding
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Fan Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yao Yao
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yin Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
35
|
Gaikwad S, Patel D, Agrawal-Rajput R. CD40 Negatively Regulates ATP-TLR4-Activated Inflammasome in Microglia. Cell Mol Neurobiol 2017; 37:351-359. [PMID: 26961545 DOI: 10.1007/s10571-016-0358-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/29/2016] [Indexed: 01/01/2023]
Abstract
During acute brain injury and/or sterile inflammation, release of danger-associated molecular patterns (DAMPs) activates pattern recognition receptors (PRRs). Microglial toll-like receptor (TLR)-4 activated by DAMPs potentiates neuroinflammation through inflammasome-induced IL-1β and pathogenic Th17 polarization which critically influences brain injury. TLR4 activation accompanies increased CD40, a cognate costimulatory molecule, involved in microglia-mediated immune responses in the brain. During brain injury, excessive release of extracellular ATP (DAMPs) is involved in promoting the damage. However, the regulatory role of CD40 in microglia during ATP-TLR4-mediated inflammasome activation has never been explored. We report that CD40, in the absence of ATP, synergizes TLR4-induced proinflammatory cytokines but not IL-1β, suggesting that the response is independent of inflammasome. The presence of ATP during TLR4 activation leads to NLRP3 inflammasome activation and caspase-1-mediated IL-1β secretion which was inhibited during CD40 activation, accompanied with inhibition of ERK1/2 and reactive oxygen species (ROS), and elevation in p38 MAPK phosphorylation. Experiments using selective inhibitors prove indispensability of ERK 1/2 and ROS for inflammasome activation. The ATP-TLR4-primed macrophages polarize the immune response toward pathogenic Th17 cells, whereas CD40 activation mediates Th1 response. Exogenous supplementation of IFN-γ (a Th1 cytokine and CD40 inducer) results in decreased IL-1β, suggesting possible feedback loop mechanism of inflammasome inhibition, whereby IFN-γ-mediated increase in CD40 expression and activation suppress neurotoxic inflammasome activation required for Th17 response. Collectively, the findings indicate that CD40 is a novel negative regulator of ATP-TLR4-mediated inflammasome activation in microglia, thus providing a checkpoint to regulate excessive inflammasome activation and Th17 response during DAMP-mediated brain injury.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382 007, India
| | - Divyesh Patel
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382 007, India
| | - Reena Agrawal-Rajput
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382 007, India.
| |
Collapse
|
36
|
Abstract
T cells are required for immune surveillance of the central nervous system (CNS); however, they can also induce severe immunopathology in the context of both viral infections and autoimmunity. The mechanisms that are involved in the priming and recruitment of T cells to the CNS are only partially understood, but there has been renewed interest in this topic since the 'rediscovery' of lymphatic drainage from the CNS. Moreover, tissue-resident memory T cells have been detected in the CNS and are increasingly recognized as an autonomous line of host defence. In this Review, we highlight the main mechanisms that are involved in the priming and CNS recruitment of CD4+ T cells, CD8+ T cells and regulatory T cells. We also consider the plasticity of T cell responses in the CNS, with a focus on viral infection and autoimmunity.
Collapse
|
37
|
Sterile Neuroinflammation and Strategies for Therapeutic Intervention. Int J Inflam 2017; 2017:8385961. [PMID: 28127491 PMCID: PMC5239986 DOI: 10.1155/2017/8385961] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sterile neuroinflammation is essential for the proper brain development and tissue repair. However, uncontrolled neuroinflammation plays a major role in the pathogenesis of various disease processes. The endogenous intracellular molecules so called damage-associated molecular patterns or alarmins or damage signals that are released by activated or necrotic cells are thought to play a crucial role in initiating an immune response. Sterile inflammatory response that occurs in Alzheimer's disease (AD), Parkinson's disease (PD), stroke, hemorrhage, epilepsy, or traumatic brain injury (TBI) creates a vicious cycle of unrestrained inflammation, driving progressive neurodegeneration. Neuroinflammation is a key mechanism in the progression (e.g., AD and PD) or secondary injury development (e.g., stroke, hemorrhage, stress, and TBI) of multiple brain conditions. Hence, it provides an opportunity for the therapeutic intervention to prevent progressive tissue damage and loss of function. The key for developing anti-neuroinflammatory treatment is to minimize the detrimental and neurotoxic effects of inflammation while promoting the beneficial and neurotropic effects, thereby creating ideal conditions for regeneration and repair. This review outlines how inflammation is involved in the pathogenesis of major nonpathogenic neuroinflammatory conditions and discusses the complex response of glial cells to damage signals. In addition, emerging experimental anti-neuroinflammatory drug treatment strategies are discussed.
