1
|
Salatin S, Shafiee-Kandjani AR, Hamidi S, Amirfiroozi A, Kalejahi P. Individualized psychiatric care: integration of therapeutic drug monitoring, pharmacogenomics, and biomarkers. Per Med 2024:1-16. [PMID: 39706800 DOI: 10.1080/17410541.2024.2442897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Personalized treatment optimization considers individual clinical, genetic, and environmental factors influencing drug efficacy and tolerability. As evidence accumulates, these approaches may become increasingly integrated into standard psychiatric care, potentially transforming the treatment landscape for mental health disorders. While personalized treatment optimization shows promise in enhancing therapeutic outcomes and minimizing adverse effects, further research is needed to establish its clinical utility and cost-effectiveness across various psychiatric disorders. This review examines the potential utility of personalized treatment optimization in psychiatry, addressing the challenge of suboptimal effectiveness and variable patient responses to psychiatric medications. It explores how therapeutic drug monitoring, pharmacogenomics, and biomarker testing can be used to individualize and optimize pharmacotherapy for mental disorders such as depression, bipolar disorder, and schizophrenia.
Collapse
Affiliation(s)
- Sara Salatin
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Shafiee-Kandjani
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Hamidi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Amirfiroozi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran
| | - Parinaz Kalejahi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Yang B, Zhu Y, Li K, Wang F, Liu B, Zhou Q, Tai Y, Liu Z, Yang L, Ba R, Lei C, Ren H, Xu Z, Pang A, Yang X. Machine learning model base on metabolomics and proteomics to predict cognitive impairment in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:187. [PMID: 39394257 PMCID: PMC11470017 DOI: 10.1038/s41531-024-00795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
There is an urgent need to identify predictive biomarkers of Parkinson's disease (PD) with cognitive impairment (PDCI) in order to individualize patient management, ensure timely intervention, and improve prognosis. The aim of this study was to screen for these biomarkers by comparing the plasma proteome and metabolome of PD patients with or without cognitive impairment. Proteomics and metabolomics analyses were performed on a discover cohort. A machine learning model was used to identify candidate protein and metabolite biomarkers of PDCI, which were validated in an independent cohort. The predictive ability of these biomarkers for PDCI was evaluated by plotting receiver operating characteristic curves and calculating the area under the curve (AUC). Moreover, we assessed the predictive ability of these proteins in combination with neuroimaging. In the discover cohort (n = 100), we identified 25 protein features with best results in the machine learning model, including top-ranked PSAP and H3C15. The two-proteins were used for model construction, achieving an Area under the curve (AUC) of 0.951 in the train set and AUC of 0.981 in the test set. Similarly, the model gives a rank list of endogenous metabolite features, Glycocholic Acid and 6-Methylnicotinamide were two top features. Combining these two markers further got the AUC of 0.969 in train set and 0.867 in the test set. To validate the performance of the protein biomarkers, we performed targeted analysis of selected proteins (H3C15 and PSAP) and proteins likely associated with PDCI (NCAM2 and LAMB2) using parallel reaction monitoring in validation cohort (n = 116). The AUC of the classifier built with H3C15 and PSAP is 0.813. Moreover, when combining H3C15, PSAP, NCAM2, and LAMB2, the model achieved AUC of 0.983 in the train set, AUC of 0.981 in the test set, and AUC of 0.839 in the validation set. Furthermore, we verified that these protein markers we discovered can improve the predictive effect of neuroimaging on PDCI: the classifier built with neuroimaging features had AUC of 0.833, which improved to 0.905 when combined with H3C15. Taken together, our integrated proteomics and metabolomics analysis successfully identified potential biomarkers for PDCI. Additionally, H3C15 showed promise in enhancing the predictive performance of neuroimaging for cognitive impairment.
