1
|
Jiao X, Wan J, Wu W, Ma L, Chen C, Dong W, Liu Y, Jin C, Sun A, Zhou Y, Li Z, Liu Q, Wu Y, Zhou C. GLT-1 downregulation in hippocampal astrocytes induced by type 2 diabetes contributes to postoperative cognitive dysfunction in adult mice. CNS Neurosci Ther 2024; 30:e70024. [PMID: 39218798 PMCID: PMC11366448 DOI: 10.1111/cns.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
AIMS Type 2 diabetes mellitus (T2DM) is related to an increased risk of postoperative cognitive dysfunction (POCD), which may be caused by neuronal hyperexcitability. Astrocyte glutamate transporter 1 (GLT-1) plays a crucial role in regulating neuron excitability. We investigated if T2DM would magnify the increased neuronal excitability induced by anesthesia/surgery (A/S) and lead to POCD in young adult mice, and if so, determined whether these effects were associated with GLT-1 expression. METHODS T2DM model was induced by high fat diet (HFD) and injecting STZ. Then, we evaluated the spatial learning and memory of T2DM mice after A/S with the novel object recognition test (NORT) and object location test (OLT). Western blotting and immunofluorescence were used to analyze the expression levels of GLT-1 and neuronal excitability. Oxidative stress reaction and neuronal apoptosis were detected with SOD2 expression, MMP level, and Tunel staining. Hippocampal functional synaptic plasticity was assessed with long-term potentiation (LTP). In the intervention study, we overexpressed hippocampal astrocyte GLT-1 in GFAP-Cre mice. Besides, AAV-Camkllα-hM4Di-mCherry was injected to inhibit neuronal hyperexcitability in CA1 region. RESULTS Our study found T2DM but not A/S reduced GLT-1 expression in hippocampal astrocytes. Interestingly, GLT-1 deficiency alone couldn't lead to cognitive decline, but the downregulation of GLT-1 in T2DM mice obviously enhanced increased hippocampal glutamatergic neuron excitability induced by A/S. The hyperexcitability caused neuronal apoptosis and cognitive impairment. Overexpression of GLT-1 rescued postoperative cognitive dysfunction, glutamatergic neuron hyperexcitability, oxidative stress reaction, and apoptosis in hippocampus. Moreover, chemogenetic inhibition of hippocampal glutamatergic neurons reduced oxidative stress and apoptosis and alleviated postoperative cognitive dysfunction. CONCLUSIONS These findings suggest that the adult mice with type 2 diabetes are at an increased risk of developing POCD, perhaps due to the downregulation of GLT-1 in hippocampal astrocytes, which enhances increased glutamatergic neuron excitability induced by A/S and leads to oxidative stress reaction, and neuronal apoptosis.
Collapse
Affiliation(s)
- Xin‐Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Wei‐Feng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Lin‐Hui Ma
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Yi‐Qi Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Chun‐Hui Jin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Ao Sun
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Zi‐Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yu‐Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Cheng‐Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
2
|
Papazoglou A, Henseler C, Weickhardt S, Teipelke J, Papazoglou P, Daubner J, Schiffer T, Krings D, Broich K, Hescheler J, Sachinidis A, Ehninger D, Scholl C, Haenisch B, Weiergräber M. Sex- and region-specific cortical and hippocampal whole genome transcriptome profiles from control and APP/PS1 Alzheimer's disease mice. PLoS One 2024; 19:e0296959. [PMID: 38324617 PMCID: PMC10849391 DOI: 10.1371/journal.pone.0296959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
A variety of Alzheimer's disease (AD) mouse models has been established and characterized within the last decades. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome studies turned out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex and hippocampus of age-matched, eight months old male and female APP/PS1 AD mice and control animals to perform sex- and brain region specific analysis of transcriptome profiles. The results of our studies reveal novel, detailed insight into differentially expressed signature genes and related fold changes in the individual APP/PS1 subgroups. Gene ontology and Venn analysis unmasked that intersectional, upregulated genes were predominantly involved in, e.g., activation of microglial, astrocytic and neutrophilic cells, innate immune response/immune effector response, neuroinflammation, phagosome/proteasome activation, and synaptic transmission. The number of (intersectional) downregulated genes was substantially less in the different subgroups and related GO categories included, e.g., the synaptic vesicle docking/fusion machinery, synaptic transmission, rRNA processing, ubiquitination, proteasome degradation, histone modification and cellular senescence. Importantly, this is the first study to systematically unravel sex- and brain region-specific transcriptome fingerprints/signature genes in APP/PS1 mice. The latter will be of central relevance in future preclinical and clinical AD related studies, biomarker characterization and personalized medicinal approaches.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Sandra Weickhardt
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jenni Teipelke
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Panagiota Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Teresa Schiffer
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Damian Krings
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Catharina Scholl
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Fontana IC, Souza DG, Souza DO, Gee A, Zimmer ER, Bongarzone S. A Medicinal Chemistry Perspective on Excitatory Amino Acid Transporter 2 Dysfunction in Neurodegenerative Diseases. J Med Chem 2023; 66:2330-2346. [PMID: 36787643 PMCID: PMC9969404 DOI: 10.1021/acs.jmedchem.2c01572] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The excitatory amino acid transporter 2 (EAAT2) plays a key role in the clearance and recycling of glutamate - the major excitatory neurotransmitter in the mammalian brain. EAAT2 loss/dysfunction triggers a cascade of neurodegenerative events, comprising glutamatergic excitotoxicity and neuronal death. Nevertheless, our current knowledge regarding EAAT2 in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), is restricted to post-mortem analysis of brain tissue and experimental models. Thus, detecting EAAT2 in the living human brain might be crucial to improve diagnosis/therapy for ALS and AD. This perspective article describes the role of EAAT2 in physio/pathological processes and provides a structure-activity relationship of EAAT2-binders, bringing two perspectives: therapy (activators) and diagnosis (molecular imaging tools).