Collapse
|
38
|
Oxymatrine inhibits microglia activation via HSP60-TLR4 signaling. Biomed Rep 2016; 5:623-628. [PMID: 27882228 DOI: 10.3892/br.2016.776] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/16/2016] [Indexed: 12/30/2022] Open
Abstract
Oxymatrine (OMT) is an alkaloid extracted from Sophora flavescens, which has broad anti-inflammatory, antitumor and immunosuppressant actions. However, the underlying molecular mechanisms have remained elusive. Heat shock protein 60 (HSP60) has recently been shown to have an important role in autoimmune reactions. The present study aimed to investigate whether OMT exerts its anti-inflammatory effects by inhibiting microglial activation and examined the role of HSP60 in this process. Western blot analysis and ELISA showed that OMT decreased the expression and release of HSP60 by LPS-activated BV2 cells. The expression of heat shock factor 1, the transcription factor of HSP60, was also suppressed by OMT. Extracellular HSP60 has been previously indicated to induce microglial apoptosis through the Toll-like receptor (TLR)-4 pathway. Flow cytometric analysis demonstrated that LPS treatment induced apoptosis of BV2 cells, which was inhibited by OMT in parallel with inhibition of LPS-induced expression of TLR-4. Furthermore, OMT was shown to suppress the levels of myeloid differentiation factor (MYD)88, nuclear factor (NF)-κB, caspase-3, inducible nitric oxide synthase, tumor necrosis factor-α, interleukin (IL)-1β and IL-6. In light of these results, it was concluded that OMT may exert its neuroprotective effects via HSP60/TLR-4/MYD88/NF-κB signaling pathways to inhibit microglial activation. OMT may therefore offer substantial therapeutic potential for treating neurodegenerative diseases associated with microglial activation.
Collapse
|
39
|
Su F, Bai F, Zhou H, Zhang Z. Reprint of: Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 55:166-178. [PMID: 27255539 DOI: 10.1016/j.bbi.2016.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
40
|
Immune Surveillance of the CNS following Infection and Injury. Trends Immunol 2016; 36:637-650. [PMID: 26431941 DOI: 10.1016/j.it.2015.08.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
The central nervous system (CNS) contains a sophisticated neural network that must be constantly surveyed in order to detect and mitigate a diverse array of challenges. The innate and adaptive immune systems actively participate in this surveillance, which is critical for the maintenance of CNS homeostasis and can facilitate the resolution of infections, degeneration, and tissue damage. Infections and sterile injuries represent two common challenges imposed on the CNS that require a prompt immune response. While the inducers of these two challenges differ in origin, the resultant responses orchestrated by the CNS share some overlapping features. Here, we review how the CNS immunologically discriminates between pathogens and sterile injuries, mobilizes an immune reaction, and, ultimately, regulates local and peripherally-derived immune cells to provide a supportive milieu for tissue repair.
Collapse
|
41
|
Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK, Basu A. HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation 2016; 13:27. [PMID: 26838598 PMCID: PMC4736186 DOI: 10.1186/s12974-016-0486-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/19/2016] [Indexed: 01/08/2023] Open
Abstract
Background IL-1β, also known as “the master regulator of inflammation”, is a potent pro-inflammatory cytokine secreted by activated microglia in response to pathogenic invasions or neurodegeneration. It initiates a vicious cycle of inflammation and orchestrates various molecular mechanisms involved in neuroinflammation. The role of IL-1β has been extensively studied in neurodegenerative disorders; however, molecular mechanisms underlying inflammation induced by IL-1β are still poorly understood. The objective of our study is the comprehensive identification of molecular circuitry involved in IL-1β-induced inflammation in microglia through protein profiling. Methods To achieve our aim, we performed the proteomic analysis of N9 microglial cells with and without IL-1β treatment at different time points. Expression of HSP60 in response to IL-1β administration was checked by quantitative real-time PCR, immunoblotting, and immunofluorescence. Interaction of HSP60 with TLR4 was determined by co-immunoprecipitation. Inhibition of TLR4 was done using TLR4 inhibitor to reveal its effect on IL-1β-induced inflammation. Further, effect of HSP60 knockdown and overexpression were assessed on the inflammation in microglia. Specific MAPK inhibitors were used to reveal the downstream MAPK exclusively involved in HSP60-induced inflammation in microglia. Results Total 21 proteins were found to be differentially expressed in response to IL-1β treatment in N9 microglial cells. In silico analysis of these proteins revealed unfolded protein response as one of the most significant molecular functions, and HSP60 turned out to be a key hub molecule. IL-1β induced the expression as well as secretion of HSP60 in extracellular milieu during inflammation of N9 cells. Secreted HSP60 binds to TLR4 and inhibition of TLR4 suppressed IL-1β-induced inflammation to a significant extent. Our knockdown and overexpression studies demonstrated that HSP60 increases the phosphorylation of ERK, JNK, and p38 MAPKs in N9 cells during inflammation. Specific inhibition of p38 by inhibitors suppressed HSP60-induced inflammation, thus pointed towards the major role of p38 MAPK rather than ERK1/2 and JNK in HSP60-induced inflammation. Furthermore, silencing of upstream modulator of p38, i.e., MEK3/6 also reduced HSP60-induced inflammation. Conclusions IL-1β induces expression of HSP60 in N9 microglial cells that further augments inflammation via TLR4-p38 MAPK axis. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0486-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shalini Swaroop
- National Brain Research Centre, Manesar, Haryana, 122051, India
| | | | | | - Yogita K Adlakha
- National Brain Research Centre, Manesar, Haryana, 122051, India.
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122051, India.
| |
Collapse
|
42
|
Su F, Bai F, Zhou H, Zhang Z. Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 52:187-198. [PMID: 26526648 DOI: 10.1016/j.bbi.2015.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 02/08/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|