1
|
Campoy-Campos G, Solana-Balaguer J, Guisado-Corcoll A, Chicote-González A, Garcia-Segura P, Pérez-Sisqués L, Torres A, Canal M, Molina-Porcel L, Fernández-Irigoyen J, Santamaria E, de Pouplana L, Alberch J, Martí E, Giralt A, Pérez-Navarro E, Malagelada C. RTP801 interacts with the tRNA ligase complex and dysregulates its RNA ligase activity in Alzheimer's disease. Nucleic Acids Res 2024; 52:11158-11176. [PMID: 39268577 PMCID: PMC11472047 DOI: 10.1093/nar/gkae776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
RTP801/REDD1 is a stress-responsive protein overexpressed in neurodegenerative diseases such as Alzheimer's disease (AD) that contributes to cognitive deficits and neuroinflammation. Here, we found that RTP801 interacts with HSPC117, DDX1 and CGI-99, three members of the tRNA ligase complex (tRNA-LC), which ligates the excised exons of intron-containing tRNAs and the mRNA exons of the transcription factor XBP1 during the unfolded protein response (UPR). We also found that RTP801 modulates the mRNA ligase activity of the complex in vitro since RTP801 knockdown promoted XBP1 splicing and the expression of its transcriptional target, SEC24D. Conversely, RTP801 overexpression inhibited the splicing of XBP1. Similarly, in human AD postmortem hippocampal samples, where RTP801 is upregulated, we found that XBP1 splicing was dramatically decreased. In the 5xFAD mouse model of AD, silencing RTP801 expression in hippocampal neurons promoted Xbp1 splicing and prevented the accumulation of intron-containing pre-tRNAs. Finally, the tRNA-enriched fraction obtained from 5xFAD mice promoted abnormal dendritic arborization in cultured hippocampal neurons, and RTP801 silencing in the source neurons prevented this phenotype. Altogether, these results show that elevated RTP801 impairs RNA processing in vitro and in vivo in the context of AD and suggest that RTP801 inhibition could be a promising therapeutic approach.
Collapse
Affiliation(s)
- Genís Campoy-Campos
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Julia Solana-Balaguer
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Anna Guisado-Corcoll
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
| | - Almudena Chicote-González
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Pol Garcia-Segura
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Leticia Pérez-Sisqués
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Adrian Gabriel Torres
- Institut de Recerca Biomèdica (IRB Barcelona), Barcelona 08028, Catalonia, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Catalonia, Spain
| | - Mercè Canal
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Laura Molina-Porcel
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), University of Barcelona, Barcelona 08036, Catalonia, Spain
- Neurological Tissue Bank, Biobank-Hospital Clínic-FRCB-IDIBAPS, Barcelona 08036, Catalonia, Spain
| | - Joaquín Fernández-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona 31008, Spain
| | - Enrique Santamaria
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona 31008, Spain
| | - Lluís Ribas de Pouplana
- Institut de Recerca Biomèdica (IRB Barcelona), Barcelona 08028, Catalonia, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Eulàlia Martí
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Albert Giralt
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
| | - Cristina Malagelada
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| |
Collapse
|
2
|
Bakota L, Brandt R. Why kiss-and-hop explains that tau does not stabilize microtubules and does not interfere with axonal transport (at physiological conditions). Cytoskeleton (Hoboken) 2024; 81:47-52. [PMID: 37694806 DOI: 10.1002/cm.21787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Tau is a microtubule-associated protein that is enriched in the axonal process of neurons. Post-translational modifications of tau have been implicated in the development of tauopathies characterized by defects in axonal transport, neuronal atrophy, and microtubule disassembly. Although tau is almost quantitatively bound to microtubules under physiological conditions, it does not significantly affect axonal transport. Furthermore, acute or chronic tau deficiency does not result in significant destabilization of neuronal microtubules, challenging the classical view that disease-related tau modifications directly cause axonal microtubule collapse. Here, we discuss how the rapid interaction kinetics of the tau-microtubule interaction, which we previously termed the kiss-and-hop interaction, explains why tau does not affect microtubule-dependent axonal transport but still allows tau to modulate microtubule polymerization. In contrast, tau modifications that slow down the kinetics of the tau-microtubule interaction and increase the residence time of tau at a microtubule interaction site can disrupt axonal transport and cause dendritic atrophy. We discuss the consequences of such a gain-of-toxicity mechanism in terms of the development of disease-modulating drugs that target the tau protein.
Collapse
Affiliation(s)
- Lidia Bakota
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
- Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
3
|
Robles-Gómez ÁA, Ordaz B, Lorea-Hernández JJ, Peña-Ortega F. Deleterious and protective effects of epothilone-D alone and in the context of amyloid β- and tau-induced alterations. Front Mol Neurosci 2023; 16:1198299. [PMID: 37900942 PMCID: PMC10603193 DOI: 10.3389/fnmol.2023.1198299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Amyloid-β (Aβ) and hyperphosphorylated tau (P-tau) are Alzheimer's disease (AD) biomarkers that interact in a complex manner to induce most of the cognitive and brain alterations observed in this disease. Since the neuronal cytoskeleton is a common downstream pathological target of tau and Aβ, which mostly lead to augmented microtubule instability, the administration of microtubule stabilizing agents (MSAs) can protect against their pathological actions. However, the effectiveness of MSAs is still uncertain due to their state-dependent negative effects; thus, evaluating their specific actions in different pathological or physiological conditions is required. We evaluated whether epothilone-D (Epo-D), a clinically used MSA, rescues from the functional and behavioral alterations produced by intracerebroventricular injection of Aβ, the presence of P-tau, or their combination in rTg4510 mice. We also explored the side effects of Epo-D. To do so, we evaluated hippocampal-dependent spatial memory with the Hebb-Williams maze, hippocampal CA1 integrity and the intrinsic and synaptic properties of CA1 pyramidal neurons with the patch-clamp technique. Aβ and P-tau mildly impaired memory retrieval, but produced contrasting effects on intrinsic excitability. When Aβ and P-tau were combined, the alterations in excitability and spatial reversal learning (i.e., cognitive flexibility) were exacerbated. Interestingly, Epo-D prevented most of the impairments induced Aβ and P-tau alone and combined. However, Epo-D also exhibited some side effects depending on the prevailing pathological or physiological condition, which should be considered in future preclinical and translational studies. Although we did not perform extensive histopathological evaluations or measured microtubule stability, our findings show that MSAs can rescue the consequences of AD-like conditions but otherwise be harmful if administered at a prodromal stage of the disease.