Collapse
Affiliation(s)
- Baiyuan Yang
- Department of Neurology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, Sichuan Province, China
| | - Yongyun Zhu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kelu Li
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qian Zhou
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuchao Tai
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhaochao Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lin Yang
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Ruiqiong Ba
- Department of Neurology, Qujing City First People's Hospital, Qujing, Yunnan Province, China
| | - Chunyan Lei
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hui Ren
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhong Xu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Ailan Pang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Xinglong Yang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Lin C, Zhao P, Sun G, Liu N, Ji J. SCG2 mediates blood-brain barrier dysfunction and schizophrenia-like behaviors after traumatic brain injury. FASEB J 2024; 38:e70016. [PMID: 39225388 DOI: 10.1096/fj.202401117r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Traumatic brain injury (TBI), which is characterized by acute neurological dysfunction, is also one of the most widely recognized environmental risk factors for various neurological and psychiatric disorders. However, the role of TBI in neurological perturbation and the mechanisms underlying these disorders remain unknown. We evaluated transcriptional changes in cells of the frontal cortex after TBI by exploiting single-cell RNA sequencing (scRNA-Seq). We adopted the gene expression omnibus and scRNA-Seq to identify the mediation by secretogranin II (SCG2) of TBI-induced schizophrenia. Astrocytes are a principal source of SCG2 in the frontal cortex after TBI. Our analysis indicated that SCG2-triggered disruption of the blood-brain barrier (BBB) via the CypA-MMP-9 signaling pathway. Furthermore, astrocytic SCG2 knockout in the frontal cortex reduced BBB damage, mitigated inflammation, and inhibited schizophrenia after TBI. In conclusion, we identified the SCG2-CypA-MMP-9 signaling pathway in reactive astrocytes as a key switch in the protection of the BBB and provided a novel therapeutic avenue for treating psychiatric disorders after TBI.
Collapse
Affiliation(s)
- Chao Lin
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Pengzhang Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Guangchi Sun
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Jing Ji
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
4
|
Filippini F, Galli T. Unveiling defects of secretion mechanisms in Parkinson's disease. J Biol Chem 2024; 300:107603. [PMID: 39059489 PMCID: PMC11378209 DOI: 10.1016/j.jbc.2024.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction and loss of specific sets of neurons. While extensive research has focused on elucidating the genetic and epigenetic factors and molecular mechanisms underlying these disorders, emerging evidence highlights the critical role of secretion in the pathogenesis, possibly even onset, and progression of neurodegenerative diseases, suggesting the occurrence of non-cell-autonomous mechanisms. Secretion is a fundamental process that regulates intercellular communication, supports cellular homeostasis, and orchestrates various physiological functions in the body. Defective secretion can impair the release of neurotransmitters and other signaling molecules, disrupting synaptic transmission and compromising neuronal survival. It can also contribute to the accumulation, misfolding, and aggregation of disease-associated proteins, leading to neurotoxicity and neuronal dysfunction. In this review, we discuss the implications of defective secretion in the context of Parkinson's disease, emphasizing its role in protein aggregation, synaptic dysfunction, extracellular vesicle secretion, and neuroinflammation. We propose a multiple-hit model whereby protein accumulation and secretory defects must be combined for the onset and progression of the disease.
Collapse
Affiliation(s)
- Francesca Filippini
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Paris, France.
| |
Collapse
|
5
|
Qi W, Zhu X, He D, Wang B, Cao S, Dong C, Li Y, Chen Y, Wang B, Shi Y, Jiang G, Liu F, Boots LMM, Li J, Lou X, Yao J, Lu X, Kang J. Mapping Knowledge Landscapes and Emerging Trends in AI for Dementia Biomarkers: Bibliometric and Visualization Analysis. J Med Internet Res 2024; 26:e57830. [PMID: 39116438 PMCID: PMC11342017 DOI: 10.2196/57830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND With the rise of artificial intelligence (AI) in the field of dementia biomarker research, exploring its current developmental trends and research focuses has become increasingly important. This study, using literature data mining, analyzes and assesses the key contributions and development scale of AI in dementia biomarker research. OBJECTIVE The aim of this study was to comprehensively evaluate the current state, hot topics, and future trends of AI in dementia biomarker research globally. METHODS This study thoroughly analyzed the literature in the application of AI to dementia biomarkers across various dimensions, such as publication volume, authors, institutions, journals, and countries, based on the Web of Science Core Collection. In addition, scales, trends, and potential connections between AI and biomarkers were extracted and deeply analyzed through multiple expert panels. RESULTS To date, the field includes 1070 publications across 362 journals, involving 74 countries and 1793 major research institutions, with a total of 6455 researchers. Notably, 69.41% (994/1432) of the researchers ceased their studies before 2019. The most prevalent algorithms used are support vector machines, random forests, and neural networks. Current research frequently focuses on biomarkers such as imaging biomarkers, cerebrospinal fluid biomarkers, genetic biomarkers, and blood biomarkers. Recent advances have highlighted significant discoveries in biomarkers related to imaging, genetics, and blood, with growth in studies on digital and ophthalmic biomarkers. CONCLUSIONS The field is currently in a phase of stable development, receiving widespread attention from numerous countries, institutions, and researchers worldwide. Despite this, stable clusters of collaborative research have yet to be established, and there is a pressing need to enhance interdisciplinary collaboration. Algorithm development has shown prominence, especially the application of support vector machines and neural networks in imaging studies. Looking forward, newly discovered biomarkers are expected to undergo further validation, and new types, such as digital biomarkers, will garner increased research interest and attention.
