1
|
Qin H, Zhou L, Haque FT, Martin-Jimenez C, Trang A, Benveniste EN, Wang Q. Diverse signaling mechanisms and heterogeneity of astrocyte reactivity in Alzheimer's disease. J Neurochem 2024; 168:3536-3557. [PMID: 37932959 DOI: 10.1111/jnc.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) affects various brain cell types, including astrocytes, which are the most abundant cell types in the central nervous system (CNS). Astrocytes not only provide homeostatic support to neurons but also actively regulate synaptic signaling and functions and become reactive in response to CNS insults through diverse signaling pathways including the JAK/STAT, NF-κB, and GPCR-elicited pathways. The advent of new technology for transcriptomic profiling at the single-cell level has led to increasing recognition of the highly versatile nature of reactive astrocytes and the context-dependent specificity of astrocyte reactivity. In AD, reactive astrocytes have long been observed in senile plaques and have recently been suggested to play a role in AD pathogenesis and progression. However, the precise contributions of reactive astrocytes to AD remain elusive, and targeting this complex cell population for AD treatment poses significant challenges. In this review, we summarize the current understanding of astrocyte reactivity and its role in AD, with a particular focus on the signaling pathways that promote astrocyte reactivity and the heterogeneity of reactive astrocytes. Furthermore, we explore potential implications for the development of therapeutics for AD. Our objective is to shed light on the complex involvement of astrocytes in AD and offer insights into potential therapeutic targets and strategies for treating and managing this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Faris T Haque
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cynthia Martin-Jimenez
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Amy Trang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
2
|
Cao C, Fu G, Xu R, Li N. Coupling of Alzheimer's Disease Genetic Risk Factors with Viral Susceptibility and Inflammation. Aging Dis 2024; 15:2028-2050. [PMID: 37962454 PMCID: PMC11346407 DOI: 10.14336/ad.2023.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by persistent cognitive decline. Amyloid plaque deposition and neurofibrillary tangles are the main pathological features of AD brain, though mechanisms leading to the formation of lesions remain to be understood. Genetic efforts through genome-wide association studies (GWAS) have identified dozens of risk genes influencing the pathogenesis and progression of AD, some of which have been revealed in close association with increased viral susceptibilities and abnormal inflammatory responses in AD patients. In the present study, we try to present a list of AD candidate genes that have been shown to affect viral infection and inflammatory responses. Understanding of how AD susceptibility genes interact with the viral life cycle and potential inflammatory pathways would provide possible therapeutic targets for both AD and infectious diseases.
Collapse
Affiliation(s)
| | | | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Leung SK, Bamford RA, Jeffries AR, Castanho I, Chioza B, Flaxman CS, Moore K, Dempster EL, Harvey J, Brown JT, Ahmed Z, O'Neill P, Richardson SJ, Hannon E, Mill J. Long-read transcript sequencing identifies differential isoform expression in the entorhinal cortex in a transgenic model of tau pathology. Nat Commun 2024; 15:6458. [PMID: 39095344 PMCID: PMC11297290 DOI: 10.1038/s41467-024-50486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Increasing evidence suggests that alternative splicing plays an important role in Alzheimer's disease (AD) pathology. We used long-read sequencing in combination with a novel bioinformatics tool (FICLE) to profile transcript diversity in the entorhinal cortex of female transgenic (TG) mice harboring a mutant form of human tau. Our analyses revealed hundreds of novel isoforms and identified differentially expressed transcripts - including specific isoforms of Apoe, App, Cd33, Clu, Fyn and Trem2 - associated with the development of tau pathology in TG mice. Subsequent profiling of the human cortex from AD individuals and controls revealed similar patterns of transcript diversity, including the upregulation of the dominant TREM2 isoform in AD paralleling the increased expression of the homologous transcript in TG mice. Our results highlight the importance of differential transcript usage, even in the absence of gene-level expression alterations, as a mechanism underpinning gene regulation in the development of AD neuropathology.
Collapse
Affiliation(s)
- Szi Kay Leung
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| | - Rosemary A Bamford
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | - Isabel Castanho
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Barry Chioza
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Christine S Flaxman
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Karen Moore
- Biosciences, University of Exeter, Exeter, UK
| | - Emma L Dempster
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Joshua Harvey
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jonathan T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | | | - Sarah J Richardson
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
4
|
Hudgins AD, Zhou S, Arey RN, Rosenfeld MG, Murphy CT, Suh Y. A systems biology-based identification and in vivo functional screening of Alzheimer's disease risk genes reveal modulators of memory function. Neuron 2024; 112:2112-2129.e4. [PMID: 38692279 PMCID: PMC11223975 DOI: 10.1016/j.neuron.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Genome-wide association studies (GWASs) have uncovered over 75 genomic loci associated with risk for late-onset Alzheimer's disease (LOAD), but identification of the underlying causal genes remains challenging. Studies of induced pluripotent stem cell (iPSC)-derived neurons from LOAD patients have demonstrated the existence of neuronal cell-intrinsic functional defects. Here, we searched for genetic contributions to neuronal dysfunction in LOAD using an integrative systems approach that incorporated multi-evidence-based gene mapping and network-analysis-based prioritization. A systematic perturbation screening of candidate risk genes in Caenorhabditis elegans (C. elegans) revealed that neuronal knockdown of the LOAD risk gene orthologs vha-10 (ATP6V1G2), cmd-1 (CALM3), amph-1 (BIN1), ephx-1 (NGEF), and pho-5 (ACP2) alters short-/intermediate-term memory function, the cognitive domain affected earliest during LOAD progression. These results highlight the impact of LOAD risk genes on evolutionarily conserved memory function, as mediated through neuronal endosomal dysfunction, and identify new targets for further mechanistic interrogation.
Collapse
Affiliation(s)
- Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shiyi Zhou
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Rachel N Arey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael G Rosenfeld
- Department of Medicine, School of Medicine, University of California, La Jolla, CA, USA; Howard Hughes Medical Institute, University of California, La Jolla, CA, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; LSI Genomics, Princeton University, Princeton, NJ, USA.