Collapse
Affiliation(s)
- Igor C Fontana
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 - Neo floor seventh, 141 83 Stockholm, Sweden
| | - Débora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil
| | - Antony Gee
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Eduardo R Zimmer
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500, sala, 90035-003 Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry (PPGBioq), and Pharmacology and Therapeutics (PPGFT), Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500, sala, 305 Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil.,McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Salvatore Bongarzone
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| |
Collapse
|
4
|
He Y, Xu D, Yan Z, Wu Y, Zhang Y, Tian X, Zhu J, Liu Z, Cheng W, Zheng K, Yang X, Yu Y, Pan W. A metabolite attenuates neuroinflammation, synaptic loss and cognitive deficits induced by chronic infection of Toxoplasma gondii. Front Immunol 2022; 13:1043572. [PMID: 36618398 PMCID: PMC9815861 DOI: 10.3389/fimmu.2022.1043572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Neurodegenerative diseases including AD is currently one of intractable problems globally due to the insufficiency of intervention strategies. Long-term infection of Toxoplasma gondii (T. gondii) can induce cognitive impairment in hosts, which is closely implicated in the pathogenesis of neurodegenerative diseases. Aconitate decarboxylase 1 (Acod1) and its produced metabolite itaconate (termed Acod1/itaconate axis), have recently attracted extensive interests due to its anti-inflammatory role in macrophages. However, whether the axis can influence cognitive function remains unknown. Methods A chronic T. gondii-infected mice (C57BL/6J) model was established via administration of cysts by gavage. Novel location (NL), novel object recognition (NOR), Y-maze spatial memory and nest building tests were used to evaluate the behavior performance. Transmission electron microscopy, immunofluorescence, RT-PCR, western-blotting and RNA sequencing were utilized to determine the pathological changes, neuroinflammation and transcription profile in hippocampus tissues post infection, respectively. Moreover, the protective effect of Acod1/itaconate axis in T. gondii-induced cognitive deficits was evaluated. Results We found that the latent infection of the parasite impaired the cognitive function, which was assessed behaviorally by novel location (NL), novel object recognition (NOR), Y-maze spatial memory and nest building tests. RNA sequencing of hippocampus showed that the infection downregulated the expression of genes related to synaptic plasticity, transmission and cognitive behavior. To our attention, the infection robustly upregulated the expression of genes associated with pro-inflammatory responses, which was characterized by microglia activation and disorder of Acod1/itaconate axis. Interestingly, administration of dimethyl itaconate (DI, an itaconate derivative with cell membrane permeability) could significantly ameliorate the cognitive deficits induced by T. gondii, which was proved by improvement of behavior performance and synaptic ultrastructure impairment, and lower accumulation of pro-inflammatory microglia. Notably, DI administration had a potential therapeutic effect on the cognitive deficits and synaptic impairment induced by the parasitic infection. Conclusions Overall, these findings provide a novel insight for the pathogenesis of T. gondii-related cognitive deficits in hosts, and also provide a novel clue for the potential therapeutic strategies.
Collapse
Affiliation(s)
- Yan He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziyi Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Yongshuai Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Yongsheng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Xiaokang Tian
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China,The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Wei Pan, ; Yinghua Yu, ; Xiaoying Yang,
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Wei Pan, ; Yinghua Yu, ; Xiaoying Yang,
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Wei Pan, ; Yinghua Yu, ; Xiaoying Yang,
| |
Collapse
|
5
|
Medicinal Herbs and Their Derived Ingredients Protect against Cognitive Decline in In Vivo Models of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms231911311. [PMID: 36232612 PMCID: PMC9569503 DOI: 10.3390/ijms231911311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) has pathological hallmarks including amyloid beta (Aβ) plaque formation. Currently approved single-target drugs cannot effectively ameliorate AD. Medicinal herbs and their derived ingredients (MHDIs) have multitarget and multichannel properties, engendering exceptional AD treatment outcomes. This review delineates how in in vivo models MHDIs suppress Aβ deposition by downregulating β- and γ-secretase activities; inhibit oxidative stress by enhancing the antioxidant activities and reducing lipid peroxidation; prevent tau hyperphosphorylation by upregulating protein phosphatase 2A expression and downregulating glycogen synthase kinase-3β expression; reduce inflammatory mediators partly by upregulating brain-derived neurotrophic factor/extracellular signal-regulated protein kinase 1/2-mediated signaling and downregulating p38 mitogen-activated protein kinase (p38 MAPK)/c-Jun N-terminal kinase (JNK)-mediated signaling; attenuate synaptic dysfunction by increasing presynaptic protein, postsynaptic protein, and acetylcholine levels and preventing acetylcholinesterase activity; and protect against neuronal apoptosis mainly by upregulating Akt/cyclic AMP response element-binding protein/B-cell lymphoma 2 (Bcl-2)-mediated anti-apoptotic signaling and downregulating p38 MAPK/JNK/Bcl-2-associated x protein (Bax)/caspase-3-, Bax/apoptosis-inducing factor-, C/EBP homologous protein/glucose-regulated protein 78-, and autophagy-mediated apoptotic signaling. Therefore, MHDIs listed in this review protect against Aβ-induced cognitive decline by inhibiting Aβ accumulation, oxidative stress, tau hyperphosphorylation, inflammation, synaptic damage, and neuronal apoptosis in the cortex and hippocampus during the early and late AD phases.
Collapse
|
6
|
Lunev E, Karan A, Egorova T, Bardina M. Adeno-Associated Viruses for Modeling Neurological Diseases in Animals: Achievements and Prospects. Biomedicines 2022; 10:biomedicines10051140. [PMID: 35625877 PMCID: PMC9139062 DOI: 10.3390/biomedicines10051140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have become an attractive tool for efficient gene transfer into animal tissues. Extensively studied as the vehicles for therapeutic constructs in gene therapy, AAVs are also applied for creating animal models of human genetic disorders. Neurological disorders are challenging to model in laboratory animals by transgenesis or genome editing, at least partially due to the embryonic lethality and the timing of the disease onset. Therefore, gene transfer with AAV vectors provides a more flexible option for simulating genetic neurological disorders. Indeed, the design of the AAV expression construct allows the reproduction of various disease-causing mutations, and also drives neuron-specific expression. The natural and newly created AAV serotypes combined with various delivery routes enable differentially targeting neuronal cell types and brain areas in vivo. Moreover, the same viral vector can be used to reproduce the main features of the disorder in mice, rats, and large laboratory animals such as non-human primates. The current review demonstrates the general principles for the development and use of AAVs in modeling neurological diseases. The latest achievements in AAV-mediated modeling of the common (e.g., Alzheimer’s disease, Parkinson’s disease, ataxias, etc.) and ultra-rare disorders affecting the central nervous system are described. The use of AAVs to create multiple animal models of neurological disorders opens opportunities for studying their mechanisms, understanding the main pathological features, and testing therapeutic approaches.