Collapse
Affiliation(s)
- Ángel Abdiel Robles-Gómez
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Ciudad Universitaria, México City, Mexico
| | - Benito Ordaz
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | | | | |
Collapse
|
4
|
Liu Y, Wang P, Jin G, Shi P, Zhao Y, Guo J, Yin Y, Shao Q, Li P, Yang P. The novel function of bexarotene for neurological diseases. Ageing Res Rev 2023; 90:102021. [PMID: 37495118 DOI: 10.1016/j.arr.2023.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Bexarotene, a retinoid X receptor (RXR) agonist, is approved by FDA to treat cutaneous T-cell lymphoma. However, it has also demonstrated promising therapeutic potential for neurological diseases such as stroke, traumatic brain injury, Parkinson's disease, and particularly Alzheimer's disease(AD). In AD, bexarotene inhibits the production and aggregation of amyloid β (Aβ), activates Liver X Receptor/RXR heterodimers to increase lipidated apolipoprotein E to remove Aβ, mitigates the negative impact of Aβ, regulates neuroinflammation, and ultimately improves cognitive function. For other neurological diseases, its mechanisms of action include inhibiting inflammatory responses, up-regulating microglial phagocytosis, and reducing misfolded protein aggregation, all of which aid in alleviating neurological damage. Here, we briefly discuss the characteristics, applications, and adverse effects of bexarotene, summarize its pharmacological mechanisms and therapeutic results in various neurological diseases, and elaborate on the problems encountered in preclinical research, with the aim of providing help for the further application of bexarotene in central nervous system diseases.
Collapse
Affiliation(s)
- Yangtao Liu
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China; College of Third Clinical, Xinxiang Medical University, Xinxiang, China
| | - Pengwei Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Weihui, China
| | - Guofang Jin
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Peijie Shi
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China; Xinxiang First People's Hospital, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yonghui Zhao
- Xinxiang First People's Hospital, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiayi Guo
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yaling Yin
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Qianhang Shao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China.
| | - Peng Li
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.
| | - Pengfei Yang
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.
| |
Collapse
|
5
|
Rierola M, Trushina NI, Holtmannspötter M, Kurre R, Bakota L. Lattice light-sheet microscopy and evaluation of dendritic transport in cultured hippocampal tissue reveal high variability in mobility of the KIF1A motor domain and entry into dendritic spines. Brain Res Bull 2023; 194:13-22. [PMID: 36626968 DOI: 10.1016/j.brainresbull.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
The unique morphology of neurons consists of a long axon and a highly variable arbour of dendritic processes, which assort neuronal cells into the main classes. The dendritic tree serves as the main domain for receiving synaptic input. Therefore, to maintain the structure and to be able to plastically change according to the incoming stimuli, molecules and organelles need to be readily available. This is achieved mainly via bi-directional transport of cargo along the microtubule lattices. Analysis of dendritic transport is lagging behind the investigation of axonal transport. Moreover, addressing transport mechanisms in tissue environment is very challenging and, therefore, rare. We employed high-speed volumetric lattice light-sheet microscopy and single particle tracking of truncated KIF1A motor protein lacking the cargo-binding domain. We focused our analysis on dendritic processes of CA1 pyramidal neurons in cultured hippocampal tissue. Analysis of individual trajectories revealed detailed information about stalling and high variability in movement and speed, and biased directionality of KIF1A. Furthermore, we could also observe KIF1A shortly entering into dendritic spines. We provide a workflow to analyse variations in the speed and direction of motor protein movement in dendrites that are either intrinsic properties of the motor domain or depend on the structure and modification of the microtubule trails.
Collapse
Affiliation(s)
- Marina Rierola
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | | | - Michael Holtmannspötter
- Integrated Bioimaging Facility iBiOs, Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Rainer Kurre
- Integrated Bioimaging Facility iBiOs, Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
6
|
Lucero EM, Freund RK, Smith A, Johnson NR, Dooling B, Sullivan E, Prikhodko O, Ahmed MM, Bennett DA, Hohman TJ, Dell’Acqua ML, Chial HJ, Potter H. Increased KIF11/ kinesin-5 expression offsets Alzheimer Aβ-mediated toxicity and cognitive dysfunction. iScience 2022; 25:105288. [PMID: 36304124 PMCID: PMC9593841 DOI: 10.1016/j.isci.2022.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Previously, we found that amyloid-beta (Aβ) competitively inhibits the kinesin motor protein KIF11 (Kinesin-5/Eg5), leading to defects in the microtubule network and in neurotransmitter and neurotrophin receptor localization and function. These biochemical and cell biological mechanisms for Aβ-induced neuronal dysfunction may underlie learning and memory defects in Alzheimer's disease (AD). Here, we show that KIF11 overexpression rescues Aβ-mediated decreases in dendritic spine density in cultured neurons and in long-term potentiation in hippocampal slices. Furthermore, Kif11 overexpression from a transgene prevented spatial learning deficits in the 5xFAD mouse model of AD. Finally, increased KIF11 expression in neuritic plaque-positive AD patients' brains was associated with better cognitive performance and higher expression of synaptic protein mRNAs. Taken together, these mechanistic biochemical, cell biological, electrophysiological, animal model, and human data identify KIF11 as a key target of Aβ-mediated toxicity in AD, which damages synaptic structures and functions critical for learning and memory in AD.
Collapse
Affiliation(s)
- Esteban M. Lucero
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Program for Human Medical Genetics and Genomics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ronald K. Freund
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Smith
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Noah R. Johnson
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Breanna Dooling
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Program for Human Medical Genetics and Genomics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Sullivan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olga Prikhodko
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Md. Mahiuddin Ahmed
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark L. Dell’Acqua
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Heidi J. Chial
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Soliman A, Bakota L, Brandt R. Microtubule-modulating Agents in the Fight Against Neurodegeneration: Will it ever Work? Curr Neuropharmacol 2022; 20:782-798. [PMID: 34852744 PMCID: PMC9878958 DOI: 10.2174/1570159x19666211201101020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
The microtubule skeleton plays an essential role in nerve cells as the most important structural determinant of morphology and as a highway for axonal transport processes. Many neurodegenerative diseases are characterized by changes in the structure and organization of microtubules and microtubule-regulating proteins such as the microtubule-associated protein tau, which exhibits characteristic changes in a whole class of diseases collectively referred to as tauopathies. Changes in the dynamics of microtubules appear to occur early under neurodegenerative conditions and are also likely to contribute to age-related dysfunction of neurons. Thus, modulating microtubule dynamics and correcting impaired microtubule stability can be a useful neuroprotective strategy to counteract the disruption of the microtubule system in disease and aging. In this article, we review current microtubule- directed approaches for the treatment of neurodegenerative diseases with microtubules as a drug target, tau as a drug target, and post-translational modifications as potential modifiers of the microtubule system. We discuss limitations of the approaches that can be traced back to the rather unspecific mechanism of action, which causes undesirable side effects in non-neuronal cell types or which are due to the disruption of non-microtubule-related interactions. We also develop some thoughts on how the specificity of the approaches can be improved and what further targets could be used for modulating substances.