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Maninger JK, Nowak K, Goberdhan S, O'Donoghue R, Connor-Robson N. Cell type-specific functions of Alzheimer's disease endocytic risk genes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220378. [PMID: 38368934 PMCID: PMC10874703 DOI: 10.1098/rstb.2022.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 02/20/2024] Open
Abstract
Endocytosis is a key cellular pathway required for the internalization of cellular nutrients, lipids and receptor-bound cargoes. It is also critical for the recycling of cellular components, cellular trafficking and membrane dynamics. The endocytic pathway has been consistently implicated in Alzheimer's disease (AD) through repeated genome-wide association studies and the existence of rare coding mutations in endocytic genes. BIN1 and PICALM are two of the most significant late-onset AD risk genes after APOE and are both key to clathrin-mediated endocytic biology. Pathological studies also demonstrate that endocytic dysfunction is an early characteristic of late-onset AD, being seen in the prodromal phase of the disease. Different cell types of the brain have specific requirements of the endocytic pathway. Neurons require efficient recycling of synaptic vesicles and microglia use the specialized form of endocytosis-phagocytosis-for their normal function. Therefore, disease-associated changes in endocytic genes will have varied impacts across different cell types, which remains to be fully explored. Given the genetic and pathological evidence for endocytic dysfunction in AD, understanding how such changes and the related cell type-specific vulnerabilities impact normal cellular function and contribute to disease is vital and could present novel therapeutic opportunities. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
| | - Karolina Nowak
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Srilakshmi Goberdhan
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Rachel O'Donoghue
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Natalie Connor-Robson
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| |
Collapse
|
6
|
Wang J, Zhen Y, Yang J, Yang S, Zhu G. Recognizing Alzheimer's disease from perspective of oligodendrocytes: Phenomena or pathogenesis? CNS Neurosci Ther 2024; 30:e14688. [PMID: 38516808 PMCID: PMC10958408 DOI: 10.1111/cns.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Accumulation of amyloid beta, tau hyperphosphorylation, and microglia activation are the three highly acknowledged pathological factors of Alzheimer's disease (AD). However, oligodendrocytes (OLs) were also widely investigated in the pathogenesis and treatment for AD. AIMS We aimed to update the regulatory targets of the differentiation and maturation of OLs, and emphasized the key role of OLs in the occurrence and treatment of AD. METHODS This review first concluded the targets of OL differentiation and maturation with AD pathogenesis, and then advanced the key role of OLs in the pathogenesis of AD based on both clinic and basic experiments. Later, we extensively discussed the possible application of the current progress in the diagnosis and treatment of this complex disease. RESULTS Molecules involving in OLs' differentiation or maturation, including various transcriptional factors, cholesterol homeostasis regulators, and microRNAs could also participate in the pathogenesis of AD. Clinical data point towards the impairment of OLs in AD patients. Basic research further supports the central role of OLs in the regulation of AD pathologies. Additionally, classic drugs, including donepezil, edaravone, fluoxetine, and clemastine demonstrate their potential in remedying OL impairment in AD models, and new therapeutics from the perspective of OLs is constantly being developed. CONCLUSIONS We believe that OL dysfunction is one important pathogenesis of AD. Factors regulating OLs might be biomarkers for early diagnosis and agents stimulating OLs warrant the development of anti-AD drugs.
Collapse
Affiliation(s)
- Jingji Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui ProvinceThe Second Affiliation Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Yilan Zhen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
| | - Jun Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
- The First Affiliation Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Shaojie Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
| |
Collapse
|
7
|
Zarrella JA, Tsurumi A. Genome-wide transcriptome profiling and development of age prediction models in the human brain. Aging (Albany NY) 2024; 16:4075-4094. [PMID: 38428408 PMCID: PMC10968712 DOI: 10.18632/aging.205609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 03/28/2023] [Indexed: 03/03/2024]
Abstract
Aging-related transcriptome changes in various regions of the healthy human brain have been explored in previous works, however, a study to develop prediction models for age based on the expression levels of specific panels of transcripts is lacking. Moreover, studies that have assessed sexually dimorphic gene activities in the aging brain have reported discrepant results, suggesting that additional studies would be advantageous. The prefrontal cortex (PFC) region was previously shown to have a particularly large number of significant transcriptome alterations during healthy aging in a study that compared different regions in the human brain. We harmonized neuropathologically normal PFC transcriptome datasets obtained from the Gene Expression Omnibus (GEO) repository, ranging in age from 21 to 105 years, and found a large number of differentially regulated transcripts in the old and elderly, compared to young samples overall, and compared female and male-specific expression alterations. We assessed the genes that were associated with age by employing ontology, pathway, and network analyses. Furthermore, we applied various established (least absolute shrinkage and selection operator (Lasso) and Elastic Net (EN)) and recent (eXtreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM)) machine learning algorithms to develop accurate prediction models for chronological age and validated them. Studies to further validate these models in other large populations and molecular studies to elucidate the potential mechanisms by which the transcripts identified may be related to aging phenotypes would be advantageous.
Collapse
Affiliation(s)
- Joseph A. Zarrella
- Department of Health Policy and Management, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Shriner's Hospitals for Children-Boston, Boston, MA 02114, USA
| |
Collapse
|
8
|
Zhang X, Zou L, Tang L, Xiong M, Yan XX, Meng L, Chen G, Xiong J, Nie S, Zhang Z, Chen Q, Zhang Z. Bridging integrator 1 fragment accelerates tau aggregation and propagation by enhancing clathrin-mediated endocytosis in mice. PLoS Biol 2024; 22:e3002470. [PMID: 38206965 PMCID: PMC10783739 DOI: 10.1371/journal.pbio.3002470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/14/2023] [Indexed: 01/13/2024] Open
Abstract
The bridging integrator 1 (BIN1) gene is an important risk locus for late-onset Alzheimer's disease (AD). BIN1 protein has been reported to mediate tau pathology, but the underlying molecular mechanisms remain elusive. Here, we show that neuronal BIN1 is cleaved by the cysteine protease legumain at residues N277 and N288. The legumain-generated BIN1 (1-277) fragment is detected in brain tissues from AD patients and tau P301S transgenic mice. This fragment interacts with tau and accelerates its aggregation. Furthermore, the BIN1 (1-277) fragment promotes the propagation of tau aggregates by enhancing clathrin-mediated endocytosis (CME). Overexpression of the BIN1 (1-277) fragment in tau P301S mice facilitates the propagation of tau pathology, inducing cognitive deficits, while overexpression of mutant BIN1 that blocks its cleavage by legumain halts tau propagation. Furthermore, blocking the cleavage of endogenous BIN1 using the CRISPR/Cas9 gene-editing tool ameliorates tau pathology and behavioral deficits. Our results demonstrate that the legumain-mediated cleavage of BIN1 plays a key role in the progression of tau pathology. Inhibition of legumain-mediated BIN1 cleavage may be a promising therapeutic strategy for treating AD.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Tang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Chen
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Sudwarts A, Thinakaran G. Alzheimer's genes in microglia: a risk worth investigating. Mol Neurodegener 2023; 18:90. [PMID: 37986179 PMCID: PMC10662636 DOI: 10.1186/s13024-023-00679-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Despite expressing many key risk genes, the role of microglia in late-onset Alzheimer's disease pathophysiology is somewhat ambiguous, with various phenotypes reported to be either harmful or protective. Herein, we review some key findings from clinical and animal model investigations, discussing the role of microglial genetics in mediating perturbations from homeostasis. We note that impairment to protective phenotypes may include prolonged or insufficient microglial activation, resulting in dysregulated metabolomic (notably lipid-related) processes, compounded by age-related inflexibility in dynamic responses. Insufficiencies of mouse genetics and aggressive transgenic modelling imply severe limitations in applying current methodologies for aetiological investigations. Despite the shortcomings, widely used amyloidosis and tauopathy models of the disease have proven invaluable in dissecting microglial functional responses to AD pathophysiology. Some recent advances have brought modelling tools closer to human genetics, increasing the validity of both aetiological and translational endeavours.