Collapse
Affiliation(s)
- Evgenii Lunev
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence: (E.L.); (M.B.)
| | - Anna Karan
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
| | - Tatiana Egorova
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
| | - Maryana Bardina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence: (E.L.); (M.B.)
| |
Collapse
|
7
|
Redefining microglia states: Lessons and limits of human and mouse models to study microglia states in neurodegenerative diseases. Semin Immunol 2022; 60:101651. [PMID: 36155944 DOI: 10.1016/j.smim.2022.101651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/03/2022] [Indexed: 01/15/2023]
Abstract
Microglia are resident macrophages of the brain parenchyma and play an essential role in various aspects of brain development, plasticity, and homeostasis. With recent advances in single-cell RNA-sequencing, heterogeneous microglia transcriptional states have been identified in both animal models of neurodegenerative disorders and patients. However, the functional roles of these microglia states remain unclear; specifically, the question of whether individual states or combinations of states are protective or detrimental (or both) in the context of disease progression. To attempt to answer this, the field has largely relied on studies employing mouse models, human in vitro and chimeric models, and human post-mortem tissue, all of which have their caveats, but used in combination can enable new biological insight and validation of candidate disease pathways and mechanisms. In this review, we summarize our current understanding of disease-associated microglia states and phenotypes in neurodegenerative disorders, discuss important considerations when comparing mouse and human microglia states and functions, and identify areas of microglia biology where species differences might limit our understanding of microglia state.
Collapse
|
8
|
Gao J, Liu L, Liu C, Fan S, Liu L, Liu S, Xian XH, Li WB. GLT-1 Knockdown Inhibits Ceftriaxone-Mediated Improvements on Cognitive Deficits, and GLT-1 and xCT Expression and Activity in APP/PS1 AD Mice. Front Aging Neurosci 2020; 12:580772. [PMID: 33132901 PMCID: PMC7574737 DOI: 10.3389/fnagi.2020.580772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Objective Glutamate transporter-1 (GLT-1) and system xc– mediate glutamate uptake and release, respectively. Ceftriaxone has been reported to upregulate GLT-1 expression and improve cognitive decline in APP/PS1 mice. The aim of the present study was to elucidate the role of GLT-1 in ceftriaxone-mediated improvement on cognitive deficits and associated changes in xCT (catalytic subunit of system xc–) expression and activity using GLT-1 knockdown APP/PS1 mice. Methods GLT-1 knockdown (GLT-1±) mice were generated in C57BL/6J mice using the CRISPR/Cas9 technique and crossed to APP/PS1 mice to generate GLT-1±APP/PS1 mice. The cognition was evaluated by novel object recognition and Morris water maze tests. GLT-1 and xCT expression, GLT-1 uptake for glutamate, and glutathione levels of hippocampus were assayed using Western blot and immunohistochemistry, 3H-glutamate, and glutathione assay kit, respectively. Results In comparison with wild-type mice, APP/PS1 mice exhibited significant cognitive deficits, represented with poor performance in novel object recognition and Morris water maze tests, downregulated GLT-1 expression and glutamate uptake. Ceftriaxone treatment significantly improved the above impairments in APP/PS1 mice, but had negligible impact in GLT-1±APP/PS1 mice. The xCT expression increased in APP/PS1 and GLT-1±APP/PS1 mice. This upregulation might be a compensatory change against the accumulated glutamate resulting from GLT-1 impairment. Ceftriaxone treatment restored xCT expression in APP/PS1 mice, but not in GLT-1±APP/PS1 mice. Glutathione levels decreased in APP/PS1 mice in comparison to the wild-type group. After ceftriaxone administration, the decline in glutathione level was restored in APP/PS1 mice, but not in GLT-1±APP/PS1 mice. Conclusion Ceftriaxone improves cognitive impairment of APP/PS1 mice by upregulating GLT-1-mediated uptake of glutamate and co-regulation of GLT-1 and xCT in APP/PS1 mice.
Collapse
Affiliation(s)
- JunXia Gao
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - LiZhe Liu
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Chao Liu
- Hebei Key Lab of Laboratory Animal Science, Laboratory Animal Center, Hebei Medical University, Shijiazhuang, China
| | - ShuJuan Fan
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - LiRong Liu
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - ShuFeng Liu
- Hebei Key Lab of Laboratory Animal Science, Laboratory Animal Center, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Wen-Bin Li
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Ploux E, Freret T, Billard JM. d-serine in physiological and pathological brain aging. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140542. [PMID: 32950692 DOI: 10.1016/j.bbapap.2020.140542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023]
Abstract
Among aging-induced impairments, those affecting cognitive functions certainly represent one the most major challenge to face to improve elderly quality of life. In last decades, our knowledge on changes in the morphology and function of neuronal networks associated with normal and pathological brain aging has rapidly progressed, initiating the development of different pharmacological and behavioural strategies to alleviate cognitive aging. In particular, experimental evidences have accumulated indicating that the communication between neurons and its plasticity gradually weakens with aging. Because of its pivotal role for brain functional plasticity, the N-Methyl‑d-Aspartate receptor subtype of glutamate receptors (NMDAr) has gathered much of the experimental interest. NMDAr activation is regulated by many mechanisms. Among is the mandatory binding of a co-agonist, such as the amino acid d-serine, in order to activate NMDAr. This mini-review presents the most recent information indicating how d-serine could contribute to mechanisms of physiological cognitive aging and also considers the divergent views relative of the role of the NMDAr co-agonist in Alzheimer's disease.