Collapse
Affiliation(s)
- Ahmed Soliman
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany;,Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany;,Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany,Address correspondence to this author at the Department of Neurobiology, Osnabrück University, Osnabrück, Germany; Tel: +49 541 969 2338; E-mail:
| |
Collapse
|
8
|
Peña-Ortega F, Robles-Gómez ÁA, Xolalpa-Cueva L. Microtubules as Regulators of Neural Network Shape and Function: Focus on Excitability, Plasticity and Memory. Cells 2022; 11:cells11060923. [PMID: 35326374 PMCID: PMC8946818 DOI: 10.3390/cells11060923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Neuronal microtubules (MTs) are complex cytoskeletal protein arrays that undergo activity-dependent changes in their structure and function as a response to physiological demands throughout the lifespan of neurons. Many factors shape the allostatic dynamics of MTs and tubulin dimers in the cytosolic microenvironment, such as protein–protein interactions and activity-dependent shifts in these interactions that are responsible for their plastic capabilities. Recently, several findings have reinforced the role of MTs in behavioral and cognitive processes in normal and pathological conditions. In this review, we summarize the bidirectional relationships between MTs dynamics, neuronal processes, and brain and behavioral states. The outcomes of manipulating the dynamicity of MTs by genetic or pharmacological approaches on neuronal morphology, intrinsic and synaptic excitability, the state of the network, and behaviors are heterogeneous. We discuss the critical position of MTs as responders and adaptative elements of basic neuronal function whose impact on brain function is not fully understood, and we highlight the dilemma of artificially modulating MT dynamics for therapeutic purposes.
Collapse
|
9
|
Imbimbo BP, Ippati S, Watling M, Balducci C. A critical appraisal of tau-targeting therapies for primary and secondary tauopathies. Alzheimers Dement 2021; 18:1008-1037. [PMID: 34533272 DOI: 10.1002/alz.12453] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Primary tauopathies are neurological disorders in which tau protein deposition is the predominant pathological feature. Alzheimer's disease is a secondary tauopathy with tau forming hyperphosphorylated insoluble aggregates. Tau pathology can propagate from region to region in the brain, while alterations in tau processing may impair tau physiological functions. METHODS We reviewed literature on tau biology and anti-tau drugs using PubMed, meeting abstracts, and ClnicalTrials.gov. RESULTS The past 15 years have seen >30 drugs interfering with tau aggregation, processing, and accumulation reaching the clinic. Initial results with tau aggregation inhibitors and anti-tau monoclonal antibodies have not shown clinical efficacy. DISCUSSION The reasons for these clinical failures are unclear but could be linked to the clearing of physiological forms of tau by non-specific drugs. Research is now concentrating efforts on developing reliable translational animal models and selective compounds targeting specific tau epitopes, neurotoxic tau aggregates, and post-translational tau modifications.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | - Stefania Ippati
- San Raffaele Scientific Institute, San Raffaele Hospital, Milan, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| |
Collapse
|
10
|
Boiarska Z, Passarella D. Microtubule-targeting agents and neurodegeneration. Drug Discov Today 2020; 26:604-615. [PMID: 33279455 DOI: 10.1016/j.drudis.2020.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022]
Abstract
The association of microtubule (MT) breakdown with neurodegeneration and neurotoxicity has provided an emerging therapeutic approach for neurodegenerative diseases. Tubulin binders are able to modulate MT dynamics and, as a result, are of particular interest both as potential therapeutics and experimental tools used to validate this strategy. Here, we provide a comprehensive overview of current knowledge and recent advancements regarding MT-targeting approaches for neurodegeneration and evaluate the potential application of MT-targeting agents (MTAs) based on available preclinical and clinical data.
Collapse
Affiliation(s)
- Zlata Boiarska
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
11
|
de Vidania S, Palomares-Perez I, Frank-García A, Saito T, Saido TC, Draffin J, Szaruga M, Chávez-Gutierrez L, Calero M, Medina M, Guix FX, Dotti CG. Prodromal Alzheimer's Disease: Constitutive Upregulation of Neuroglobin Prevents the Initiation of Alzheimer's Pathology. Front Neurosci 2020; 14:562581. [PMID: 33343276 PMCID: PMC7744294 DOI: 10.3389/fnins.2020.562581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, a considerable number of the autopsy samples of cognitively normal individuals aged between 57 and 102 years have revealed the presence of amyloid plaques, one of the typical signs of AD, indicating that many of us use mechanisms that defend ourselves from the toxic consequences of Aß. The human APP NL/F (hAPP NL/F) knockin mouse appears as the ideal mouse model to identify these mechanisms, since they have high Aß42 levels at an early age and moderate signs of disease when old. Here we show that in these mice, the brain levels of the hemoprotein Neuroglobin (Ngb) increase with age, in parallel with the increase in Aß42. In vitro, in wild type neurons, exogenous Aß increases the expression of Ngb and Ngb over-expression prevents Aß toxicity. In vivo, in old hAPP NL/F mice, Ngb knockdown leads to dendritic tree simplification, an early sign of Alzheimer’s disease. These results could indicate that Alzheimer’s symptoms may start developing at the time when defense mechanisms start wearing out. In agreement, analysis of plasma Ngb levels in aged individuals revealed decreased levels in those whose cognitive abilities worsened during a 5-year longitudinal follow-up period.
Collapse
Affiliation(s)
- Silvia de Vidania
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Irene Palomares-Perez
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Ana Frank-García
- Department of Neurology, Instituto de Salud Carlos III (ISCIII), Division Neurodegenerative Disease, University Hospital La Paz, Madrid, Spain
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Japan
| | - Takaomi C Saido
- Department of Neurocognitive Science, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Jonathan Draffin
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - María Szaruga
- KU Leuven Department for Neurosciences, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Lucía Chávez-Gutierrez
- KU Leuven Department for Neurosciences, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Miguel Calero
- CIBERNED, Queen Sofia Foundation Alzheimer Center, CIEN Foundation, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Medina
- CIBERNED, Queen Sofia Foundation Alzheimer Center, CIEN Foundation, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc X Guix
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Carlos G Dotti
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| |
Collapse
|
12
|
Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. Acta Neuropathol 2020; 140:417-447. [PMID: 32728795 PMCID: PMC7498448 DOI: 10.1007/s00401-020-02196-w] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Tau and amyloid beta (Aβ) are the prime suspects for driving pathology in Alzheimer's disease (AD) and, as such, have become the focus of therapeutic development. Recent research, however, shows that these proteins have been highly conserved throughout evolution and may have crucial, physiological roles. Such functions may be lost during AD progression or be unintentionally disrupted by tau- or Aβ-targeting therapies. Tau has been revealed to be more than a simple stabiliser of microtubules, reported to play a role in a range of biological processes including myelination, glucose metabolism, axonal transport, microtubule dynamics, iron homeostasis, neurogenesis, motor function, learning and memory, neuronal excitability, and DNA protection. Aβ is similarly multifunctional, and is proposed to regulate learning and memory, angiogenesis, neurogenesis, repair leaks in the blood-brain barrier, promote recovery from injury, and act as an antimicrobial peptide and tumour suppressor. This review will discuss potential physiological roles of tau and Aβ, highlighting how changes to these functions may contribute to pathology, as well as the implications for therapeutic development. We propose that a balanced consideration of both the physiological and pathological roles of tau and Aβ will be essential for the design of safe and effective therapeutics.
