1
|
Pan MT, Zhang H, Li XJ, Guo XY. Genetically modified non-human primate models for research on neurodegenerative diseases. Zool Res 2024; 45:263-274. [PMID: 38287907 PMCID: PMC11017080 DOI: 10.24272/j.issn.2095-8137.2023.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Currently, there are no therapies available that can delay, stop, or reverse the pathological progression of NDs in clinical settings. As the population ages, NDs are imposing a huge burden on public health systems and affected families. Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments. While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms, the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap. Old World non-human primates (NHPs), such as rhesus, cynomolgus, and vervet monkeys, are phylogenetically, physiologically, biochemically, and behaviorally most relevant to humans. This is particularly evident in the similarity of the structure and function of their central nervous systems, rendering such species uniquely valuable for neuroscience research. Recently, the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms. This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained, as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.
Collapse
Affiliation(s)
- Ming-Tian Pan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Han Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiang-Yu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| |
Collapse
|
2
|
Acri DJ, You Y, Tate MD, Karahan H, Martinez P, McCord B, Sharify AD, John S, Kim B, Dabin LC, Philtjens S, Wijeratne HS, McCray TJ, Smith DC, Bissel SJ, Lamb BT, Lasagna-Reeves CA, Kim J. Network analysis identifies strain-dependent response to tau and tau seeding-associated genes. J Exp Med 2023; 220:e20230180. [PMID: 37606887 PMCID: PMC10443211 DOI: 10.1084/jem.20230180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/05/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023] Open
Abstract
Previous research demonstrated that genetic heterogeneity is a critical factor in modeling amyloid accumulation and other Alzheimer's disease phenotypes. However, it is unknown what mechanisms underlie these effects of genetic background on modeling tau aggregate-driven pathogenicity. In this study, we induced tau aggregation in wild-derived mice by expressing MAPT. To investigate the effect of genetic background on the action of tau aggregates, we performed RNA sequencing with brains of C57BL/6J, CAST/EiJ, PWK/PhJ, and WSB/EiJ mice (n = 64) and determined core transcriptional signature conserved in all genetic backgrounds and signature unique to wild-derived backgrounds. By measuring tau seeding activity using the cortex, we identified 19 key genes associated with tau seeding and amyloid response. Interestingly, microglial pathways were strongly associated with tau seeding activity in CAST/EiJ and PWK/PhJ backgrounds. Collectively, our study demonstrates that mouse genetic context affects tau-mediated alteration of transcriptome and tau seeding. The gene modules associated with tau seeding provide an important resource to better model tauopathy.
Collapse
Affiliation(s)
- Dominic J. Acri
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Mason D. Tate
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Pablo Martinez
- Department of Anatomy, Cell Biology and Physiology, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Brianne McCord
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - A. Daniel Sharify
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Sutha John
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Byungwook Kim
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Luke C. Dabin
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Stéphanie Philtjens
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - H.R. Sagara Wijeratne
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Tyler J. McCray
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Daniel C. Smith
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Stephanie J. Bissel
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Cristian A. Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana UniversitySchool of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Han ZZ, Fleet A, Larrieu D. Can accelerated ageing models inform us on age-related tauopathies? Aging Cell 2023; 22:e13830. [PMID: 37013265 PMCID: PMC10186612 DOI: 10.1111/acel.13830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Ageing is the greatest risk factor of late-onset neurodegenerative diseases. In the realm of sporadic tauopathies, modelling the process of biological ageing in experimental animals forms the foundation of searching for the molecular origin of pathogenic tau and developing potential therapeutic interventions. Although prior research into transgenic tau models offers valuable lessons for studying how tau mutations and overexpression can drive tau pathologies, the underlying mechanisms by which ageing leads to abnormal tau accumulation remains poorly understood. Mutations associated with human progeroid syndromes have been proposed to be able to mimic an aged environment in animal models. Here, we summarise recent attempts in modelling ageing in relation to tauopathies using animal models that carry mutations associated with human progeroid syndromes, or genetic elements unrelated to human progeroid syndromes, or have exceptional natural lifespans, or a remarkable resistance to ageing-related disorders.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Alex Fleet