Collapse
Affiliation(s)
- E Ploux
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France.
| | - T Freret
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France
| | - J-M Billard
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France.
| |
Collapse
|
10
|
Lin K, Sze SCW, Liu B, Zhang Z, Zhang Z, Zhu P, Wang Y, Deng Q, Yung KKL, Zhang S. 20( S)-protopanaxadiol and oleanolic acid ameliorate cognitive deficits in APP/PS1 transgenic mice by enhancing hippocampal neurogenesis. J Ginseng Res 2020; 45:325-333. [PMID: 33841013 PMCID: PMC8020272 DOI: 10.1016/j.jgr.2020.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. Enhancing hippocampal neurogenesis by promoting proliferation and differentiation of neural stem cells (NSCs) is a promising therapeutic strategy for AD. 20(S)-protopanaxadiol (PPD) and oleanolic acid (OA) are small, bioactive compounds found in ginseng that can promote NSC proliferation and neural differentiation in vitro. However, it is currently unknown whether PPD or OA can attenuate cognitive deficits by enhancing hippocampal neurogenesis in vivo in a transgenic APP/PS1 AD mouse model. Here, we administered PPD or OA to APP/PS1 mice and monitored the effects on cognition and hippocampal neurogenesis. Methods We used the Morris water maze, Y maze, and open field tests to compare the cognitive capacities of treated and untreated APP/PS1 mice. We investigated hippocampal neurogenesis using Nissl staining and BrdU/NeuN double labeling. NSC proliferation was quantified by Sox2 labeling of the hippocampal dentate gyrus. We used western blotting to determine the effects of PPD and OA on Wnt/GSK3β/β-catenin pathway activation in the hippocampus. Results Both PPD and OA significantly ameliorated the cognitive impairments observed in untreated APP/PS1 mice. Furthermore, PPD and OA significantly promoted hippocampal neurogenesis and NSC proliferation. At the mechanistic level, PPD and OA treatments resulted in Wnt/GSK-3β/β-catenin pathway activation in the hippocampus. Conclusion PPD and OA ameliorate cognitive deficits in APP/PS1 mice by enhancing hippocampal neurogenesis, achieved by stimulating the Wnt/GSK-3β/β-catenin pathway. As such, PPD and OA are promising novel therapeutic agents for the treatment of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China.,Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Stephen Cho-Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhang Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Zhu Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Peili Zhu
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Ying Wang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Qiudi Deng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ken Kin-Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Shiqing Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| |
Collapse
|
11
|
Malik AR, Willnow TE. Excitatory Amino Acid Transporters in Physiology and Disorders of the Central Nervous System. Int J Mol Sci 2019; 20:ijms20225671. [PMID: 31726793 PMCID: PMC6888459 DOI: 10.3390/ijms20225671] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) encompass a class of five transporters with distinct expression in neurons and glia of the central nervous system (CNS). EAATs are mainly recognized for their role in uptake of the amino acid glutamate, the major excitatory neurotransmitter. EAATs-mediated clearance of glutamate released by neurons is vital to maintain proper glutamatergic signalling and to prevent toxic accumulation of this amino acid in the extracellular space. In addition, some EAATs also act as chloride channels or mediate the uptake of cysteine, required to produce the reactive oxygen speciesscavenger glutathione. Given their central role in glutamate homeostasis in the brain, as well as their additional activities, it comes as no surprise that EAAT dysfunctions have been implicated in numerous acute or chronic diseases of the CNS, including ischemic stroke and epilepsy, cerebellar ataxias, amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Here we review the studies in cellular and animal models, as well as in humans that highlight the roles of EAATs in the pathogenesis of these devastating disorders. We also discuss the mechanisms regulating EAATs expression and intracellular trafficking and new exciting possibilities to modulate EAATs and to provide neuroprotection in course of pathologies affecting the CNS.
Collapse
Affiliation(s)
- Anna R. Malik
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
- Correspondence:
| | | |
Collapse
|
12
|
RPS23RG1 Is Required for Synaptic Integrity and Rescues Alzheimer's Disease-Associated Cognitive Deficits. Biol Psychiatry 2019; 86:171-184. [PMID: 30292394 PMCID: PMC6389446 DOI: 10.1016/j.biopsych.2018.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although synaptic impairment is a prerequisite to cognitive deficiencies in Alzheimer's disease (AD), mechanisms underlying the dysregulation of essential synaptic scaffolding components and their integrity remain elusive. RPS23RG1 is a newly identified protein implicated in AD. However, the physiological function of RPS23RG1 has yet to be determined. METHODS We investigated the role of RPS23RG1 in maintaining synaptic structure and function in cell cultures and in Rps23rg1 knockout mice and determined whether targeting RPS23RG1-mediated pathways has therapeutic potential in APP/PS1 AD model mice. RESULTS Deletion of the Rps23rg1 gene resulted in severe memory deficits and impairment of postsynaptic structure and function, with marked reductions in postsynaptic densities-93 and -95 (PSD-93 and PSD-95) levels. RPS23RG1 interacted with PSD-93/PSD-95 through its intracellular domain, consequently sequestering PSD-93/PSD-95 from murine double minute 2-mediated ubiquitination and degradation, thereby maintaining synaptic function. Restoration of PSD-93/PS-D95 levels reversed synaptic and memory deficits in Rps23rg1 knockout mice. We further observed attenuated RPS23RG1 expression in human AD, which positively correlated with PSD-93/PSD-95 levels. Importantly, an RPS23RG1-derived peptide comprising a unique PSD-93/PSD-95 interaction motif rescued synaptic and cognitive defects in Rps23rg1 knockout and AD mouse models. CONCLUSIONS Our results reveal a role for RPS23RG1 in maintaining synaptic integrity and function and provide a new mechanism for synaptic dysfunction in AD pathogenesis. This demonstrates that RPS23RG1-mediated pathways show good therapeutic potential in AD intervention.
Collapse
|
13
|
Ittner LM, Klugmann M, Ke YD. Adeno-associated virus-based Alzheimer's disease mouse models and potential new therapeutic avenues. Br J Pharmacol 2019; 176:3649-3665. [PMID: 30817847 DOI: 10.1111/bph.14637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/23/2018] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that presents with cognitive decline. The current understanding of underlying disease mechanisms remains incomplete. Genetically modified mouse models have been instrumental in deciphering pathomechanisms in AD. While these models were typically generated by classical transgenesis and genome editing, the use of adeno-associated viruses (AAVs) to model and investigate AD in mice, as well as to develop novel gene-therapy approaches, is emerging. Here, we reviewed literature that used AAVs to study and model AD and discuss potential gene therapy strategies. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Ethanol Extract of Centipeda minima Exerts Antioxidant and Neuroprotective Effects via Activation of the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9421037. [PMID: 31139305 PMCID: PMC6470452 DOI: 10.1155/2019/9421037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 12/31/2022]
Abstract
Oxidative stress is implicated in the pathogenesis of neurodegeneration and other aging-related diseases. Previous studies have found that the whole herb of Centipeda minima has remarkable antioxidant activities. However, there have been no reports on the neuroprotective effects of C. minima, and the underlying mechanism of its antioxidant properties is unclear. Here, we examined the underlying mechanism of the antioxidant activities of the ethanol extract of C. minima (ECM) both in vivo and in vitro and found that ECM treatment attenuated glutamate and tert-butyl hydroperoxide (tBHP)-induced neuronal death, reactive oxygen species (ROS) production, and mitochondria dysfunction. tBHP-induced phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinases (JNK) was reduced by ECM, and ECM sustained phosphorylation level of extracellular signal regulated kinase (ERK) in SH-SY5Y and PC12 cells. Moreover, ECM induced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the upregulation of phase II detoxification enzymes, including heme oxygenase-1 (HO-1), superoxide dismutase-2 (SOD2), and NAD(P)H quinone oxidoreductase-1 (NQO-1) in both two cell types. In a D-galactose (D-gal) and aluminum muriate (AlCl3)-induced neurodegenerative mouse model, administration of ECM improved the learning and memory of mice in the Morris water maze test and ameliorated the effects of neurodegenerative disorders. ECM sustained the expression level of postsynaptic density 95 (PSD95) and synaptophysin (SYN), activated the Nrf2 signaling pathway, and restored the levels of cellular antioxidants in the hippocampus of mice. In addition, four sesquiterpenoids were isolated from C. minima to identify the bioactive components responsible for the antioxidant activity of C. minima; 6-O-angeloylplenolin and arnicolide D were found to be the active compounds responsible for the activation of the Nrf2 signaling pathway and inhibition of ROS production. Our study examined the mechanism of C. minima and its active components in the amelioration of oxidative stress, which holds the promise for the treatment of neurodegenerative disease.