Collapse
Affiliation(s)
- Sarah A. Kent
- Translational Neuroscience PhD Programme, Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Tara L. Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Claire S. Durrant
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| |
Collapse
|
13
|
Nourbakhsh F, Read MI, Barreto GE, Sahebkar A. Boosting the autophagy-lysosomal pathway by phytochemicals: A potential therapeutic strategy against Alzheimer's disease. IUBMB Life 2020; 72:2360-2281. [PMID: 32894821 DOI: 10.1002/iub.2369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 01/14/2023]
Abstract
The lysosome is a membrane-enclosed organelle in eukaryotic cells, which has basic pattern recognition for nutrient-dependent signal transduction. In Alzheimer's disease, the already declining autophagy-lysosomal function is exacerbated by an increased need for clearance of damaged proteins and organelles in aged cells. Recent evidence suggests that numerous diseases are linked to impaired autophagy upstream of lysosomes. In this way, a comprehensive survey on the pathophysiology of the disease seems necessary. Hence, in the first section of this review, we will discuss the ultimate findings in lysosomal signaling functions and how they affect cellular metabolism and trafficking under neurodegenerative conditions, specifically Alzheimer's disease. In the second section, we focus on how natural products and their derivatives are involved in the regulation of inflammation and lysosomal dysfunction pathways, including how these should be considered a crucial target for Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn I Read
- Department of Pharmacology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
14
|
Li W, Wu M, Zhang Y, Wei X, Zang J, Liu Y, Wang Y, Gong CX, Wei W. Intermittent fasting promotes adult hippocampal neuronal differentiation by activating GSK-3β in 3xTg-AD mice. J Neurochem 2020; 155:697-713. [PMID: 32578216 DOI: 10.1111/jnc.15105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022]
Abstract
Moderate dietary restriction can ameliorate age-related chronic diseases such as Alzheimer's disease (AD) by increasing the expression of neurotrophic factors and promoting neurogenesis in the brain. Glycogen synthase kinase-3β (GSK-3β) signaling is essential for the coordination of progenitor cell proliferation and differentiation during brain development. The mechanisms by which GSK-3β is involved in dietary restriction-induced neurogenesis and cognitive improvement remain unclear. Six-month-old male 3xTg-AD and wild-type mice were fed on alternate days (intermittent fasting, IF) or ad libitum (AL) for 3 months. GSK-3β activity was regulated by bilaterally infusing lentiviral vectors carrying siRNA targeting GSK-3β into the dentate gyrus region of the hippocampus. Intermittent fasting promoted neuronal differentiation and maturation in the dentate gyrus and ameliorated recognized dysfunction in 3xTg-AD mice. These effects were reversed by siRNA targeting GSK-3β. After intermittent fasting, the insulin and protein kinase A signaling pathways were inhibited, while the adenosine monophosphate-activated protein kinase and brain-derived neurotrophic factor pathways were activated. These findings suggest that intermittent fasting can promote neuronal differentiation and maturation in the hippocampus by activating GSK-3β, thus improving learning and memory.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China.,Department of Pathology, The first people's hospital of foshan, Foshan, Guangdong, P. R. China
| | - Meijian Wu
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Yilin Zhang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Xuemin Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Jiankun Zang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Yinghua Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, P. R. China
| | - Yanping Wang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wei Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
15
|
Hrynchak MV, Rierola M, Golovyashkina N, Penazzi L, Pump WC, David B, Sündermann F, Brandt R, Bakota L. Chronic Presence of Oligomeric Aβ Differentially Modulates Spine Parameters in the Hippocampus and Cortex of Mice With Low APP Transgene Expression. Front Synaptic Neurosci 2020; 12:16. [PMID: 32390822 PMCID: PMC7194154 DOI: 10.3389/fnsyn.2020.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/25/2020] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease is regarded as a synaptopathy with a long presymptomatic phase. Soluble, oligomeric amyloid-β (Aβ) is thought to play a causative role in this disease, which eventually leads to cognitive decline. However, most animal studies have employed mice expressing high levels of the Aβ precursor protein (APP) transgene to drive pathology. Here, to understand how the principal neurons in different brain regions cope with moderate, chronically present levels of Aβ, we employed transgenic mice expressing equal levels of mouse and human APP carrying a combination of three familial AD (FAD)-linked mutations (Swedish, Dutch, and London), that develop plaques only in old age. We analyzed dendritic spine parameters in hippocampal and cortical brain regions after targeted expression of EGFP to allow high-resolution imaging, followed by algorithm-based evaluation of mice of both sexes from adolescence to old age. We report that Aβ species gradually accumulated throughout the life of APPSDL mice, but not the oligomeric forms, and that the amount of membrane-associated oligomers decreased at the onset of plaque formation. We observed an age-dependent loss of thin spines under most conditions as an indicator of a loss of synaptic plasticity in older mice. We further found that hippocampal pyramidal neurons respond to increased Aβ levels by lowering spine density and shifting spine morphology, which reached significance in the CA1 subfield. In contrast, the spine density in cortical pyramidal neurons of APPSDL mice was unchanged. We also observed an increase in the protein levels of PSD-95 and Arc in the hippocampus and cortex, respectively. Our data demonstrated that increased concentrations of Aβ have diverse effects on dendritic spines in the brain and suggest that hippocampal and cortical neurons have different adaptive and compensatory capacity during their lifetime. Our data also indicated that spine morphology differs between sexes in a region-specific manner.
Collapse
Affiliation(s)
- Mariya V Hrynchak
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Marina Rierola
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Nataliya Golovyashkina
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Lorène Penazzi
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Wiebke C Pump
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Bastian David
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Frederik Sündermann
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
16
|
Trushina NI, Mulkidjanian AY, Brandt R. The microtubule skeleton and the evolution of neuronal complexity in vertebrates. Biol Chem 2020; 400:1163-1179. [PMID: 31116700 DOI: 10.1515/hsz-2019-0149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
The evolution of a highly developed nervous system is mirrored by the ability of individual neurons to develop increased morphological complexity. As microtubules (MTs) are crucially involved in neuronal development, we tested the hypothesis that the evolution of complexity is driven by an increasing capacity of the MT system for regulated molecular interactions as it may be implemented by a higher number of molecular players and a greater ability of the individual molecules to interact. We performed bioinformatics analysis on different classes of components of the vertebrate neuronal MT cytoskeleton. We show that the number of orthologs of tubulin structure proteins, MT-binding proteins and tubulin-sequestering proteins expanded during vertebrate evolution. We observed that protein diversity of MT-binding and tubulin-sequestering proteins increased by alternative splicing. In addition, we found that regions of the MT-binding protein tau and MAP6 displayed a clear increase in disorder extent during evolution. The data provide evidence that vertebrate evolution is paralleled by gene expansions, changes in alternative splicing and evolution of coding sequences of components of the MT system. The results suggest that in particular evolutionary changes in tubulin-structure proteins, MT-binding proteins and tubulin-sequestering proteins were prominent drivers for the development of increased neuronal complexity.