Collapse
Affiliation(s)
- Wenhao Qi
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Xiaohong Zhu
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Danni He
- School of Nursing, Hangzhou Normal University, Hangzhou, China
- Nursing Department, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Bin Wang
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Shihua Cao
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Chaoqun Dong
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Yunhua Li
- College of Education, Chengdu College of Arts and Sciences, Sichuan, China
| | - Yanfei Chen
- School of Nursing, Hangzhou Normal University, Hangzhou, China
- Nursing Department, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Bingsheng Wang
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Yankai Shi
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Guowei Jiang
- Department of Psychiatry and Neuropsychology and Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Fang Liu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Lizzy M M Boots
- Department of Psychiatry and Neuropsychology and Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Jiaqi Li
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Xiajing Lou
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Jiani Yao
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Xiaodong Lu
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Junling Kang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Barba L, Bellomo G, Oeckl P, Chiasserini D, Gaetani L, Torrigiani EG, Paoletti FP, Steinacker P, Abu-Rumeileh S, Parnetti L, Otto M. CSF neurosecretory proteins VGF and neuroserpin in patients with Alzheimer's and Lewy body diseases. J Neurol Sci 2024; 462:123059. [PMID: 38850771 DOI: 10.1016/j.jns.2024.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND VGF and neuroserpin are neurosecretory proteins involved in the pathophysiology of neurodegenerative diseases. We aimed to evaluate their cerebrospinal fluid (CSF) concentrations in patients with Alzheimer's disease (AD) and Lewy body disease (LBD). METHODS We measured CSF VGF [AQEE] peptide and neuroserpin levels in 108 LBD patients, 76 AD patients and 37 controls, and tested their associations with clinical scores and CSF AD markers. RESULTS We found decreased CSF levels of VGF [AQEE] in patients with LBD and dementia compared to controls (p = 0.016) and patients with AD-dementia (p = 0.011), but with significant influence of age and sex distribution. Moreover, we observed, on the one hand, a significant associations between lower VGF [AQEE] and neuroserpin levels and poorer cognitive performance (i.e., lower Mini-Mental State Examination scores). On the other hand, higher levels of CSF tau proteins, especially pTau181, were significantly associated with higher concentrations of VGF [AQEE] and neuroserpin. Indeed, LBD patients with AD-like CSF profiles, especially T+ profiles, had higher levels of VGF [AQEE] and neuroserpin compared to controls and LBD/T- cases. DISCUSSION CSF VGF [AQEE] and neuroserpin may show a complex relationship with cognitive decline when the levels are reduced, and with AD pathology when levels are increased. They may represent novel markers of neurosecretory impairment in neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Patrick Oeckl
- Department of Neurology, Ulm University, Helmholzstrasse 8/1, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE e.V.), Helmholzstrasse 8/1, 89081 Ulm, Germany
| | - Davide Chiasserini
- Section of Biochemistry, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Edoardo Guido Torrigiani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Federico Paolini Paoletti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany.