Collapse
Affiliation(s)
- Ari Sudwarts
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL, 33613, USA.
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Gopal Thinakaran
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL, 33613, USA.
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
10
|
Marshall CR, Farrow MA, Djambazova KV, Spraggins JM. Untangling Alzheimer's disease with spatial multi-omics: a brief review. Front Aging Neurosci 2023; 15:1150512. [PMID: 37533766 PMCID: PMC10390637 DOI: 10.3389/fnagi.2023.1150512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurological dementia, specified by extracellular β-amyloid plaque deposition, neurofibrillary tangles, and cognitive impairment. AD-associated pathologies like cerebral amyloid angiopathy (CAA) are also affiliated with cognitive impairment and have overlapping molecular drivers, including amyloid buildup. Discerning the complexity of these neurological disorders remains a significant challenge, and the spatiomolecular relationships between pathogenic features of AD and AD-associated pathologies remain poorly understood. This review highlights recent developments in spatial omics, including profiling and molecular imaging methods, and how they are applied to AD. These emerging technologies aim to characterize the relationship between how specific cell types and tissue features are organized in combination with mapping molecular distributions to provide a systems biology view of the tissue microenvironment around these neuropathologies. As spatial omics methods achieve greater resolution and improved molecular coverage, they are enabling deeper characterization of the molecular drivers of AD, leading to new possibilities for the prediction, diagnosis, and mitigation of this debilitating disease.
Collapse
Affiliation(s)
- Cody R. Marshall
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Melissa A. Farrow
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Katerina V. Djambazova
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jeffrey M. Spraggins
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
11
|
Thomas S, Prendergast GC. Gut-brain connections in neurodegenerative disease: immunotherapeutic targeting of Bin1 in inflammatory bowel disease and Alzheimer's disease. Front Pharmacol 2023; 14:1183932. [PMID: 37521457 PMCID: PMC10372349 DOI: 10.3389/fphar.2023.1183932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023] Open
Abstract
Longer lifespan produces risks of age-associated neurodegenerative disorders such as Alzheimer's disease (AD), which is characterized by declines in memory and cognitive function. The pathogenic causes of AD are thought to reflect a progressive aggregation in the brain of amyloid plaques composed of beta-amyloid (Aß) peptides and neurofibrillary tangles composed of phosphorylated tau protein. Recently, long-standing investigations of the Aß disease hypothesis gained support via a passive immunotherapy targeting soluble Aß protein. Tau-targeting approaches using antibodies are also being pursued as a therapeutic approach to AD. In genome-wide association studies, the disease modifier gene Bin1 has been identified as a top risk factor for late-onset AD in human populations, with recent studies suggesting that Bin1 binds tau and influences its extracellular deposition. Interestingly, before AD emerges in the brain, tau levels rise in the colon, where Bin1-a modifier of tissue barrier function and inflammation-acts to promote inflammatory bowel disease (IBD). This connection is provocative given clinical evidence of gut-brain communication in age-associated neurodegenerative disorders, including AD. In this review, we discuss a Bin1-targeting passive immunotherapy developed in our laboratory to treat IBD that may offer a strategy to indirectly reduce tau deposition and limit AD onset or progression.
Collapse
|
12
|
Lamontagne-Kam D, Ulfat AK, Hervé V, Vu TM, Brouillette J. Implication of tau propagation on neurodegeneration in Alzheimer's disease. Front Neurosci 2023; 17:1219299. [PMID: 37483337 PMCID: PMC10360202 DOI: 10.3389/fnins.2023.1219299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Propagation of tau fibrils correlate closely with neurodegeneration and memory deficits seen during the progression of Alzheimer's disease (AD). Although it is not well-established what drives or attenuates tau spreading, new studies on human brain using positron emission tomography (PET) have shed light on how tau phosphorylation, genetic factors, and the initial epicenter of tau accumulation influence tau accumulation and propagation throughout the brain. Here, we review the latest PET studies performed across the entire AD continuum looking at the impact of amyloid load on tau pathology. We also explore the effects of structural, functional, and proximity connectivity on tau spreading in a stereotypical manner in the brain of AD patients. Since tau propagation can be quite heterogenous between individuals, we then consider how the speed and pattern of propagation are influenced by the starting localization of tau accumulation in connected brain regions. We provide an overview of some genetic variants that were shown to accelerate or slow down tau spreading. Finally, we discuss how phosphorylation of certain tau epitopes affect the spreading of tau fibrils. Since tau pathology is an early event in AD pathogenesis and is one of the best predictors of neurodegeneration and memory impairments, understanding the process by which tau spread from one brain region to another could pave the way to novel therapeutic avenues that are efficient during the early stages of the disease, before neurodegeneration induces permanent brain damage and severe memory loss.