Collapse
Affiliation(s)
- Nataliya I Trushina
- Department of Neurobiology, University of Osnabrück, Barbarastraße 11, D-49076 Osnabrück, Germany
| | - Armen Y Mulkidjanian
- Department of Physics, University of Osnabrück, Barbarastraße 7, D-49076 Osnabrück, Germany.,A.N. Belozersky Institute of Physico-Chemical Biology and School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastraße 11, D-49076 Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, D-49076 Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Barbarastraße 11, D-49076 Osnabrück, Germany
| |
Collapse
|
17
|
Ortiz-Sanz C, Gaminde-Blasco A, Valero J, Bakota L, Brandt R, Zugaza JL, Matute C, Alberdi E. Early Effects of Aβ Oligomers on Dendritic Spine Dynamics and Arborization in Hippocampal Neurons. Front Synaptic Neurosci 2020; 12:2. [PMID: 32116638 PMCID: PMC7029715 DOI: 10.3389/fnsyn.2020.00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/13/2020] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that leads to impaired memory and cognitive deficits. Spine loss as well as changes in spine morphology correlates with cognitive impairment in this neurological disorder. Many studies in animal models and ex vivo cultures indicate that amyloid β-peptide (Aβ) oligomers induce synaptic damage early during the progression of the disease. Here, in order to determine the events that initiate synaptic alterations, we acutely applied oligomeric Aβ to primary hippocampal neurons and an ex vivo model of organotypic hippocampal cultures from a mouse after targeted expression of EGFP to allow high-resolution imaging and algorithm-based evaluation of spine changes. Dendritic spines were classified as thin, stubby or mushroom, based on morphology. In vivo, time-lapse imaging showed that the three spine types were relatively stable, although their stability significantly decreased after treatment with Aβ oligomers. Unexpectedly, we observed that the density of total dendritic spines increased in organotypic hippocampal slices treated with Aβ compared to control cultures. Specifically, the fraction of stubby spines significantly increased, while mushroom and thin spines remained unaltered. Pharmacological tools revealed that acute Aβ oligomers induced spine changes through mechanisms involving CaMKII and integrin β1 activities. Additionally, analysis of dendritic complexity based on a 3D reconstruction of the whole neuron morphology showed an increase in the apical dendrite length and branching points in CA1 organotypic hippocampal slices treated with Aβ. In contrast to spines, the morphological changes were affected by integrin β1 but not by CaMKII inhibition. Altogether, these data indicate that the Aβ oligomers exhibit early dual effects by acutely enhancing dendritic complexity and spine density.
Collapse
Affiliation(s)
- Carolina Ortiz-Sanz
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Adhara Gaminde-Blasco
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jorge Valero
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - José L Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, UPV/EHU, Leioa, Spain
| | - Carlos Matute
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Elena Alberdi
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| |
Collapse
|
18
|
Clark JA, Chuckowree JA, Dyer MS, Dickson TC, Blizzard CA. Epothilone D alters normal growth, viability and microtubule dependent intracellular functions of cortical neurons in vitro. Sci Rep 2020; 10:918. [PMID: 31969604 PMCID: PMC6976590 DOI: 10.1038/s41598-020-57718-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Brain penetrant microtubule stabilising agents (MSAs) are being increasingly validated as potential therapeutic strategies for neurodegenerative diseases and traumatic injuries of the nervous system. MSAs are historically used to treat malignancies to great effect. However, this treatment strategy can also cause adverse off-target impacts, such as the generation of debilitating neuropathy and axonal loss. Understanding of the effects that individual MSAs have on neurons of the central nervous system is still incomplete. Previous research has revealed that aberrant microtubule stabilisation can perturb many neuronal functions, such as neuronal polarity, neurite outgrowth, microtubule dependant transport and overall neuronal viability. In the current study, we evaluate the dose dependant impact of epothilone D, a brain penetrant MSA, on both immature and relatively mature mouse cortical neurons in vitro. We show that epothilone D reduces the viability, growth and complexity of immature cortical neurons in a dose dependant manner. Furthermore, in relatively mature cortical neurons, we demonstrate that while cellularly lethal doses of epothilone D cause cellular demise, low sub lethal doses can also affect mitochondrial transport over time. Our results reveal an underappreciated mitochondrial disruption over a wide range of epothilone D doses and reiterate the importance of understanding the dosage, timing and intended outcome of MSAs, with particular emphasis on brain penetrant MSAs being considered to target neurons in disease and trauma.
Collapse
Affiliation(s)
- J A Clark
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - J A Chuckowree
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - M S Dyer
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - T C Dickson
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - C A Blizzard
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia.
| |
Collapse
|
19
|
Croft CL, Futch HS, Moore BD, Golde TE. Organotypic brain slice cultures to model neurodegenerative proteinopathies. Mol Neurodegener 2019; 14:45. [PMID: 31791377 PMCID: PMC6889333 DOI: 10.1186/s13024-019-0346-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/13/2019] [Indexed: 01/30/2023] Open
Abstract
Organotypic slice cultures of brain or spinal cord have been a longstanding tool in neuroscience research but their utility for understanding Alzheimer's disease (AD) and other neurodegenerative proteinopathies has only recently begun to be evaluated. Organotypic brain slice cultures (BSCs) represent a physiologically relevant three-dimensional model of the brain. BSCs support all the central nervous system (CNS) cell types and can be produced from brain areas involved in neurodegenerative disease. BSCs can be used to better understand the induction and significance of proteinopathies underlying the development and progression of AD and other neurodegenerative disorders, and in the future may serve as bridging technologies between cell culture and in vivo experiments for the development and evaluation of novel therapeutic targets and strategies. We review the initial development and general use of BSCs in neuroscience research and highlight the advantages of these cultures as an ex vivo model. Subsequently we focus on i) BSC-based modeling of AD and other neurodegenerative proteinopathies ii) use of BSCs to understand mechanisms underlying these diseases and iii) how BSCs can serve as tools to screen for suitable therapeutics prior to in vivo investigations. Finally, we will examine i) open questions regarding the use of such cultures and ii) how emerging technologies such as recombinant adeno-associated viruses (rAAV) may be combined with these models to advance translational research relevant to neurodegenerative disorders.
Collapse
Affiliation(s)
- C L Croft
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - H S Futch
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - B D Moore
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - T E Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Impaired adult neurogenesis is an early event in Alzheimer's disease neurodegeneration, mediated by intracellular Aβ oligomers. Cell Death Differ 2019; 27:934-948. [PMID: 31591472 PMCID: PMC7206128 DOI: 10.1038/s41418-019-0409-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Alterations of adult neurogenesis have been reported in several Alzheimer's disease (AD) animal models and human brains, while defects in this process at presymptomatic/early stages of AD have not been explored yet. To address this, we investigated potential neurogenesis defects in Tg2576 transgenic mice at 1.5 months of age, a prodromal asymptomatic age in terms of Aβ accumulation and neurodegeneration. We observe that Tg2576 resident and SVZ-derived adult neural stem cells (aNSCs) proliferate significantly less. Further, they fail to terminally differentiate into mature neurons due to pathological, tau-mediated, and microtubule hyperstabilization. Olfactory bulb neurogenesis is also strongly reduced, confirming the neurogenic defect in vivo. We find that this phenotype depends on the formation and accumulation of intracellular A-beta oligomers (AβOs) in aNSCs. Indeed, impaired neurogenesis of Tg2576 progenitors is remarkably rescued both in vitro and in vivo by the expression of a conformation-specific anti-AβOs intrabody (scFvA13-KDEL), which selectively interferes with the intracellular generation of AβOs in the endoplasmic reticulum (ER). Altogether, our results demonstrate that SVZ neurogenesis is impaired already at a presymptomatic stage of AD and is caused by endogenously generated intracellular AβOs in the ER of aNSCs. From a translational point of view, impaired SVZ neurogenesis may represent a novel biomarker for AD early diagnosis, in association to other biomarkers. Further, this study validates intracellular Aβ oligomers as a promising therapeutic target and prospects anti-AβOs scFvA13-KDEL intrabody as an effective tool for AD treatment.