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Delphine Larrieu
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| |
Collapse
|
4
|
Acri DJ, You Y, Tate MD, McCord B, Sharify AD, John S, Karahan H, Kim B, Dabin LC, Philtjens S, Wijeratne HS, McCray TJ, Smith DC, Bissel SJ, Lamb BT, Lasagna-Reeves CA, Kim J. Network analysis reveals strain-dependent response to misfolded tau aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526029. [PMID: 36778440 PMCID: PMC9915505 DOI: 10.1101/2023.01.28.526029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mouse genetic backgrounds have been shown to modulate amyloid accumulation and propagation of tau aggregates. Previous research into these effects has highlighted the importance of studying the impact of genetic heterogeneity on modeling Alzheimer's disease. However, it is unknown what mechanisms underly these effects of genetic background on modeling Alzheimer's disease, specifically tau aggregate-driven pathogenicity. In this study, we induced tau aggregation in wild-derived mice by expressing MAPT (P301L). To investigate the effect of genetic background on the action of tau aggregates, we performed RNA sequencing with brains of 6-month-old C57BL/6J, CAST/EiJ, PWK/PhJ, and WSB/EiJ mice (n=64). We also measured tau seeding activity in the cortex of these mice. We identified three gene signatures: core transcriptional signature, unique signature for each wild-derived genetic background, and tau seeding-associated signature. Our data suggest that microglial response to tau seeds is elevated in CAST/EiJ and PWK/PhJ mice. Together, our study provides the first evidence that mouse genetic context influences the seeding of tau. SUMMARY Seeding of tau predates the phosphorylation and spreading of tau aggregates. Acri and colleagues report transcriptomic responses to tau and elevated tau seeds in wild-derived mice. This paper creates a rich resource by combining genetics, tau biosensor assays, and transcriptomics.
Collapse
|
5
|
Fyn nanoclustering requires switching to an open conformation and is enhanced by FTLD-Tau biomolecular condensates. Mol Psychiatry 2023; 28:946-962. [PMID: 36258016 PMCID: PMC9908554 DOI: 10.1038/s41380-022-01825-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
Fyn is a Src kinase that controls critical signalling cascades and has been implicated in learning and memory. Postsynaptic enrichment of Fyn underpins synaptotoxicity in dementias such as Alzheimer's disease and frontotemporal lobar degeneration with Tau pathology (FTLD-Tau). The FLTD P301L mutant Tau is associated with a higher propensity to undergo liquid-liquid phase separation (LLPS) and form biomolecular condensates. Expression of P301L mutant Tau promotes aberrant trapping of Fyn in nanoclusters within hippocampal dendrites by an unknown mechanism. Here, we used single-particle tracking photoactivated localisation microscopy to demonstrate that the opening of Fyn into its primed conformation promotes its nanoclustering in dendrites leading to increased Fyn/ERK/S6 downstream signalling. Preventing the auto-inhibitory closed conformation of Fyn through phospho-inhibition or through perturbation of its SH3 domain increased Fyn's nanoscale trapping, whereas inhibition of the catalytic domain had no impact. By combining pharmacological and genetic approaches, we demonstrate that P301L Tau enhanced both Fyn nanoclustering and Fyn/ERK/S6 signalling via its ability to form biomolecular condensates. Together, our findings demonstrate that Fyn alternates between a closed and an open conformation, the latter being enzymatically active and clustered. Furthermore, pathogenic immobilisation of Fyn relies on the ability of P301L Tau to form biomolecular condensates, thus highlighting the critical importance of LLPS in controlling nanoclustering and downstream intracellular signalling events.
Collapse
|
6
|
Hromadkova L, Siddiqi MK, Liu H, Safar JG. Populations of Tau Conformers Drive Prion-like Strain Effects in Alzheimer's Disease and Related Dementias. Cells 2022; 11:2997. [PMID: 36230957 PMCID: PMC9562632 DOI: 10.3390/cells11192997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Recent findings of diverse populations of prion-like conformers of misfolded tau protein expand the prion concept to Alzheimer's disease (AD) and monogenic frontotemporal lobar degeneration (FTLD)-MAPT P301L, and suggest that distinct strains of misfolded proteins drive the phenotypes and progression rates in many neurodegenerative diseases. Notable progress in the previous decades has generated many lines of proof arguing that yeast, fungal, and mammalian prions determine heritable as well as infectious traits. The extraordinary phenotypic diversity of human prion diseases arises from structurally distinct prion strains that target, at different progression speeds, variable brain structures and cells. Although human prion research presents beneficial lessons and methods to study the mechanism of strain diversity of protein-only pathogens, the fundamental molecular mechanism by which tau conformers are formed and replicate in diverse tauopathies is still poorly understood. In this review, we summarize up to date advances in identification of diverse tau conformers through biophysical and cellular experimental paradigms, and the impact of heterogeneity of pathological tau strains on personalized structure- and strain-specific therapeutic approaches in major tauopathies.