Collapse
|
15
|
Abstract
Alzheimer's disease (AD), the most common cause of age-dependent dementia, is one of the most significant healthcare problems worldwide. Aggravating this situation, drugs that are currently US Food and Drug Administration (FDA)-approved for AD treatment do not prevent or delay disease progression. Therefore, developing effective therapies for AD patients is of critical urgency. Human genetic and clinical studies over the past three decades have indicated that abnormal generation or accumulation of amyloid-β (Aβ) peptides is a likely culprit in AD pathogenesis. Aβ is generated from amyloid precursor protein (APP) via proteolytic cleavage by β-site APP cleaving enzyme 1 (BACE1) (memapsin 2, β-secretase, Asp 2 protease) and γ-secretase. Mice deficient in BACE1 show abrogated production of Aβ. Therefore, pharmacological inhibition of BACE1 is being intensively pursued as a therapeutic approach to treat AD patients. Recent setbacks in clinical trials with BACE1 inhibitors have highlighted the critical importance of understanding how to properly inhibit BACE1 to treat AD patients. This review summarizes the recent studies on the role of BACE1 in synaptic functions as well as our views on BACE1 inhibition as an effective AD treatment.
Collapse
Affiliation(s)
- Brati Das
- Department of Neuroscience, Room E4032, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Riqiang Yan
- Department of Neuroscience, Room E4032, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| |
Collapse
|
16
|
Joel Z, Izquierdo P, Salih DA, Richardson JC, Cummings DM, Edwards FA. Improving Mouse Models for Dementia. Are All the Effects in Tau Mouse Models Due to Overexpression? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:151-161. [PMID: 30745408 DOI: 10.1101/sqb.2018.83.037531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mouse models of Alzheimer's disease have commonly used transgenic overexpression of genes involved in production of amyloid β (APP and/or PSEN1/2) or Tau (MAPT) with mutations that result in familial forms of dementia. We discuss possible improvements that may create full models while avoiding the problems of overexpression and report synaptic results in APPKI models. We stress use of inappropriate controls without overexpression of the normal human protein and the mismatch between the learning deficits reported in mice with plaques but no tangles and the human condition. We focus on Tau overexpression, including new data that support previous reports of the grossly nonlinear relationship between Tau overexpression and neurofibrillary tangle load, with a twofold increase in Tau protein, resulting in a 100-fold increase in tangle density. These data also support the hypothesis that a high concentration of soluble Tau, in overexpression models, plays an important direct role in neurodegeneration, rather than only via aggregation. Finally, we hypothesize that there is an optimal concentration range over which Tau can bind to microtubules and a threshold beyond which much of the overexpressed protein is unable to bind. The excess thus causes toxicity in ways not necessarily related to the process in human dementias.
Collapse
Affiliation(s)
- Zelah Joel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Pablo Izquierdo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Dervis A Salih
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Jill C Richardson
- Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Stevenage, SG1 2NY, United Kingdom
| | - Damian M Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Frances A Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
17
|
Li H, Liu CC, Zheng H, Huang TY. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer's disease -conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener 2018; 7:34. [PMID: 30603085 PMCID: PMC6306008 DOI: 10.1186/s40035-018-0139-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a fatal disease that threatens the quality of life of an aging population at a global scale. Various hypotheses on the etiology of AD have been developed over the years to guide efforts in search of therapeutic strategies. MAIN BODY In this review, we focus on four AD hypotheses currently relevant to AD onset: the prevailing amyloid cascade hypothesis, the well-recognized tau hypothesis, the increasingly popular pathogen (viral infection) hypothesis, and the infection-related antimicrobial protection hypothesis. In briefly reviewing the main evidence supporting each hypothesis and discussing the questions that need to be addressed, we hope to gain a better understanding of the complicated multi-layered interactions in potential causal and/or risk factors in AD pathogenesis. As a defining feature of AD, the existence of amyloid deposits is likely fundamental to AD onset but is insufficient to wholly reproduce many complexities of the disorder. A similar belief is currently also applied to hyperphosphorylated tau aggregates within neurons, where tau has been postulated to drive neurodegeneration in the presence of pre-existing Aβ plaques in the brain. Although infection of the central nerve system by pathogens such as viruses may increase AD risk, it is yet to be determined whether this phenomenon is applicable to all cases of sporadic AD and whether it is a primary trigger for AD onset. Lastly, the antimicrobial protection hypothesis provides insight into a potential physiological role for Aβ peptides, but how Aβ/microbial interactions affect AD pathogenesis during aging awaits further validation. Nevertheless, this hypothesis cautions potential adverse effects in Aβ-targeting therapies by hindering potential roles for Aβ in anti-viral protection. CONCLUSION AD is a multi-factor complex disorder, which likely requires a combinatorial therapeutic approach to successfully slow or reduce symptomatic memory decline. A better understanding of how various causal and/or risk factors affecting disease onset and progression will enhance the likelihood of conceiving effective treatment paradigms, which may involve personalized treatment strategies for individual patients at varying stages of disease progression.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX USA
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA USA
| |
Collapse
|
18
|
Susceptibility to Aβo and TBOA of LTD and Extrasynaptic NMDAR-Dependent Tonic Current in the Aged Rat Hippocampus. Neurochem Res 2018; 44:692-702. [PMID: 30426348 DOI: 10.1007/s11064-018-2677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022]
Abstract
Aging, as the major risk factor of Alzheimer's disease (AD), may increase susceptibility to neurodegenerative diseases through many gradual molecular and biochemical changes. Extracellular glutamate homeostasis and extrasynaptic glutamate N-methyl-D-aspartate receptors (NMDAR) are among early synaptic targets of oligomeric amyloid β (Aβo), one of the AD related synaptotoxic protein species. In this study, we asked for the effects of Aβo on long-term depression (LTD), a form of synaptic plasticity dependent on extrasynaptic NMDAR activation, and on a tonic current (TC) resulting from the activation of extrasynaptic NMDAR by ambient glutamate in hippocampal slices from young (3-6-month-old) and aged (24-28-month-old) Sprague-Dawley rats. Aβo significantly enhanced the magnitude of LTD and the amplitude of TC in aged slices compared to young ones. TBOA, a glutamate transporter inhibitor, also significantly increased LTD magnitude and TC amplitude in slices from aged rats, suggesting either an age-related weakness of the glutamate clearance system and/or a facilitated extrasynaptic NMDAR activation. From our present data, we hypothesize that senescence-related impairment of the extrasynaptic environment may be a vector of vulnerability of the aged hippocampus to neurodegenerative promotors such as Aβo.