Collapse
|
21
|
Clark JA, Blizzard CA, Breslin MC, Yeaman EJ, Lee KM, Chuckowree JA, Dickson TC. Epothilone D accelerates disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2018; 44:590-605. [PMID: 29380402 DOI: 10.1111/nan.12473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/12/2018] [Indexed: 12/25/2022]
Abstract
AIMS Degeneration of the distal neuromuscular circuitry is a hallmark pathology of Amyotrophic Lateral Sclerosis (ALS). The potential for microtubule dysfunction to be a critical pathophysiological mechanism in the destruction of this circuitry is increasingly being appreciated. Stabilization of microtubules to improve neuronal integrity and pathology has been shown to be a particularly favourable approach in other neurodegenerative diseases. We present evidence here that treatment with the microtubule-targeting compound Epothilone D (EpoD) both positively and negatively affects the spinal neuromuscular circuitry in the SOD1G93A mouse model of ALS. METHODS SOD1G93A mice were treated every 5 days with 2 mg/kg EpoD. Evaluation of motor behaviour, neurological phenotype and survival was completed, with age-dependent histological characterization also conducted, using the thy1-YFP mouse. Motor neuron degeneration, axonal integrity, neuromuscular junction (NMJ) health and gliosis were also assessed. RESULTS EpoD treatment prevented loss of the spinal motor neuron soma, and distal axon degeneration, early in the disease course. This, however, was not associated with protection of the NMJ synapse and did not improve motor phenotype or clinical progression. EpoD administration was also found to be neurotoxic at later disease stages. This was evidenced by accelerated motor neuron cell body loss, increasing gliosis, and was associated with detrimental outcomes to motor behaviour, clinical assessment and survival. CONCLUSIONS The results suggest that EpoD accelerates disease progression in the SOD1G93A mouse model of ALS, and highlights that the pathophysiological involvement of microtubules in ALS is an evolving and underappreciated phenomenon.
Collapse
Affiliation(s)
- J A Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas., Australia
| | - C A Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas., Australia
| | - M C Breslin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas., Australia
| | - E J Yeaman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas., Australia
| | - K M Lee
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - J A Chuckowree
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas., Australia
| | - T C Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas., Australia
| |
Collapse
|
22
|
Monacelli F, Cea M, Borghi R, Odetti P, Nencioni A. Do Cancer Drugs Counteract Neurodegeneration? Repurposing for Alzheimer's Disease. J Alzheimers Dis 2018; 55:1295-1306. [PMID: 27834781 DOI: 10.3233/jad-160840] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In spite of in depth investigations in the field of the amyloid cascade hypothesis, so far, no disease modifying therapy has been developed for Alzheimer's disease (AD). The pathophysiology provides some evidence of the inverse correlation between cancer and AD. Both AD and cancer are characterized by abnormal cellular behaviors; trigger factors along with a meta synchronously action is expected to drive cancer or neurodegeneration, supporting, respectively, progressive neuronal loss or uncontrolled cell proliferation in cancer cells. So far, cancer and AD are seemingly two opposite ends of the same biological spectrum. Basic science increasingly indicates shared molecular mechanisms between cancer and AD and gives weight to key relevant biological theories; according to them, the inverse tuning of clustered gene expression, the sharing of mutual independent pathway or the deregulated unfolded proteins system (UPR) may count for this inverse association. Additionally, the common biological background gave credibility to the recent discovery of a repurposing role for cancer drugs in AD. It refers to the development of new uses for existing pharmaceuticals having the same role as the original mechanism or to the discovery of a new drug action with disease modifying effects. The present review summarizes the most important biological theories that link neurodegeneration and cancer and provides an up-to-date revision of the repurposing cancer agents for AD. The review also addresses the gap of knowledge, since drug cancer repositioning holds an important promise but further investigations are warranted to ascertain the clinical relevance of such attractive clinical candidate compounds for AD.
Collapse
Affiliation(s)
- Fiammetta Monacelli
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Michele Cea
- Section of Haematology, Department of Internal Medicine and Medical Specialties, (DIMI), University of Genoa, Genoa, Italy
| | - Roberta Borghi
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Patrizio Odetti
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| |
Collapse
|
23
|
Das B, Yan R. Role of BACE1 in Alzheimer's synaptic function. Transl Neurodegener 2017; 6:23. [PMID: 28855981 PMCID: PMC5575945 DOI: 10.1186/s40035-017-0093-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-dependent disease of dementia, and there is currently no cure available. This hallmark pathologies of AD are the presence of amyloid plaques and neurofibrillary tangles. Although the exact etiology of AD remains a mystery, studies over the past 30 have shown that abnormal generation or accumulation of β-amyloid peptides (Aβ) is likely to be a predominant early event in AD pathological development. Aβ is generated from amyloid precursor protein (APP) via proteolytic cleavage by β-site APP cleaving enzyme 1 (BACE1). Chemical inhibition of BACE1 has been shown to reduce Aβ in animal studies and in human trials. While BACE1 inhibitors are currently being tested in clinical trials to treat AD patients, it is highly important to understand whether BACE1 inhibition will significantly impact cognitive functions in AD patients. This review summarizes the recent studies on BACE1 synaptic functions. This knowledge will help to guide the proper use of BACE1 inhibitors in AD therapy.