Collapse
Affiliation(s)
- Lenka Hromadkova
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - He Liu
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jiri G. Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Han ZZ, Kang SG, Arce L, Westaway D. Prion-like strain effects in tauopathies. Cell Tissue Res 2022; 392:179-199. [PMID: 35460367 PMCID: PMC9034081 DOI: 10.1007/s00441-022-03620-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Tau is a microtubule-associated protein that plays crucial roles in physiology and pathophysiology. In the realm of dementia, tau protein misfolding is associated with a wide spectrum of clinicopathologically diverse neurodegenerative diseases, collectively known as tauopathies. As proposed by the tau strain hypothesis, the intrinsic heterogeneity of tauopathies may be explained by the existence of structurally distinct tau conformers, “strains”. Tau strains can differ in their associated clinical features, neuropathological profiles, and biochemical signatures. Although prior research into infectious prion proteins offers valuable lessons for studying how a protein-only pathogen can encompass strain diversity, the underlying mechanism by which tau subtypes are generated remains poorly understood. Here we summarize recent advances in understanding different tau conformers through in vivo and in vitro experimental paradigms, and the implications of heterogeneity of pathological tau species for drug development.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Luis Arce
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada. .,Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Kang SG, Han ZZ, Daude N, McNamara E, Wohlgemuth S, Molina-Porcel L, Safar JG, Mok SA, Westaway D. Pathologic tau conformer ensembles induce dynamic, liquid-liquid phase separation events at the nuclear envelope. BMC Biol 2021; 19:199. [PMID: 34503506 PMCID: PMC8428099 DOI: 10.1186/s12915-021-01132-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background The microtubule-associated protein tau forms aggregates in different neurodegenerative diseases called tauopathies. Prior work has shown that a single P301L mutation in tau gene, MAPT, can promote alternative tau folding pathways that correlate with divergent clinical diagnoses. Using progressive chemical denaturation, some tau preparations from the brain featured complex transitions starting at low concentrations of guanidine hydrochloride (GdnHCl) denaturant, indicating an ensemble of differently folded tau species called conformers. On the other hand, brain samples with abundant, tangle-like pathology had simple GdnHCl unfolding profile resembling the profile of fibrillized recombinant tau and suggesting a unitary conformer composition. In studies here we sought to understand tau conformer progression and potential relationships with condensed liquid states, as well as associated perturbations in cell biological processes. Results As starting material, we used brain samples from P301L transgenic mice containing tau conformer ensembles that unfolded at low GdnHCl concentrations and with signatures resembling brain material from P301L subjects presenting with language or memory problems. We seeded reporter cells expressing a soluble form of 4 microtubule-binding repeat tau fused to GFP or YFP reporter moieties, resulting in redistribution of dispersed fluorescence signals into focal assemblies that could fuse together and move within processes between adjacent cells. Nuclear envelope fluorescent tau signals and small fluorescent inclusions behaved as a demixed liquid phase, indicative of liquid-liquid phase separation (LLPS); these droplets exhibited spherical morphology, fusion events and could recover from photobleaching. Moreover, juxtanuclear tau assemblies were associated with disrupted nuclear transport and reduced cell viability in a stable cell line. Staining for thioflavin S (ThS) became more prevalent as tau-derived inclusions attained cross-sectional area greater than 3 μm2, indicating (i) a bipartite composition, (ii) in vivo progression of tau conformers, and (iii) that a mass threshold applying to demixed condensates may drive liquid-solid transitions. Conclusions Tau conformer ensembles characterized by denaturation at low GdnHCl concentration templated the production of condensed droplets in living cells. These species exhibit dynamic changes and develop in vivo, and the larger ThS-positive assemblies may represent a waystation to arrive at intracellular fibrillar tau inclusions seen in end-stage genetic tauopathies. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01132-y.