Collapse
|
13
|
Latina V, Atlante A, Malerba F, La Regina F, Balzamino BO, Micera A, Pignataro A, Stigliano E, Cavallaro S, Calissano P, Amadoro G. The Cleavage-Specific Tau 12A12mAb Exerts an Anti-Amyloidogenic Action by Modulating the Endocytic and Bioenergetic Pathways in Alzheimer's Disease Mouse Model. Int J Mol Sci 2023; 24:ijms24119683. [PMID: 37298634 DOI: 10.3390/ijms24119683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Beyond deficits in hippocampal-dependent episodic memory, Alzheimer's Disease (AD) features sensory impairment in visual cognition consistent with extensive neuropathology in the retina. 12A12 is a monoclonal cleavage specific antibody (mAb) that in vivo selectively neutralizes the AD-relevant, harmful N-terminal 20-22 kDa tau fragment(s) (i.e., NH2htau) without affecting the full-length normal protein. When systemically injected into the Tg2576 mouse model overexpressing a mutant form of Amyloid Precursor Protein (APP), APPK670/671L linked to early onset familial AD, this conformation-specific tau mAb successfully reduces the NH2htau accumulating both in their brain and retina and, thus, markedly alleviates the phenotype-associated signs. By means of a combined biochemical and metabolic experimental approach, we report that 12A12mAb downregulates the steady state expression levels of APP and Beta-Secretase 1 (BACE-1) and, thus, limits the Amyloid beta (Aβ) production both in the hippocampus and retina from this AD animal model. The local, antibody-mediated anti-amyloidogenic action is paralleled in vivo by coordinated modulation of the endocytic (BIN1, RIN3) and bioenergetic (glycolysis and L-Lactate) pathways. These findings indicate for the first time that similar molecular and metabolic retino-cerebral pathways are modulated in a coordinated fashion in response to 12A12mAb treatment to tackle the neurosensorial Aβ accumulation in AD neurodegeneration.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
14
|
Dobrynina LA, Makarova AG, Shabalina AA, Burmak AG, Shlapakova PS, Shamtieva KV, Tsypushtanova MM, Trubitsyna VV, Gnedovskaya EV. [A role of altered inflammation-related gene expression in cerebral small vessel disease with cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:58-68. [PMID: 37796069 DOI: 10.17116/jnevro202312309158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
OBJECTIVE To identify the role of changes in the expression of inflammation-related genes in cerebral microangiopathy/cerebral small vessel disease (cSVD). MATERIAL AND METHODS Forty-four cSVD patients (mean age 61.4±9.2) and 11 controls (mean age 57.3±9.7) were studied. Gene expression was assessed on an individual NanoString nCounter panel of 58 inflammation-related genes and 4 reference genes. A set of genes was generated based on converging results of complete genome-wide association studies (GWAS) in cSVD and Alzheimer's disease (AD) and circulating markers associated with vascular wall and Brain lesions in cSVD. RNA was isolated from blood leukocytes and analyzed with the nCounter Analysis System, followed by analysis in nSolver 4.0. Results were verified by real-time PCR. RESULTS CSVD patients had a significant decrease in BIN1 (log2FC=-1.272; p=0.039) and VEGFA (log2FC=-1.441; p=0.038) expression compared to controls, which showed predictive ability for cSVD. The cut-off for BIN1 expression was 5.76 a.u. (sensitivity 73%; specificity 75%) and the cut-off for VEGFA expression was 9.27 a.u. (sensitivity 64%; specificity 86%). Reduced expression of VEGFA (p=0.011), VEGFC (p=0.017), CD2AP (p=0.044) was associated with cognitive impairment (CI). There was a significant direct correlation between VEGFC expression and the scores on the Montreal Cognitive Assessment test and between BIN1 and VEGFC expression and delayed memory. CONCLUSION The possible prediction of cSVD by reduced expression levels of BIN1, VEGFA and the association of clinically significant CI with reduced VEGFA and VEGFC expression indicate their importance in the development and progression of the disease. The established importance of these genes in the pathogenesis of AD suggests that similar changes in their expression profile in cSVD may be one of the conditions for the comorbidity of the two pathologies.
Collapse
Affiliation(s)
| | | | | | - A G Burmak
- Research Center of Neurology, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
15
|
Brandebura AN, Paumier A, Onur TS, Allen NJ. Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders. Nat Rev Neurosci 2023; 24:23-39. [PMID: 36316501 DOI: 10.1038/s41583-022-00641-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
There is increasing appreciation that non-neuronal cells contribute to the initiation, progression and pathology of diverse neurodegenerative disorders. This Review focuses on the role of astrocytes in disorders including Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis. The important roles astrocytes have in supporting neuronal function in the healthy brain are considered, along with studies that have demonstrated how the physiological properties of astrocytes are altered in neurodegenerative disorders and may explain their contribution to neurodegeneration. Further, the question of whether in neurodegenerative disorders with specific genetic mutations these mutations directly impact on astrocyte function, and may suggest a driving role for astrocytes in disease initiation, is discussed. A summary of how astrocyte transcriptomic and proteomic signatures are altered during the progression of neurodegenerative disorders and may relate to functional changes is provided. Given the central role of astrocytes in neurodegenerative disorders, potential strategies to target these cells for future therapeutic avenues are discussed.
Collapse
Affiliation(s)
- Ashley N Brandebura
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Adrien Paumier
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tarik S Onur
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
16
|
Marmolejo-Garza A, Medeiros-Furquim T, Rao R, Eggen BJL, Boddeke E, Dolga AM. Transcriptomic and epigenomic landscapes of Alzheimer's disease evidence mitochondrial-related pathways. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119326. [PMID: 35839870 DOI: 10.1016/j.bbamcr.2022.119326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
Alzheimers disease (AD) is the main cause of dementia and it is defined by cognitive decline coupled to extracellular deposit of amyloid-beta protein and intracellular hyperphosphorylation of tau protein. Historically, efforts to target such hallmarks have failed in numerous clinical trials. In addition to these hallmark-targeted approaches, several clinical trials focus on other AD pathological processes, such as inflammation, mitochondrial dysfunction, and oxidative stress. Mitochondria and mitochondrial-related mechanisms have become an attractive target for disease-modifying strategies, as mitochondrial dysfunction prior to clinical onset has been widely described in AD patients and AD animal models. Mitochondrial function relies on both the nuclear and mitochondrial genome. Findings from omics technologies have shed light on AD pathophysiology at different levels (e.g., epigenome, transcriptome and proteome). Most of these studies have focused on the nuclear-encoded components. The first part of this review provides an updated overview of the mechanisms that regulate mitochondrial gene expression and function. The second part of this review focuses on evidence of mitochondrial dysfunction in AD. We have focused on published findings and datasets that study AD. We analyzed published data and provide examples for mitochondrial-related pathways. These pathways are strikingly dysregulated in AD neurons and glia in sex-, cell- and disease stage-specific manners. Analysis of mitochondrial omics data highlights the involvement of mitochondria in AD, providing a rationale for further disease modeling and drug targeting.