Collapse
Affiliation(s)
- Brati Das
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| |
Collapse
|
24
|
Brandt R. Targeting microtubules in axonal re- and degeneration (Commentary on Li et al. ()). Eur J Neurosci 2017; 46:1647-1649. [PMID: 28570010 DOI: 10.1111/ejn.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
25
|
Li H, Wu W. Microtubule stabilization promoted axonal regeneration and functional recovery after spinal root avulsion. Eur J Neurosci 2017; 46:1650-1662. [PMID: 28444817 DOI: 10.1111/ejn.13585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 12/20/2022]
Abstract
A spinal root avulsion injury disconnects spinal roots with the spinal cord. The rampant motoneuron death, inhibitory CNS/PNS transitional zone (TZ) for axonal regrowth and limited regeneration speed together lead to motor dysfunction. Microtubules rearrange to assemble a new growth cone and disorganized microtubules underline regeneration failure. It has been shown that microtubule-stabilizing drug, Epothilone B, enhanced axonal regeneration and attenuated fibrotic scaring after spinal cord injury. Here, we are reporting that after spinal root avulsion+ re-implantation in adult rats, EpoB treatment improved motor functional recovery and potentiated electrical responses of motor units. It facilitated axons to cross the TZ and promoted more and bigger axons in the peripheral nerve. Neuromuscular junctions were reformed with better preserved postsynaptic structure, and muscle atrophy was prevented by EpoB administration. Our study showed that EpoB was a promising therapy for promoting axonal regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Heng Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, L1-39, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, L1-39, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.,State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Joint Laboratory of Jinan University and the University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Brandt R, Bakota L. Microtubule dynamics and the neurodegenerative triad of Alzheimer's disease: The hidden connection. J Neurochem 2017; 143:409-417. [PMID: 28267200 DOI: 10.1111/jnc.14011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/03/2017] [Accepted: 02/17/2017] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and is, on a histopathological level, characterized by the presence of extracellular amyloid plaques composed of the protein fragment Aβ, and intracellular neurofibrillary tangles, which contain the microtubule-associated protein tau in a hyperphosphorylated state. In AD defects in microtubule (MT) assembly and organization have also been reported; however, it is unclear whether MT abnormalities have a causal and early role in the disease process or represent a common end point downstream of the neurodegenerative cascade. Recent evidence indicates that microtubule-stabilizing drugs prevent axonopathy in animal models of tauopathies and reverse Aβ-induced loss of synaptic connectivity in an ex vivo model of amyloidosis. This could suggest that MT dysfunction connects some of the degenerative events and provides a useful target to simultaneously prevent several neurodegenerative processes in AD. Here, we describe how changes in the structure and dynamics of MTs are involved in the different aspects of the neurodegenerative triad of AD. We discuss evidence that MTs are affected both by tau-dependent and tau-independent mechanisms but appear to be regulated in a distinct way in different neuronal compartments. We argue that modulation of MT dynamics could be of potential benefit but needs to be precisely controlled in a cell and compartment-specific manner to avoid harmful side effects. This article is part of the series "Beyond Amyloid".
Collapse
Affiliation(s)
- Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
27
|
Bakota L, Ussif A, Jeserich G, Brandt R. Systemic and network functions of the microtubule-associated protein tau: Implications for tau-based therapies. Mol Cell Neurosci 2017; 84:132-141. [PMID: 28318914 DOI: 10.1016/j.mcn.2017.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/23/2017] [Accepted: 03/05/2017] [Indexed: 01/04/2023] Open
Abstract
Tau is a microtubule-associated neuronal protein, whose primary role was long thought to regulate axonal microtubule assembly. Tau is subject to many posttranslational modifications and can aggregate into neurofibrillary tangles, which are considered to be a hallmark of several neurodegenerative diseases collectively called "tauopathies". The most common tauopathy is Alzheimer's disease, where tau pathology correlates with sites of neurodegeneration. Tau belongs to the class of intrinsically disordered proteins, which are known to interact with many partners and are considered to be involved in various signaling, regulation and recognition processes. Thus more recent evidence indicates that tau functionally interacts with many proteins and different cellular structures, which may have an important physiological role and may be involved in neurodegenerative processes. Furthermore, tau can be released from neurons and exert functional effects on other cells. This review article weighs the evidence that tau has subtle but important systemic effects on neuronal network function by maintaining physiological neuronal transmission and synaptic plasticity, which are possibly independent from tau's microtubule modulating activities. Implications for tau-based therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Abdala Ussif
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Gunnar Jeserich
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany.
| |
Collapse
|
28
|
Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures. Cell Death Dis 2017; 8:e2671. [PMID: 28300838 PMCID: PMC5386587 DOI: 10.1038/cddis.2017.97] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/05/2017] [Accepted: 02/13/2017] [Indexed: 11/25/2022]
Abstract
The spatiotemporal transmission of pathological tau in the brain is characteristic of Alzheimer's disease. Release of both soluble and abnormal tau species from healthy neurons is increased upon stimulation of neuronal activity. It is not yet understood whether the mechanisms controlling soluble tau release from healthy neurons is the same as those involved in the spread of pathological tau species. To begin to understand these events, we have studied tau distribution and release using organotypic brain slice cultures. The slices were cultured from postnatal wild-type and 3xTg-AD mice for up to 1 month. Tau distribution in subcellular compartments was examined by western blotting, and tau release into culture medium was determined using a sensitive sandwich ELISA. We show here that 3xTg-AD cultures have an accelerated development of pathological tau abnormalities including the redistribution of tau to synaptic and membrane compartments. The 3xTg-AD slice cultures show elevated basal tau release relative to total tau when compared with wild-type cultures. However, tau release from 3xTg-AD slices cannot be further stimulated when neuronal activity is increased with potassium chloride. Moreover, we report that there is an increased pool of dephosphorylated membrane-associated tau in conditions where tau release is increased. These data suggest that there may be differential patterns of tau release when using integrated slice culture models of wild-type and transgenic mouse brain, although it will be important to determine the effect of tau overexpression for these findings. These results further increase our knowledge of the molecular mechanisms underlying tau release and propagation in neurodegenerative tauopathies.
Collapse
|
29
|
Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, Wang X. Dysregulation of Ubiquitin-Proteasome System in Neurodegenerative Diseases. Front Aging Neurosci 2016; 8:303. [PMID: 28018215 PMCID: PMC5156861 DOI: 10.3389/fnagi.2016.00303] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is one of the major protein degradation pathways, where abnormal UPS function has been observed in cancer and neurological diseases. Many neurodegenerative diseases share a common pathological feature, namely intracellular ubiquitin-positive inclusions formed by aggregate-prone neurotoxic proteins. This suggests that dysfunction of the UPS in neurodegenerative diseases contributes to the accumulation of neurotoxic proteins and to instigate neurodegeneration. Here, we review recent findings describing various aspects of UPS dysregulation in neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| | - Timothy Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| | - Ying Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen UniversityXiamen, China; Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CAUSA
| | - Xin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| |
Collapse
|
30
|
Abstract
Alzheimer’s disease (AD) is characterised by a progressive loss of cognitive functions. Histopathologically, AD is defined by the presence of extracellular amyloid plaques containing Aβ and intracellular neurofibrillary tangles composed of hyperphosphorylated tau proteins. According to the now well-accepted amyloid cascade hypothesis is the Aβ pathology the primary driving force of AD pathogenesis, which then induces changes in tau protein leading to a neurodegenerative cascade during the progression of disease. Since many earlier drug trials aiming at preventing Aβ pathology failed to demonstrate efficacy, tau and microtubules have come into focus as prominent downstream targets. The article aims to develop the current concept of the involvement of tau in the neurodegenerative triad of synaptic loss, cell death and dendritic simplification. The function of tau as a microtubule-associated protein and versatile interaction partner will then be introduced and the rationale and progress of current tau-directed therapy will be discussed in the biological context.