| |
Collapse
|
7
|
Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, Carvalho AN, Finelli MJ. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants (Basel) 2024; 13:681. [PMID: 38929122 PMCID: PMC11200609 DOI: 10.3390/antiox13060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra I. Anjo
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Zhicheng He
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zohaib Hussain
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aruba Farooq
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alan McIntyre
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charles A. Laughton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mattéa J. Finelli
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
8
|
Wang YL, Zhu MY, Yuan ZF, Ren XY, Guo XT, Hua Y, Xu L, Zhao CY, Jiang LH, Zhang X, Sheng GX, Jiang PF, Zhao ZY, Gao F. Proteomic profiling of cerebrospinal fluid in pediatric myelin oligodendrocyte glycoprotein antibody-associated disease. World J Pediatr 2024; 20:259-271. [PMID: 36507981 PMCID: PMC10957615 DOI: 10.1007/s12519-022-00661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an autoimmune demyelinating disorder of the central nervous system. METHODS Extracted proteins from 34 cerebrospinal fluid (CSF) samples [patients with MOGAD (MOG group, n = 12); healthy controls (HC group, n = 12); patients with MOG seronegative and metagenomics next-generation sequencing-negative inflammatory neurological diseases (IND group, n = 10)] were processed and subjected to label-free quantitative proteomics. Supervised partial least squares-discriminant analysis (PLS-DA) and orthogonal PLS-DA (O-PLS-DA) models were also performed based on proteomics data. Functional analysis of differentially expressed proteins (DEPs) was performed using Gene Ontology, InterPro, and Kyoto Encyclopedia Genes and Genomes. An enzyme-linked immunosorbent assay was used to determine the complement levels in serum from patients with MOGAD. RESULTS Four hundred and twenty-nine DEPs (149 upregulated and 280 downregulated proteins) were identified in the MOG group compared to the HC group according to the P value and fold change (FC). Using the O-PLS-DA model, 872 differentially abundant proteins were identified with variable importance projection (VIP) scores > 1. Five proteins (gamma-glutamyl hydrolase, cathepsin F, interalpha-trypsin inhibitor heavy chain 5, latent transforming growth factor beta-binding protein 4 and leukocyte-associated immunoglobulin-like receptor 1) overlapping between the top 30 DEPs with top-ranked P value and FC and top 30 proteins in PLS-DA VIP lists were acquired. Functional analysis revealed that the dysregulated proteins in the MOG group were primarily involved in complement and coagulation cascades, cell adhesion, axon guidance, and glycosphingolipid biosynthesis compared to the HC group. CONCLUSION The proteomic alterations in CSF samples from children with MOGAD identified in the current study might provide opportunities for developing novel biomarker candidates.
Collapse
Affiliation(s)
- Yi-Long Wang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Meng-Ying Zhu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Zhe-Feng Yuan
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiao-Yan Ren
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiao-Tong Guo
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yi Hua
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Lu Xu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Cong-Ying Zhao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Li-Hua Jiang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xin Zhang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Guo-Xia Sheng
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Pei-Fang Jiang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Zheng-Yan Zhao
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China.
| | - Feng Gao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
9
|
Vervuurt M, Schrader JM, de Kort AM, Kersten I, Wessels HJCT, Klijn CJM, Schreuder FHBM, Kuiperij HB, Gloerich J, Van Nostrand WE, Verbeek MM. Cerebrospinal fluid shotgun proteomics identifies distinct proteomic patterns in cerebral amyloid angiopathy rodent models and human patients. Acta Neuropathol Commun 2024; 12:6. [PMID: 38191511 PMCID: PMC10775534 DOI: 10.1186/s40478-023-01698-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a form of small vessel disease characterised by the progressive deposition of amyloid β protein in the cerebral vasculature, inducing symptoms including cognitive impairment and cerebral haemorrhages. Due to their accessibility and homogeneous disease phenotypes, animal models are advantageous platforms to study diseases like CAA. Untargeted proteomics studies of CAA rat models (e.g. rTg-DI) and CAA patients provide opportunities for the identification of novel biomarkers of CAA. We performed untargeted, data-independent acquisition proteomic shotgun analyses on the cerebrospinal fluid of rTg-DI rats and wild-type (WT) littermates. Rodents were analysed at 3 months (n = 6/10), 6 months (n = 8/8), and 12 months (n = 10/10) for rTg-DI and WT respectively. For humans, proteomic analyses were performed on CSF of sporadic CAA patients (sCAA) and control participants (n = 39/28). We show recurring patterns of differentially expressed (mostly increased) proteins in the rTg-DI rats compared to wild type rats, especially of proteases of the cathepsin protein family (CTSB, CTSD, CTSS), and their main inhibitor (CST3). In sCAA patients, decreased levels of synaptic proteins (e.g. including VGF, NPTX1, NRXN2) and several members of the granin family (SCG1, SCG2, SCG3, SCG5) compared to controls were discovered. Additionally, several serine protease inhibitors of the SERPIN protein family (including SERPINA3, SERPINC1 and SERPING1) were differentially expressed compared to controls. Fifteen proteins were significantly altered in both rTg-DI rats and sCAA patients, including (amongst others) SCG5 and SERPING1. These results identify specific groups of proteins likely involved in, or affected by, pathophysiological processes involved in CAA pathology such as protease and synapse function of rTg-DI rat models and sCAA patients, and may serve as candidate biomarkers for sCAA.