Collapse
|
19
|
|
20
|
Silverman JM, Gibbs E, Peng X, Martens KM, Balducci C, Wang J, Yousefi M, Cowan CM, Lamour G, Louadi S, Ban Y, Robert J, Stukas S, Forloni G, Hsiung GYR, Plotkin SS, Wellington CL, Cashman NR. A Rational Structured Epitope Defines a Distinct Subclass of Toxic Amyloid-beta Oligomers. ACS Chem Neurosci 2018; 9:1591-1606. [PMID: 29614860 DOI: 10.1021/acschemneuro.7b00469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oligomers of amyloid-β (AβO) are deemed key in synaptotoxicity and amyloid seeding of Alzheimer's disease (AD). However, the heterogeneous and dynamic nature of AβO and inadequate markers for AβO subtypes have stymied effective AβO identification and therapeutic targeting in vivo. We identified an AβO-subclass epitope defined by differential solvent orientation of the lysine 28 side chain in a constrained loop of serine-asparagine-lysine (cSNK), rarely displayed in molecular dynamics simulations of monomer and fibril ensembles. A mouse monoclonal antibody targeting AβOcSNK recognizes ∼50-60 kDa SDS-resistant soluble Aβ assemblages in AD brain and prolongs the lag phase of Aβ aggregation in vitro. Acute peripheral infusion of a murine IgG1 anti-AβOcSNK in two AD mouse models reduced soluble brain Aβ aggregates by 20-30%. Chronic cSNK peptide immunization of APP/PS1 mice engendered an anti-AβOcSNK IgG1 response without epitope spreading to Aβ monomers or fibrils and was accompanied by preservation of global PSD95 expression and improved cued fear memory. Our data indicate that the oligomer subtype AβOcSNK participates in synaptotoxicity and propagation of Aβ aggregation in vitro and in vivo.
Collapse
Affiliation(s)
- Judith M. Silverman
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Ebrima Gibbs
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Xubiao Peng
- Department of Physics and Astronomy, Genome Sciences and Technology Program, Bioinformatics, Institute for Applied Math, University of British Columbia, Room
311, 6356 Agricultural Road, Vancouver, BC V6T 1Z2, Canada
| | - Kris M. Martens
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Claudia Balducci
- IRCCS, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via La Masa, 19, 20156 Milano, Italy
| | - Jing Wang
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Masoud Yousefi
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Catherine M. Cowan
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Guillaume Lamour
- Chemistry Department, University of British Columbia, Rm D223, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Sarah Louadi
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Yuxin Ban
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Jerome Robert
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Gianluigi Forloni
- IRCCS, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via La Masa, 19, 20156 Milano, Italy
| | - Ging-Yuek R. Hsiung
- UBC Hospital Clinic for Alzheimer Disease and Related Disorders, Department of Medicine, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Steven S. Plotkin
- Department of Physics and Astronomy, Genome Sciences and Technology Program, Bioinformatics, Institute for Applied Math, University of British Columbia, Room
311, 6356 Agricultural Road, Vancouver, BC V6T 1Z2, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Neil R. Cashman
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| |
Collapse
|
21
|
Suresh SN, Verma V, Sateesh S, Clement JP, Manjithaya R. Neurodegenerative diseases: model organisms, pathology and autophagy. J Genet 2018; 97:679-701. [PMID: 30027903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A proteostasis view of neurodegeneration (ND) identifies protein aggregation as a leading causative reason for damage seen at the cellular and organ levels. While investigative therapies that aim at dissolving aggregates have failed, and the promises of silencing expression of ND associated pathogenic proteins or the deployment of engineered induced pluripotent stem cells (iPSCs) are still in the horizon, emerging literature suggests degrading aggregates through autophagy-related mechanisms hold the current potential for a possible cure. Macroautophagy (hereafter autophagy) is an intracellular degradative pathway where superfluous or unwanted cellular cargoes (such as peroxisomes, mitochondria, ribosomes, intracellular bacteria and misfolded protein aggregates) are wrapped in double membrane vesicles called autophagosomes that eventually fuses with lysosomes for their degradation. The selective branch of autophagy that deals with identification, capture and degradation of protein aggregates is called aggrephagy. Here, we cover the workings of aggrephagy detailing its selectivity towards aggregates. The diverse cellular adaptors that bridge the aggregates with the core autophagy machinery in terms of autophagosome formation are discussed. In ND, essential protein quality control mechanisms fail as the constituent components also find themselves trapped in the aggregates. Thus, although cellular aggrephagy has the potential to be upregulated, its dysfunction further aggravates the pathogenesis. This phenomenonwhen combined with the fact that neurons can neither dilute out the aggregates by cell division nor the dead neurons can be replaced due to low neurogenesis, makes a compelling case for aggrephagy pathway as a potential therapeutic option.