Collapse
Affiliation(s)
- Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
31
|
Niewidok B, Igaev M, Sündermann F, Janning D, Bakota L, Brandt R. Presence of a carboxy-terminal pseudorepeat and disease-like pseudohyperphosphorylation critically influence tau's interaction with microtubules in axon-like processes. Mol Biol Cell 2016; 27:3537-3549. [PMID: 27582388 PMCID: PMC5221586 DOI: 10.1091/mbc.e16-06-0402] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
A refined FDAP approach is used to analyze tau’s behavior in axon-like processes. A conserved C-terminal pseudorepeat and disease-like pseudohyperphosphorylation critically influence tau’s microtubule interaction. The results contribute to an understanding of pathological processes that lead to tau’s redistribution during disease. A current challenge of cell biology is to investigate molecular interactions in subcellular compartments of living cells to overcome the artificial character of in vitro studies. To dissect the interaction of the neuronal microtubule (MT)-associated protein tau with MTs in axon-like processes, we used a refined fluorescence decay after photoactivation approach and single-molecule tracking. We found that isoform variation had only a minor influence on the tau–MT interaction, whereas the presence of a C-terminal pseudorepeat region (PRR) greatly increased MT binding by a greater-than-sixfold reduction of the dissociation rate. Bioinformatic analysis revealed that the PRR contained a highly conserved motif of 18 amino acids. Disease-associated tau mutations in the PRR (K369I, G389R) did not influence apparent MT binding but increased its dynamicity. Simulation of disease-like tau hyperphosphorylation dramatically diminished the tau–MT interaction by a greater-than-fivefold decrease of the association rate with no major change in the dissociation rate. Apparent binding of tau to MTs was similar in axons and dendrites but more sensitive to increased phosphorylation in axons. Our data indicate that under the conditions of high MT density that prevail in the axon, tau’s MT binding and localization are crucially affected by the presence of the PRR and tau hyperphosphorylation.
Collapse
Affiliation(s)
- Benedikt Niewidok
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Maxim Igaev
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Frederik Sündermann
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Dennis Janning
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
32
|
Harwell CS, Coleman MP. Synaptophysin depletion and intraneuronal Aβ in organotypic hippocampal slice cultures from huAPP transgenic mice. Mol Neurodegener 2016; 11:44. [PMID: 27287430 PMCID: PMC4903008 DOI: 10.1186/s13024-016-0110-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background To date, there are no effective disease-modifying treatments for Alzheimer’s disease (AD). In order to develop new therapeutics for stages where they are most likely to be effective, it is important to identify the first pathological alterations in the disease cascade. Changes in Aβ concentration have long been reported as one of the first steps, but understanding the source, and earliest consequences, of pathology requires a model system that represents all major CNS cell types, is amenable to repeated observation and sampling, and can be readily manipulated. In this regard, long term organotypic hippocampal slice cultures (OHSCs) from neonatal amyloid mice offer an excellent compromise between in vivo and primary culture studies, largely retaining the cellular composition and neuronal architecture of the in vivo hippocampus, but with the in vitro advantages of accessibility to live imaging, sampling and intervention. Results Here, we report the development and characterisation of progressive pathological changes in an organotypic model from TgCRND8 mice. Aβ1-40 and Aβ1-42 rise progressively in transgenic slice culture medium and stabilise when regular feeding balances continued production. In contrast, intraneuronal Aβ continues to accumulate in close correlation with a specific decline in presynaptic proteins and puncta. Plaque pathology is not evident even when Aβ1-42 is increased by pharmacological manipulation (using calpain inhibitor 1), indicating that soluble Aβ species, or other APP processing products, are sufficient to cause the initial synaptic changes. Conclusions Organotypic brain slices from TgCRND8 mice represent an important new system for understanding mechanisms of Aβ generation, release and progressive toxicity. The pathology observed in these cultures will allow for rapid assessment of disease modifying compounds in a system amenable to manipulation and observation. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0110-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire S Harwell
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Michael P Coleman
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK. .,Present Address: John van Geest Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
33
|
Li Y, Sun H, Chen Z, Xu H, Bu G, Zheng H. Implications of GABAergic Neurotransmission in Alzheimer's Disease. Front Aging Neurosci 2016; 8:31. [PMID: 26941642 PMCID: PMC4763334 DOI: 10.3389/fnagi.2016.00031] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/08/2016] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is characterized pathologically by the deposition of β-amyloid peptides (Aβ) and the accumulation of neurofibrillary tangles (NFTs) composed of hyper-phosphorylated tau. Regardless of the pathological hallmarks, synaptic dysfunction is widely accepted as a causal event in AD. Of the two major types of synapses in the central nervous system (CNS): glutamatergic and GABAergic, which provide excitatory and inhibitory outputs respectively, abundant data implicate an impaired glutamatergic system during disease progression. However, emerging evidence supports the notion that disrupted default neuronal network underlies impaired memory, and that alterations of GABAergic circuits, either plays a primary role or as a compensatory response to excitotoxicity, may also contribute to AD by disrupting the overall network function. The goal of this review is to provide an overview of the involvement of Aβ, tau and apolipoprotein E4 (apoE4), the major genetic risk factor in late-onset AD (LOAD), in GABAergic neurotransmission and the potential of modulating the GABAergic function as AD therapy.
Collapse
Affiliation(s)
- Yanfang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, China
| | - Zhicai Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen UniversityXiamen, China; Neurodegenerative Disease Research Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen UniversityXiamen, China; Department of Neuroscience, Mayo ClinicJacksonville, FL, USA
| | - Hui Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen UniversityXiamen, China; The Interdepartmental Program of Translational Biology and Molecular Medicine, Huffington Center on Aging, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|
34
|
Penazzi L, Tackenberg C, Ghori A, Golovyashkina N, Niewidok B, Selle K, Ballatore C, Smith AB, Bakota L, Brandt R. Aβ-mediated spine changes in the hippocampus are microtubule-dependent and can be reversed by a subnanomolar concentration of the microtubule-stabilizing agent epothilone D. Neuropharmacology 2016; 105:84-95. [PMID: 26772969 DOI: 10.1016/j.neuropharm.2016.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/10/2015] [Accepted: 01/03/2016] [Indexed: 10/25/2022]
Abstract
Dendritic spines represent the major postsynaptic input of excitatory synapses. Loss of spines and changes in their morphology correlate with cognitive impairment in Alzheimer's disease (AD) and are thought to occur early during pathology. Therapeutic intervention at a preclinical stage of AD to modify spine changes might thus be warranted. To follow the development and to potentially interfere with spine changes over time, we established a long term ex vivo model from organotypic cultures of the hippocampus from APP transgenic and control mice. The cultures exhibit spine loss in principal hippocampal neurons, which closely resembles the changes occurring in vivo, and spine morphology progressively changes from mushroom-shaped to stubby. We demonstrate that spine changes are completely reversed within few days after blocking amyloid-β (Aβ) production with the gamma-secretase inhibitor DAPT. We show that the microtubule disrupting drug nocodazole leads to spine loss similar to Aβ expressing cultures and suppresses DAPT-mediated spine recovery in slices from APP transgenic mice. Finally, we report that epothilone D (EpoD) at a subnanomolar concentration, which slightly stabilizes microtubules in model neurons, completely reverses Aβ-induced spine loss and increases thin spine density. Taken together the data indicate that Aβ causes spine changes by microtubule destabilization and that spine recovery requires microtubule polymerization. Moreover, our results suggest that a low, subtoxic concentration of EpoD is sufficient to reduce spine loss during the preclinical stage of AD.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Christian Tackenberg
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Adnan Ghori
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Nataliya Golovyashkina
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Benedikt Niewidok
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Karolin Selle
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Carlo Ballatore
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany.
| |
Collapse
|
35
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|