Collapse
Affiliation(s)
- Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada
| | - Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada
| | - Emily McNamara
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada
| | | | - Jiri G Safar
- Department of Neurology and Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sue-Ann Mok
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada. .,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada. .,Division of Neurology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Alyenbaawi H, Kanyo R, Locskai LF, Kamali-Jamil R, DuVal MG, Bai Q, Wille H, Burton EA, Allison WT. Seizures are a druggable mechanistic link between TBI and subsequent tauopathy. eLife 2021; 10:e58744. [PMID: 33527898 PMCID: PMC7853719 DOI: 10.7554/elife.58744] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a prominent risk factor for dementias including tauopathies like chronic traumatic encephalopathy (CTE). The mechanisms that promote prion-like spreading of Tau aggregates after TBI are not fully understood, in part due to lack of tractable animal models. Here, we test the putative role of seizures in promoting the spread of tauopathy. We introduce 'tauopathy reporter' zebrafish expressing a genetically encoded fluorescent Tau biosensor that reliably reports accumulation of human Tau species when seeded via intraventricular brain injections. Subjecting zebrafish larvae to a novel TBI paradigm produced various TBI features including cell death, post-traumatic seizures, and Tau inclusions. Bath application of dynamin inhibitors or anticonvulsant drugs rescued TBI-induced tauopathy and cell death. These data suggest a role for seizure activity in the prion-like seeding and spreading of tauopathy following TBI. Further work is warranted regarding anti-convulsants that dampen post-traumatic seizures as a route to moderating subsequent tauopathy.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of AlbertaEdmontonCanada
- Department of Medical Genetics, University of AlbertaEdmontonCanada
- Majmaah UniversityMajmaahSaudi Arabia
| | - Richard Kanyo
- Centre for Prions & Protein Folding Disease, University of AlbertaEdmontonCanada
- Department of Biological Sciences, University of AlbertaEdmontonCanada
| | - Laszlo F Locskai
- Centre for Prions & Protein Folding Disease, University of AlbertaEdmontonCanada
- Department of Biological Sciences, University of AlbertaEdmontonCanada
| | - Razieh Kamali-Jamil
- Centre for Prions & Protein Folding Disease, University of AlbertaEdmontonCanada
- Department of Biochemistry, University of AlbertaEdmontonCanada
| | - Michèle G DuVal
- Department of Biological Sciences, University of AlbertaEdmontonCanada
| | - Qing Bai
- Department of Neurology, University of PittsburghPittsburghUnited States
| | - Holger Wille
- Centre for Prions & Protein Folding Disease, University of AlbertaEdmontonCanada
- Department of Biochemistry, University of AlbertaEdmontonCanada
| | - Edward A Burton
- Department of Neurology, University of PittsburghPittsburghUnited States
- Geriatric Research, Education and Clinical Center, Pittsburgh VA Healthcare SystemPittsburghUnited States
| | - W Ted Allison
- Centre for Prions & Protein Folding Disease, University of AlbertaEdmontonCanada
- Department of Medical Genetics, University of AlbertaEdmontonCanada
- Department of Biological Sciences, University of AlbertaEdmontonCanada
| |
Collapse
|
10
|
Eskandari-Sedighi G, Cortez LM, Yang J, Daude N, Shmeit K, Sim V, Westaway D. Quaternary Structure Changes for PrP Sc Predate PrP C Downregulation and Neuronal Death During Progression of Experimental Scrapie Disease. Mol Neurobiol 2021; 58:375-390. [PMID: 32959170 PMCID: PMC7695655 DOI: 10.1007/s12035-020-02112-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/01/2020] [Indexed: 01/20/2023]
Abstract
Prion diseases are fatal neurodegenerative diseases in mammals with the unique characteristics of misfolding and aggregation of the cellular prion protein (PrPC) to the scrapie prion (PrPSc). Although neuroinflammation and neuronal loss feature within the disease process, the details of PrPC/PrPSc molecular transition to generate different aggregated species, and the correlation between each species and sequence of cellular events in disease pathogenesis are not fully understood. In this study, using mice inoculated with the RML isolate of mouse-adapted scrapie as a model, we applied asymmetric flow field-flow fractionation to monitor PrPC and PrPSc particle sizes and we also measured seeding activity and resistance to proteases. For cellular analysis in brain tissue, we measured inflammatory markers and synaptic damage, and used the isotropic fractionator to measure neuronal loss; these techniques were applied at different timepoints in a cross-sectional study of disease progression. Our analyses align with previous reports defining significant decreases in PrPC levels at pre-clinical stages of the disease and demonstrate that these decreases become significant before neuronal loss. We also identified the earliest PrPSc assemblies at a timepoint equivalent to 40% elapsed time for the disease incubation period; we propose that these assemblies, mostly composed of proteinase K (PK)-sensitive species, play an important role in triggering disease pathogenesis. Lastly, we show that the PK-resistant assemblies of PrPSc that appear at timepoints close to the terminal stage have similar biophysical characteristics, and hence that preparative use of PK-digestion selects for this specific subpopulation. In sum, our data argue that qualitative, as well as quantitative, changes in PrP conformers occur at the midpoint of subclinical phase; these changes affect quaternary structure and may occur at the threshold where adaptive responses become inadequate to deal with pathogenic processes.