Collapse
Affiliation(s)
- Alejandro Marmolejo-Garza
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tiago Medeiros-Furquim
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ramya Rao
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, the Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, the Netherlands.
| |
Collapse
|
17
|
Kaltschmidt B, Helweg LP, Greiner JFW, Kaltschmidt C. NF-κB in neurodegenerative diseases: Recent evidence from human genetics. Front Mol Neurosci 2022; 15:954541. [PMID: 35983068 PMCID: PMC9380593 DOI: 10.3389/fnmol.2022.954541] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The transcription factor NF-κB is commonly known to drive inflammation and cancer progression, but is also a crucial regulator of a broad range of cellular processes within the mammalian nervous system. In the present review, we provide an overview on the role of NF-κB in the nervous system particularly including its constitutive activity within cortical and hippocampal regions, neuroprotection as well as learning and memory. Our discussion further emphasizes the increasing role of human genetics in neurodegenerative disorders, namely, germline mutations leading to defects in NF-κB-signaling. In particular, we propose that loss of function mutations upstream of NF-κB such as ADAM17, SHARPIN, HOIL, or OTULIN affect NF-κB-activity in Alzheimer’s disease (AD) patients, in turn driving anatomical defects such as shrinkage of entorhinal cortex and the limbic system in early AD. Similarly, E3 type ubiquitin ligase PARKIN is positively involved in NF-κB signaling. PARKIN loss of function mutations are most frequently observed in Parkinson’s disease patients. In contrast to AD, relying on germline mutations of week alleles and a disease development over decades, somatic mutations affecting NF-κB activation are commonly observed in cells derived from glioblastoma multiforme (GBM), the most common malignant primary brain tumor. Here, our present review particularly sheds light on the mutual exclusion of either the deletion of NFKBIA or amplification of epidermal growth factor receptor (EGFR) in GBM, both resulting in constitutive NF-κB-activity driving tumorigenesis. We also discuss emerging roles of long non-coding RNAs such as HOTAIR in suppressing phosphorylation of IκBα in the context of GBM. In summary, the recent progress in the genetic analysis of patients, particularly those suffering from AD, harbors the potential to open up new vistas for research and therapy based on TNFα/NF-κB pathway and neuroprotection.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Department of Molecular Neurobiology, Bielefeld University, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
- *Correspondence: Barbara Kaltschmidt,
| | - Laureen P. Helweg
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
| | - Johannes F. W. Greiner
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
18
|
Heal M, McFall GP, Vergote D, Jhamandas JH, Westaway D, Dixon RA. Bridging Integrator 1 (BIN1, rs6733839) and Sex Are Moderators of Vascular Health Predictions of Memory Aging Trajectories. J Alzheimers Dis 2022; 89:265-281. [DOI: 10.3233/jad-220334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: A promising risk loci for sporadic Alzheimer’s disease (AD), Bridging Integrator 1 (BIN1), is thought to operate through the tau pathology pathway. Objective: We examine BIN1 risk for a moderating role with vascular health (pulse pressure; PP) and sex in predictions of episodic memory trajectories in asymptomatic aging adults. Methods: The sample included 623 participants (Baseline Mean age = 70.1; 66.8% female) covering a 44-year longitudinal band (53–97 years). With an established memory latent variable arrayed as individualized trajectories, we applied Mplus 8.5 to determine the best fitting longitudinal growth model. Main analyses were conducted in three sequential phases to investigate: 1) memory trajectory prediction by PP, 2) moderation by BIN1 genetic risk, and 3) stratification by sex. Results: We first confirmed that good vascular health (lower PP) was associated with higher memory level and shallower decline and males were more severely affected by worsening PP in both memory performance and longitudinal decline. Second, the PP prediction of memory trajectories was significant for BIN1 C/C and C/T carriers but not for persons with the highest AD risk (T/T homozygotes). Third, when further stratified by sex, the BIN1 moderation of memory prediction by PP was selective for females. Conclusion: We observed a novel interaction whereby BIN1 (linked with tauopathy in AD) and sex sequentially moderated a benchmark PP prediction of differential memory decline in asymptomatic aging. This multi-modal biomarker interaction approach, disaggregated by sex, can be an effective method for enhancing precision of AD genetic risk assessment.
Collapse
Affiliation(s)
- Mackenzie Heal
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - G. Peggy McFall
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - David Vergote
- Faculté Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Jack H. Jhamandas
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Roger A. Dixon
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Kaivola K, Shah Z, Chia R, Scholz SW. Genetic evaluation of dementia with Lewy bodies implicates distinct disease subgroups. Brain 2022; 145:1757-1762. [PMID: 35381062 PMCID: PMC9423712 DOI: 10.1093/brain/awab402] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022] Open
Abstract
The APOE locus is strongly associated with risk for developing Alzheimer's disease and dementia with Lewy bodies. In particular, the role of the APOE ε4 allele as a putative driver of α-synuclein pathology is a topic of intense debate. Here, we performed a comprehensive evaluation in 2466 dementia with Lewy bodies cases versus 2928 neurologically healthy, aged controls. Using an APOE-stratified genome-wide association study approach, we found that GBA is associated with risk for dementia with Lewy bodies in patients without APOE ε4 (P = 6.58 × 10-9, OR = 3.41, 95% CI = 2.25-5.17), but not with dementia with Lewy bodies with APOE ε4 (P = 0.034, OR = 1.87, 95%, 95% CI = 1.05-3.37). We then divided 495 neuropathologically examined dementia with Lewy bodies cases into three groups based on the extent of concomitant Alzheimer's disease co-pathology: pure dementia with Lewy bodies (n = 88), dementia with Lewy bodies with intermediate Alzheimer's disease co-pathology (n = 66) and dementia with Lewy bodies with high Alzheimer's disease co-pathology (n = 341). In each group, we tested the association of the APOE ε4 against the 2928 neurologically healthy controls. Our examination found that APOE ε4 was associated with dementia with Lewy bodies + Alzheimer's disease (P = 1.29 × 10-32, OR = 4.25, 95% CI = 3.35-5.39) and dementia with Lewy bodies + intermediate Alzheimer's disease (P = 0.0011, OR = 2.31, 95% CI = 1.40-3.83), but not with pure dementia with Lewy bodies (P = 0.31, OR = 0.75, 95% CI = 0.43-1.30). In conclusion, although deep clinical data were not available for these samples, our findings do not support the notion that APOE ε4 is an independent driver of α-synuclein pathology in pure dementia with Lewy bodies, but rather implicate GBA as the main risk gene for the pure dementia with Lewy bodies subgroup.