Collapse
Affiliation(s)
- S N Suresh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560 064, India.
| | | | | | | | | |
Collapse
|
22
|
Souchet B, Audrain M, Billoir B, Lecanu L, Tada S, Braudeau J. Is it time to rethink the Alzheimer's disease drug development strategy by targeting its silent phase? Neural Regen Res 2018; 13:224-225. [PMID: 29557364 PMCID: PMC5879886 DOI: 10.4103/1673-5374.226389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | | | | | | | - Satoru Tada
- AgenT, 4 rue Pierre-Fontaine, 91058 EVRY Cedex, France
| | | |
Collapse
|
23
|
Expression of BC1 Impairs Spatial Learning and Memory in Alzheimer's Disease Via APP Translation. Mol Neurobiol 2017; 55:6007-6020. [PMID: 29134514 DOI: 10.1007/s12035-017-0820-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022]
Abstract
Aggregation of amyloid-β (Aβ) peptides, which are the cleavage products of amyloid precursor protein (APP), is a major pathological hallmark in the brain of Alzheimer's disease (AD). Now, we know little about the roles of APP translation in the disease progression of AD. Here, we show that BC1, a long noncoding RNA (lncRNA), is expressed in the brain of AD mice. BC1 induces APP mRNA translation via association with a fragile X syndrome protein (FMRP). Inhibition of BC1 or BC1-FMRP association in AD mice blocks aggregation of Aβ in the brain and protects against the spatial learning and memory deficits. Expression of exogenous BC1 in excitatory pyramidal neurons of mice induces Aβ peptides accumulation and the spatial learning and memory impairments. This study provides a novel mechanism underlying aggregation of Aβ peptides via BC1 induction of APP mRNA translation and hence warrants a promising target for AD therapy.
Collapse
|
24
|
Huang TY, Zhao Y, Jiang LL, Li X, Liu Y, Sun Y, Piña-Crespo JC, Zhu B, Masliah E, Willnow TE, Pasquale EB, Xu H. SORLA attenuates EphA4 signaling and amyloid β-induced neurodegeneration. J Exp Med 2017; 214:3669-3685. [PMID: 29114064 PMCID: PMC5716044 DOI: 10.1084/jem.20171413] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 11/04/2022] Open
Abstract
Sortilin-related receptor with LDLR class A repeats (SORLA, SORL1, or LR11) is a genetic risk factor associated with Alzheimer's disease (AD). Although SORLA is known to regulate trafficking of the amyloid β (Aβ) precursor protein to decrease levels of proteotoxic Aβ oligomers, whether SORLA can counteract synaptic dysfunction induced by Aβ oligomers remains unclear. Here, we show that SORLA interacts with the EphA4 receptor tyrosine kinase and attenuates ephrinA1 ligand-induced EphA4 clustering and activation to limit downstream effects of EphA4 signaling in neurons. Consistent with these findings, SORLA transgenic mice, compared with WT mice, exhibit decreased EphA4 activation and redistribution to postsynaptic densities, with milder deficits in long-term potentiation and memory induced by Aβ oligomers. Importantly, we detected elevated levels of active EphA4 in human AD brains, where EphA4 activation is inversely correlated with SORLA/EphA4 association. These results demonstrate a novel role for SORLA as a physiological and pathological EphA4 modulator, which attenuates synaptotoxic EphA4 activation and cognitive impairment associated with Aβ-induced neurodegeneration in AD.
Collapse
Affiliation(s)
- Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Yingjun Zhao
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Lu-Lin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Xiaoguang Li
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Yan Liu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA.,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China
| | - Yu Sun
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Juan C Piña-Crespo
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Bing Zhu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego, La Jolla, CA.,Department of Neuroscience, University of California, San Diego, La Jolla, CA
| | | | - Elena B Pasquale
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA.,Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA .,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
25
|
RIPK1 mediates a disease-associated microglial response in Alzheimer's disease. Proc Natl Acad Sci U S A 2017; 114:E8788-E8797. [PMID: 28904096 DOI: 10.1073/pnas.1714175114] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dysfunction of microglia is known to play an important role in Alzheimer's disease (AD). Here, we investigated the role of RIPK1 in microglia mediating the pathogenesis of AD. RIPK1 is highly expressed by microglial cells in human AD brains. Using the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model, we found that inhibition of RIPK1, using both pharmacological and genetic means, reduced amyloid burden, the levels of inflammatory cytokines, and memory deficits. Furthermore, inhibition of RIPK1 promoted microglial degradation of Aβ in vitro. We characterized the transcriptional profiles of adult microglia from APP/PS1 mice and identified a role for RIPK1 in regulating the microglial expression of CH25H and Cst7, a marker for disease-associated microglia (DAM), which encodes an endosomal/lysosomal cathepsin inhibitor named Cystatin F. We present evidence that RIPK1-mediated induction of Cst7 leads to an impairment in the lysosomal pathway. These data suggest that RIPK1 may mediate a critical checkpoint in the transition to the DAM state. Together, our study highlights a non-cell death mechanism by which the activation of RIPK1 mediates the induction of a DAM phenotype, including an inflammatory response and a reduction in phagocytic activity, and connects RIPK1-mediated transcription in microglia to the etiology of AD. Our results support that RIPK1 is an important therapeutic target for the treatment of AD.
Collapse
|
26
|
Das B, Yan R. Role of BACE1 in Alzheimer's synaptic function. Transl Neurodegener 2017; 6:23. [PMID: 28855981 PMCID: PMC5575945 DOI: 10.1186/s40035-017-0093-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-dependent disease of dementia, and there is currently no cure available. This hallmark pathologies of AD are the presence of amyloid plaques and neurofibrillary tangles. Although the exact etiology of AD remains a mystery, studies over the past 30 have shown that abnormal generation or accumulation of β-amyloid peptides (Aβ) is likely to be a predominant early event in AD pathological development. Aβ is generated from amyloid precursor protein (APP) via proteolytic cleavage by β-site APP cleaving enzyme 1 (BACE1). Chemical inhibition of BACE1 has been shown to reduce Aβ in animal studies and in human trials. While BACE1 inhibitors are currently being tested in clinical trials to treat AD patients, it is highly important to understand whether BACE1 inhibition will significantly impact cognitive functions in AD patients. This review summarizes the recent studies on BACE1 synaptic functions. This knowledge will help to guide the proper use of BACE1 inhibitors in AD therapy.