Collapse
Affiliation(s)
- Ghazaleh Eskandari-Sedighi
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Leonardo M Cortez
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Klinton Shmeit
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Valerie Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - David Westaway
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
11
|
Kang SG, Eskandari-Sedighi G, Hromadkova L, Safar JG, Westaway D. Cellular Biology of Tau Diversity and Pathogenic Conformers. Front Neurol 2020; 11:590199. [PMID: 33304310 PMCID: PMC7693435 DOI: 10.3389/fneur.2020.590199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Tau accumulation is a prominent feature in a variety of neurodegenerative disorders and remarkable effort has been expended working out the biochemistry and cell biology of this cytoplasmic protein. Tau's wayward properties may derive from germline mutations in the case of frontotemporal lobar degeneration (FTLD-MAPT) but may also be prompted by less understood cues—perhaps environmental or from molecular damage as a consequence of chronological aging—in the case of idiopathic tauopathies. Tau properties are undoubtedly affected by its covalent structure and in this respect tau protein is not only subject to changes in length produced by alternative splicing and endoproteolysis, but different types of posttranslational modifications that affect different amino acid residues. Another layer of complexity concerns alternate conformations—“conformers”—of the same covalent structures; in vivo conformers can encompass soluble oligomeric species, ramified fibrillar structures evident by light and electron microscopy and other forms of the protein that have undergone liquid-liquid phase separation to make demixed liquid droplets. Biological concepts based upon conformers have been charted previously for templated replication mechanisms for prion proteins built of the PrP polypeptide; these are now providing useful explanations to feature tau pathobiology, including how this protein accumulates within cells and how it can exhibit predictable patterns of spread across different neuroanatomical regions of an affected brain. In sum, the documented, intrinsic heterogeneity of tau forms and conformers now begins to speak to a fundamental basis for diversity in clinical presentation of tauopathy sub-types. In terms of interventions, emphasis upon subclinical events may be worthwhile, noting that irrevocable cell loss and ramified protein assemblies feature at end-stage tauopathy, whereas earlier events may offer better opportunities for diverting pathogenic processes. Nonetheless, the complexity of tau sub-types, which may be present even within intermediate disease stages, likely mitigates against one-size-fits-all therapeutic strategies and may require a suite of interventions. We consider the extent to which animal models of tauopathy can be reasonably enrolled in the campaign to produce such interventions and to slow the otherwise inexorable march of disease progression.
Collapse
Affiliation(s)
- Sang-Gyun Kang
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | | | - Lenka Hromadkova
- Department of Neurology and Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Jiri G Safar
- Department of Neurology and Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - David Westaway
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Daude N, Kim C, Kang SG, Eskandari-Sedighi G, Haldiman T, Yang J, Fleck SC, Gomez-Cardona E, Han ZZ, Borrego-Ecija S, Wohlgemuth S, Julien O, Wille H, Molina-Porcel L, Gelpi E, Safar JG, Westaway D. Diverse, evolving conformer populations drive distinct phenotypes in frontotemporal lobar degeneration caused by the same MAPT-P301L mutation. Acta Neuropathol 2020; 139:1045-1070. [PMID: 32219515 PMCID: PMC7244472 DOI: 10.1007/s00401-020-02148-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 01/29/2023]
Abstract
Tau protein accumulation is a common denominator of major dementias, but this process is inhomogeneous, even when triggered by the same germline mutation. We considered stochastic misfolding of human tau conformers followed by templated conversion of native monomers as an underlying mechanism and derived sensitive conformational assays to test this concept. Assessments of brains from aged TgTauP301L transgenic mice revealed a prodromal state and three distinct signatures for misfolded tau. Frontotemporal lobar degeneration (FTLD)-MAPT-P301L patients with different clinical phenotypes also displayed three signatures, two resembling those found in TgTauP301L mice. As physicochemical and cell bioassays confirmed diverse tau strains in the mouse and human brain series, we conclude that evolution of diverse tau conformers is intrinsic to the pathogenesis of this uni-allelic form of tauopathy. In turn, effective therapeutic interventions in FTLD will need to address evolving repertoires of misfolded tau species rather than singular, static molecular targets.
Collapse
Affiliation(s)
- Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Chae Kim
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Ghazaleh Eskandari-Sedighi
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Shelaine C Fleck
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Sergi Borrego-Ecija
- Neurological Tissue Bank of the Biobanc, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc, Hospital Clinic, IDIBAPS, Barcelona, Spain
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA.
- Department of Neurology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA.
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|