Collapse
Affiliation(s)
| | | | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | | | - Sonja W Scholz
- Correspondence to: Sonja W. Scholz, MD, PhD Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke 35 Convent Drive, Room 1B-205, Bethesda, MD 20892-3707, USA E-mail:
| |
Collapse
|
20
|
Sudwarts A, Ramesha S, Gao T, Ponnusamy M, Wang S, Hansen M, Kozlova A, Bitarafan S, Kumar P, Beaulieu-Abdelahad D, Zhang X, Collier L, Szekeres C, Wood LB, Duan J, Thinakaran G, Rangaraju S. BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Mol Neurodegener 2022; 17:33. [PMID: 35526014 PMCID: PMC9077874 DOI: 10.1186/s13024-022-00535-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/30/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The BIN1 locus contains the second-most significant genetic risk factor for late-onset Alzheimer's disease. BIN1 undergoes alternate splicing to generate tissue- and cell-type-specific BIN1 isoforms, which regulate membrane dynamics in a range of crucial cellular processes. Whilst the expression of BIN1 in the brain has been characterized in neurons and oligodendrocytes in detail, information regarding microglial BIN1 expression is mainly limited to large-scale transcriptomic and proteomic data. Notably, BIN1 protein expression and its functional roles in microglia, a cell type most relevant to Alzheimer's disease, have not been examined in depth. METHODS Microglial BIN1 expression was analyzed by immunostaining mouse and human brain, as well as by immunoblot and RT-PCR assays of isolated microglia or human iPSC-derived microglial cells. Bin1 expression was ablated by siRNA knockdown in primary microglial cultures in vitro and Cre-lox mediated conditional deletion in adult mouse brain microglia in vivo. Regulation of neuroinflammatory microglial signatures by BIN1 in vitro and in vivo was characterized using NanoString gene panels and flow cytometry methods. The transcriptome data was explored by in silico pathway analysis and validated by complementary molecular approaches. RESULTS Here, we characterized microglial BIN1 expression in vitro and in vivo and ascertained microglia expressed BIN1 isoforms. By silencing Bin1 expression in primary microglial cultures, we demonstrate that BIN1 regulates the activation of proinflammatory and disease-associated responses in microglia as measured by gene expression and cytokine production. Our transcriptomic profiling revealed key homeostatic and lipopolysaccharide (LPS)-induced inflammatory response pathways, as well as transcription factors PU.1 and IRF1 that are regulated by BIN1. Microglia-specific Bin1 conditional knockout in vivo revealed novel roles of BIN1 in regulating the expression of disease-associated genes while counteracting CX3CR1 signaling. The consensus from in vitro and in vivo findings showed that loss of Bin1 impaired the ability of microglia to mount type 1 interferon responses to proinflammatory challenge, particularly the upregulation of a critical type 1 immune response gene, Ifitm3. CONCLUSIONS Our convergent findings provide novel insights into microglial BIN1 function and demonstrate an essential role of microglial BIN1 in regulating brain inflammatory response and microglial phenotypic changes. Moreover, for the first time, our study shows a regulatory relationship between Bin1 and Ifitm3, two Alzheimer's disease-related genes in microglia. The requirement for BIN1 to regulate Ifitm3 upregulation during inflammation has important implications for inflammatory responses during the pathogenesis and progression of many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ari Sudwarts
- grid.170693.a0000 0001 2353 285XByrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Supriya Ramesha
- grid.189967.80000 0001 0941 6502Department of Neurology, Emory University, Atlanta, GA 30322 USA
| | - Tianwen Gao
- grid.189967.80000 0001 0941 6502Department of Neurology, Emory University, Atlanta, GA 30322 USA
| | - Moorthi Ponnusamy
- grid.170693.a0000 0001 2353 285XByrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Shuai Wang
- grid.170693.a0000 0001 2353 285XByrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Mitchell Hansen
- grid.170693.a0000 0001 2353 285XByrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Alena Kozlova
- grid.240372.00000 0004 0400 4439Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201 USA
| | - Sara Bitarafan
- grid.213917.f0000 0001 2097 4943Parker H. Petit Institute for Bioengineering and Bioscience, Wallace H. Coulter Department of Biomedical Engineering, and Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Prateek Kumar
- grid.189967.80000 0001 0941 6502Department of Neurology, Emory University, Atlanta, GA 30322 USA
| | - David Beaulieu-Abdelahad
- grid.170693.a0000 0001 2353 285XByrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Xiaolin Zhang
- grid.170693.a0000 0001 2353 285XByrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Lisa Collier
- grid.170693.a0000 0001 2353 285XByrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Charles Szekeres
- grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Levi B. Wood
- grid.213917.f0000 0001 2097 4943Parker H. Petit Institute for Bioengineering and Bioscience, Wallace H. Coulter Department of Biomedical Engineering, and Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Jubao Duan
- grid.240372.00000 0004 0400 4439Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201 USA ,grid.170205.10000 0004 1936 7822Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637 USA
| | - Gopal Thinakaran
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL, 33613, USA. .,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA.
| | | |
Collapse
|
21
|
The neuronal-specific isoform of BIN1 regulates β-secretase cleavage of APP and Aβ generation in a RIN3-dependent manner. Sci Rep 2022; 12:3486. [PMID: 35241726 PMCID: PMC8894474 DOI: 10.1038/s41598-022-07372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
Genome-wide association studies have identified BIN1 (Bridging integrator 1) and RIN3 (Ras and Rab interactor 3) as genetic risk factors for late-onset Alzheimer's disease (LOAD). The neuronal isoform of BIN1 (BIN1V1), but not the non-neuronal isoform (BIN1V9), has been shown to regulate tau-pathology and Aβ generation via RAB5-mediated endocytosis in neurons. BIN1 directly interacts with RIN3 to initiate RAB5-mediated endocytosis, which is essential for β-secretase (BACE1)-mediated β-secretase cleavage of β-amyloid precursor protein (APP) to generate Amyloid-β (Aβ), the key component of senile plaques in AD. Understanding the regulatory roles of BIN1 (neuronal BIN1V1) and RIN3 in β-secretase mediated cleavage of APP and Aβ generation is key to developing novel therapeutics to delay or prevent AD progression. Neuronal and non-neuronal isoforms of BIN1 (BIN1V1 and BIN1V9, respectively) were introduced with RIN3 into an in vitro cell-based system to test RIN3-dependent effects of neuronal BIN1V1 and non-neuronal BIN1V9 on β-secretase-mediated cleavage of APP and Aβ generation. Confocal microscopy was performed to examine RIN3-dependent subcellular localization of BIN1V1 and BIN1V9. Western blot analysis was performed to assess the effects of RIN3 and BIN1V1/BIN1V9 on β-secretase mediated processing of APP. We enriched cells expressing BIN1V1 without or with RIN3 via FACS to measure Aβ generation using Aβ ELISA assay, and to evaluate APP internalization by chasing biotinylated or antibody-labeled cell surface APP. Neuronal BIN1V1 containing the CLAP domain and non-neuronal BIN1V9 lacking the CLAP domain are the major isoforms present in the brain. Employing confocal microscopy, we showed that RIN3 differentially regulates the recruitment of both BIN1V1 and BIN1V9 into RAB5-endosomes. We further showed that BIN1V1, but not BIN1V9, downregulates β-secretase (BACE1)-mediated processing of APP in a RIN3-dependent manner. Overexpression of BIN1V1 also attenuated Aβ generation in a RIN3-dependent manner. Using cell-based internalization assays, we show BIN1V1, but not BIN1V9, delays the endocytosis of APP, but not of BACE1, into early endosomes, thereby spatially and temporally separating these two proteins into different cellular compartments, resulting in reduced cleavage of APP by BACE1 and reduced Aβ generation-all in a RIN3-dependent manner. Finally, we show that RIN3 sequesters BIN1V1 in RAB5-positive early endosomes, likely via the CLAP-domain, resulting in attenuated β-secretase processing of APP and Aβ generation by delaying endocytosis of APP. Our findings provide new mechanistic data on how two AD-associated molecules, RIN3 and BIN1 (neuronal BIN1V1), interact to govern Aβ production, implicating these two proteins as potential therapeutic targets for the prevention and treatment of AD.