Collapse
Affiliation(s)
- Brati Das
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| |
Collapse
|
27
|
Yang Q, Zhu G, Liu D, Ju JG, Liao ZH, Xiao YX, Zhang Y, Chao N, Wang J, Li W, Luo JH, Li ST. Extrasynaptic NMDA receptor dependent long-term potentiation of hippocampal CA1 pyramidal neurons. Sci Rep 2017; 7:3045. [PMID: 28596523 PMCID: PMC5465207 DOI: 10.1038/s41598-017-03287-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/25/2017] [Indexed: 02/05/2023] Open
Abstract
In the adult mouse hippocampus, NMDA receptors (NMDARs) of CA1 neurons play an important role in the synaptic plasticity. The location of NMDARs can determine their roles in the induction of long-term potentiation (LTP). However, the extrasynaptic NMDARs (ES-NMDARs) dependent LTP haven’t been reported. Here, through the use of a 5-Hz stimulation and MK-801 (an irreversible antagonist of NMDARs) in the CA1 neurons of adult mice hippocampal slices, synaptic NMDARs were selectively inhibited and NMDAR-mediated excitatory postsynaptic currents were not recovered. We found that a robust LTP was induced by 3-train 100-Hz stimulation when the synaptic NMDARs and extrasynaptic NR2B containing NMDARs were blocked, but not in the any of the following conditions: blocking of all NMDARs (synaptic and extrasynaptic), blocking of the synaptic NMDARs, and blocking of the synaptic NMDARs and extrasynaptic NR2A-containing NMDARs. The results indicate that this LTP is ES-NMDARs dependent, and NR2B-containing ES-NMDARs modulates the threshold of LTP induction.
Collapse
Affiliation(s)
- Qian Yang
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Geng Zhu
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Liu
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jue-Gang Ju
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen-Hua Liao
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Xin Xiao
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Naijian Chao
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - JieJie Wang
- Department of Neurobiology, Key Laboratory of Medical, Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weidong Li
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Hong Luo
- Department of Neurobiology, Key Laboratory of Medical, Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Sheng-Tian Li
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
28
|
Calcineurin/NFAT Signaling in Activated Astrocytes Drives Network Hyperexcitability in Aβ-Bearing Mice. J Neurosci 2017; 37:6132-6148. [PMID: 28559377 DOI: 10.1523/jneurosci.0877-17.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022] Open
Abstract
Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with microelectrode arrays and ex vivo brain slices, using whole-cell voltage clamp. VIVIT treatment in 5xFAD mice led to increased expression of the astrocytic glutamate transporter GLT-1 and to attenuated changes in dendrite morphology, synaptic strength, and NMDAR-dependent responses. The results reveal astrocytic CN/NFAT4 as a key pathologic mechanism for driving glutamate dysregulation and neuronal hyperactivity during AD.SIGNIFICANCE STATEMENT Neuronal hyperexcitability and excitotoxicity are increasingly recognized as important mechanisms for neurodegeneration and dementia associated with Alzheimer's disease (AD). Astrocytes are profoundly activated during AD and may lose their capacity to regulate excitotoxic glutamate levels. Here, we show that a highly active calcineurin (CN) phosphatase fragment and its substrate transcription factor, nuclear factor of activated T cells (NFAT4), appear in astrocytes in direct proportion to the extent of astrocyte activation. The blockade of astrocytic CN/NFAT signaling in a common mouse model of AD, using adeno-associated virus vectors normalized glutamate signaling dynamics, increased astrocytic glutamate transporter levels and alleviated multiple signs of neuronal hyperexcitability. The results suggest that astrocyte activation drives hyperexcitability during AD through a mechanism involving aberrant CN/NFAT signaling and impaired glutamate transport.
Collapse
|
29
|
Li Y, Sun Z, Cao Q, Chen M, Luo H, Lin X, Xiao F. Role of amyloid β protein receptors in mediating synaptic plasticity. Biomed Rep 2017; 6:379-386. [PMID: 28413635 PMCID: PMC5374942 DOI: 10.3892/br.2017.863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 11/05/2022] Open
Abstract
There are few diseases in modern biomedicine that have garnered as much scientific interest and public concern as Alzheimer's disease (AD). The amyloid hypothesis has become the dominant model of AD pathogenesis; however, the details of the hypothesis are changing over time. Recently, given the increasing recognition, subtle effects of amyloid β protein (Aβ) on synaptic efficacy may be critical to AD progression. Synaptic plasticity is the important neurochemical foundation of learning and memory. Recent studies have identified that soluble Aβ oligomers combine with certain receptors to impair synaptic plasticity in AD, which advanced the amyloid hypothesis. The aim of the present review was to summarize the role of Aβ-relevant receptors in regulating synaptic plasticity and their downstream signaling cascades, which may provide novel insights into the understanding of the pathogenesis of AD and the development of therapeutic strategies to slow down the progression of AD-associated memory decline in the early stages.
Collapse
Affiliation(s)
- Yu Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhongqing Sun
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qiaoyu Cao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Huanmin Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
30
|
Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, Wang X. Dysregulation of Ubiquitin-Proteasome System in Neurodegenerative Diseases. Front Aging Neurosci 2016; 8:303. [PMID: 28018215 PMCID: PMC5156861 DOI: 10.3389/fnagi.2016.00303] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is one of the major protein degradation pathways, where abnormal UPS function has been observed in cancer and neurological diseases. Many neurodegenerative diseases share a common pathological feature, namely intracellular ubiquitin-positive inclusions formed by aggregate-prone neurotoxic proteins. This suggests that dysfunction of the UPS in neurodegenerative diseases contributes to the accumulation of neurotoxic proteins and to instigate neurodegeneration. Here, we review recent findings describing various aspects of UPS dysregulation in neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| | - Timothy Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| | - Ying Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen UniversityXiamen, China; Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CAUSA
| | - Xin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| |
Collapse
|
31
|
Zuo C, Tang S, Si YY, Wang ZA, Tian CL, Zheng JS. Efficient synthesis of longer Aβ peptides via removable backbone modification. Org Biomol Chem 2016; 14:5012-8. [DOI: 10.1039/c6ob00712k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes a new method for the efficient chemical synthesis of longer Aβ peptides with the combination of the RBM strategy and native chemical ligation.
Collapse
Affiliation(s)
- Chao Zuo
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
| | - Shan Tang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yan-Yan Si
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Zhipeng A. Wang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chang-Lin Tian
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
| | - Ji-Shen Zheng
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|