Collapse
|
22
|
Lambert E, Saha O, Soares Landeira B, Melo de Farias AR, Hermant X, Carrier A, Pelletier A, Gadaut J, Davoine L, Dupont C, Amouyel P, Bonnefond A, Lafont F, Abdelfettah F, Verstreken P, Chapuis J, Barois N, Delahaye F, Dermaut B, Lambert JC, Costa MR, Dourlen P. The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects. Acta Neuropathol Commun 2022; 10:4. [PMID: 34998435 PMCID: PMC8742943 DOI: 10.1186/s40478-021-01285-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer’s disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration. Systematic search for endosome regulators able to prevent BIN1iso1-induced neurodegeneration indicated that a defect at the early endosome level is responsible for the neurodegeneration. In human induced neurons (hiNs) and cerebral organoids, BIN1 knock-out resulted in the narrowing of early endosomes. This phenotype was rescued by BIN1iso1 but not BIN1iso9 expression. Finally, BIN1iso1 overexpression also led to an increase in the size of early endosomes and neurodegeneration in hiNs. Altogether, our data demonstrate that the AD susceptibility gene BIN1, and especially BIN1iso1, contributes to early-endosome size deregulation, which is an early pathophysiological hallmark of AD pathology.
Collapse
|
23
|
Franzmeier N, Ossenkoppele R, Brendel M, Rubinski A, Smith R, Kumar A, Mattsson-Carlgren N, Strandberg O, Duering M, Buerger K, Dichgans M, Hansson O, Ewers M. The BIN1 rs744373 Alzheimer's disease risk SNP is associated with faster Aβ-associated tau accumulation and cognitive decline. Alzheimers Dement 2021; 18:103-115. [PMID: 34060233 DOI: 10.1002/alz.12371] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/16/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The BIN1 rs744373 single nucleotide polymorphism (SNP) is a key genetic risk locus for Alzheimer's disease (AD) associated with tau pathology. Because tau typically accumulates in response to amyloid beta (Aβ), we tested whether BIN1 rs744373 accelerates Aβ-related tau accumulation. METHODS We included two samples (Alzheimer's Disease Neuroimaging Initiative [ADNI], n = 153; Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably [BioFINDER], n = 63) with longitudinal 18 F-Flortaucipir positron emission tomography (PET), Aβ biomarkers, and longitudinal cognitive assessments. We assessed whether BIN1 rs744373 was associated with faster tau-PET accumulation at a given level of Aβ and whether faster BIN1 rs744373-associated tau-PET accumulation mediated cognitive decline. RESULTS BIN1 rs744373 risk-allele carriers showed faster global tau-PET accumulation (ADNI/BioFINDER, P < .001/P < .001). We found significant Aβ by rs744373 interactions on global tau-PET change (ADNI: β/standard error [SE] = 0.42/0.14, P = 0.002; BioFINDER: β/SE = -0.35/0.15, P = .021), BIN1 risk-allele carriers showed accelerated tau-PET accumulation at higher Aβ levels. In ADNI, rs744373 effects on cognitive decline were mediated by faster global tau-PET accumulation (β/SE = 0.20/0.07, P = .005). DISCUSSION BIN1-associated AD risk is potentially driven by accelerated tau accumulation in the face of Aβ.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Atul Kumar
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,Medical Image Analysis Center (MIAC AG), Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | |
Collapse
|
24
|
Guebel DV, Torres NV, Acebes Á. Mapping the transcriptomic changes of endothelial compartment in human hippocampus across aging and mild cognitive impairment. Biol Open 2021; 10:bio057950. [PMID: 34184731 PMCID: PMC8181899 DOI: 10.1242/bio.057950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Compromise of the vascular system has important consequences on cognitive abilities and neurodegeneration. The identification of the main molecular signatures present in the blood vessels of human hippocampus could provide the basis to understand and tackle these pathologies. As direct vascular experimentation in hippocampus is problematic, we achieved this information by computationally disaggregating publicly available whole microarrays data of human hippocampal homogenates. Three conditions were analyzed: 'Young Adults', 'Aged', and 'aged with Mild Cognitive Impairment' (MCI). The genes identified were contrasted against two independent data-sets. Here we show that the endothelial cells from the Younger Group appeared in an 'activated stage'. In turn, in the Aged Group, the endothelial cells showed a significant loss of response to shear stress, changes in cell adhesion molecules, increased inflammation, brain-insulin resistance, lipidic alterations, and changes in the extracellular matrix. Some specific changes in the MCI group were also detected. Noticeably, in this study the features arisen from the Aged Group (high tortuosity, increased bifurcations, and smooth muscle proliferation), pose the need for further experimental verification to discern between the occurrence of arteriogenesis and/or vascular remodeling by capillary arterialization. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daniel V. Guebel
- Program Agustín de Betancourt, Universidad de La Laguna, Tenerife 38200, Spain
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Néstor V. Torres
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|
25
|
Annadurai N, De Sanctis JB, Hajdúch M, Das V. Tau secretion and propagation: Perspectives for potential preventive interventions in Alzheimer's disease and other tauopathies. Exp Neurol 2021; 343:113756. [PMID: 33989658 DOI: 10.1016/j.expneurol.2021.113756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is characterised by the accumulation of intracytoplasmic aggregates of tau protein, which are suggested to spread in a prion-like manner between interconnected brain regions. This spreading is mediated by the secretion and uptake of tau from the extracellular space or direct cell-to-cell transmission through cellular protrusions. The prion-like tau then converts the endogenous, normal tau into pathological forms, resulting in neurodegeneration. The endoplasmic reticulum/Golgi-independent tau secretion through unconventional secretory pathways involves delivering misfolded and aggregated tau to the plasma membrane and its release into the extracellular space by non-vesicular and vesicular mechanisms. Although cytoplasmic tau was thought to be released only from degenerating cells, studies now show that cells constitutively secrete tau at low levels under physiological conditions. The mechanisms of secretion of tau under physiological and pathological conditions remain unclear. Therefore, a better understanding of these pathways is essential for developing therapeutic approaches that can target prion-like tau forms to prevent neurodegeneration progression in AD. This review focuses on unconventional secretion pathways involved in the spread of tau pathology in AD and presents these pathways as prospective areas for future AD drug discovery and development.
Collapse
Affiliation(s)
- Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic.
| |
Collapse
|
26
|
Trujillo-Estrada L, Sanchez-Mejias E, Sanchez-Varo R, Garcia-Leon JA, Nuñez-Diaz C, Davila JC, Vitorica J, LaFerla FM, Moreno-Gonzalez I, Gutierrez A, Baglietto-Vargas D. Animal and Cellular Models of Alzheimer's Disease: Progress, Promise, and Future Approaches. Neuroscientist 2021; 28:572-593. [PMID: 33769131 DOI: 10.1177/10738584211001753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease affecting over 45 million people worldwide. Transgenic mouse models have made remarkable contributions toward clarifying the pathophysiological mechanisms behind the clinical manifestations of AD. However, the limited ability of these in vivo models to accurately replicate the biology of the human disease have precluded the translation of promising preclinical therapies to the clinic. In this review, we highlight several major pathogenic mechanisms of AD that were discovered using transgenic mouse models. Moreover, we discuss the shortcomings of current animal models and the need to develop reliable models for the sporadic form of the disease, which accounts for the majority of AD cases, as well as human cellular models to improve success in translating results into human treatments.
Collapse
Affiliation(s)
- Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jose Carlos Davila
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
27
|
Yatsenko AS, Kucherenko MM, Xie Y, Urlaub H, Shcherbata HR. Exocyst-mediated membrane trafficking of the lissencephaly-associated ECM receptor dystroglycan is required for proper brain compartmentalization. eLife 2021; 10:63868. [PMID: 33620318 PMCID: PMC7929561 DOI: 10.7554/elife.63868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
To assemble a brain, differentiating neurons must make proper connections and establish specialized brain compartments. Abnormal levels of cell adhesion molecules disrupt these processes. Dystroglycan (Dg) is a major non-integrin cell adhesion receptor, deregulation of which is associated with dramatic neuroanatomical defects such as lissencephaly type II or cobblestone brain. The previously established Drosophila model for cobblestone lissencephaly was used to understand how Dg is regulated in the brain. During development, Dg has a spatiotemporally dynamic expression pattern, fine-tuning of which is crucial for accurate brain assembly. In addition, mass spectrometry analyses identified numerous components associated with Dg in neurons, including several proteins of the exocyst complex. Data show that exocyst-based membrane trafficking of Dg allows its distinct expression pattern, essential for proper brain morphogenesis. Further studies of the Dg neuronal interactome will allow identification of new factors involved in the development of dystroglycanopathies and advance disease diagnostics in humans.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yuanbin Xie
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Research Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,University Medical Center Göttingen, Bioanalytics, Institute for Clinical Chemistry, Göttingen, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
28
|
Glennon EB, Lau DHW, Gabriele RMC, Taylor MF, Troakes C, Opie-Martin S, Elliott C, Killick R, Hanger DP, Perez-Nievas BG, Noble W. Bridging Integrator-1 protein loss in Alzheimer's disease promotes synaptic tau accumulation and disrupts tau release. Brain Commun 2020; 2. [PMID: 32500121 PMCID: PMC7272218 DOI: 10.1093/braincomms/fcaa011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polymorphisms associated with BIN1 (bridging integrator 1) confer the second greatest risk for developing late-onset Alzheimer’s disease. The biological consequences of this genetic variation are not fully understood; however, BIN1 is a binding partner for tau. Tau is normally a highly soluble cytoplasmic protein, but in Alzheimer’s disease, tau is abnormally phosphorylated and accumulates at synapses to exert synaptotoxicity. The purpose of this study was to determine whether alterations in BIN1 and tau in Alzheimer’s disease promote the damaging redistribution of tau to synapses, as a mechanism by which BIN1 polymorphisms may increase the risk of developing Alzheimer’s disease. We show that BIN1 is lost from the cytoplasmic fraction of Alzheimer’s disease cortex, and this is accompanied by the progressive mislocalization of phosphorylated tau to synapses. We confirmed proline 216 in tau as critical for tau interaction with the BIN1-SH3 domain and showed that the phosphorylation of tau disrupts this binding, suggesting that tau phosphorylation in Alzheimer’s disease disrupts tau–BIN1 associations. Moreover, we show that BIN1 knockdown in rat primary neurons to mimic BIN1 loss in Alzheimer’s disease brain causes the damaging accumulation of phosphorylated tau at synapses and alterations in dendritic spine morphology. We also observed reduced release of tau from neurons upon BIN1 silencing, suggesting that BIN1 loss disrupts the function of extracellular tau. Together, these data indicate that polymorphisms associated with BIN1 that reduce BIN1 protein levels in the brain likely act synergistically with increased tau phosphorylation to increase the risk of Alzheimer’s disease by disrupting cytoplasmic tau–BIN1 interactions, promoting the damaging mis-sorting of phosphorylated tau to synapses to alter synapse structure and reducing the release of physiological forms of tau to disrupt tau function.
Collapse
Affiliation(s)
- Elizabeth B Glennon
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Dawn H-W Lau
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Rebecca M C Gabriele
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Matthew F Taylor
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Claire Troakes
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK.,King's College London, MRC London Neurodegenerative Diseases Brain Bank, London, UK
| | - Sarah Opie-Martin
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Christina Elliott
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Old Age Psychiatry, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Richard Killick
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Old Age Psychiatry, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Diane P Hanger
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Beatriz G Perez-Nievas
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Wendy Noble
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| |
Collapse
|