Collapse
Affiliation(s)
- Marc Vervuurt
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Joseph M Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Anna M de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Hans J C T Wessels
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jolein Gloerich
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Dejanovic B, Sheng M, Hanson JE. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat Rev Drug Discov 2024; 23:23-42. [PMID: 38012296 DOI: 10.1038/s41573-023-00823-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
11
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
12
|
Harvey J, Pishva E, Chouliaras L, Lunnon K. Elucidating distinct molecular signatures of Lewy body dementias. Neurobiol Dis 2023; 188:106337. [PMID: 37918758 DOI: 10.1016/j.nbd.2023.106337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023] Open
Abstract
Dementia with Lewy bodies and Parkinson's disease dementia are common neurodegenerative diseases that share similar neuropathological profiles and spectra of clinical symptoms but are primarily differentiated by the order in which symptoms manifest. The question of whether a distinct molecular pathological profile could distinguish these disorders is yet to be answered. However, in recent years, studies have begun to investigate genomic, epigenomic, transcriptomic and proteomic differences that may differentiate these disorders, providing novel insights in to disease etiology. In this review, we present an overview of the clinical and pathological hallmarks of Lewy body dementias before summarizing relevant research into genetic, epigenetic, transcriptional and protein signatures in these diseases, with a particular interest in those resolving "omic" level changes. We conclude by suggesting future research directions to address current gaps and questions present within the field.
Collapse
Affiliation(s)
- Joshua Harvey
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Ehsan Pishva
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Leonidas Chouliaras
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, Epping, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
13
|
Teunissen CE, Kimble L, Bayoumy S, Bolsewig K, Burtscher F, Coppens S, Das S, Gogishvili D, Fernandes Gomes B, Gómez de San José N, Mavrina E, Meda FJ, Mohaupt P, Mravinacová S, Waury K, Wojdała AL, Abeln S, Chiasserini D, Hirtz C, Gaetani L, Vermunt L, Bellomo G, Halbgebauer S, Lehmann S, Månberg A, Nilsson P, Otto M, Vanmechelen E, Verberk IMW, Willemse E, Zetterberg H. Methods to Discover and Validate Biofluid-Based Biomarkers in Neurodegenerative Dementias. Mol Cell Proteomics 2023; 22:100629. [PMID: 37557955 PMCID: PMC10594029 DOI: 10.1016/j.mcpro.2023.100629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.
Collapse
Affiliation(s)
- Charlotte E Teunissen
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
| | - Leighann Kimble
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; KIN Center for Digital Innovation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sherif Bayoumy
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Katharina Bolsewig
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Felicia Burtscher
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Salomé Coppens
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; National Measurement Laboratory at LGC, Teddington, United Kingdom
| | - Shreyasee Das
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; ADx NeuroSciences, Gent, Belgium
| | - Dea Gogishvili
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bárbara Fernandes Gomes
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nerea Gómez de San José
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Neurology, University of Ulm, Ulm, Germany
| | - Ekaterina Mavrina
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; KIN Center for Digital Innovation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Francisco J Meda
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Pablo Mohaupt
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; LBPC-PPC, IRMB CHU Montpellier, INM INSERM, Université de Montpellier, Montpellier, France
| | - Sára Mravinacová
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Katharina Waury
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anna Lidia Wojdała
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sanne Abeln
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Davide Chiasserini
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christophe Hirtz
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; LBPC-PPC, IRMB CHU Montpellier, INM INSERM, Université de Montpellier, Montpellier, France
| | - Lorenzo Gaetani
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lisa Vermunt
- Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Giovanni Bellomo
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Steffen Halbgebauer
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Neurology, University of Ulm, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | - Sylvain Lehmann
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; LBPC-PPC, IRMB CHU Montpellier, INM INSERM, Université de Montpellier, Montpellier, France
| | - Anna Månberg
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Peter Nilsson
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Markus Otto
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Neurology, University of Ulm, Ulm, Germany; Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Eugeen Vanmechelen
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; ADx NeuroSciences, Gent, Belgium
| | - Inge M W Verberk
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Eline Willemse
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Henrik Zetterberg
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Del Campo M, Vermunt L, Peeters CFW, Sieben A, Hok-A-Hin YS, Lleó A, Alcolea D, van Nee M, Engelborghs S, van Alphen JL, Arezoumandan S, Chen-Plotkin A, Irwin DJ, van der Flier WM, Lemstra AW, Teunissen CE. CSF proteome profiling reveals biomarkers to discriminate dementia with Lewy bodies from Alzheimer´s disease. Nat Commun 2023; 14:5635. [PMID: 37704597 PMCID: PMC10499811 DOI: 10.1038/s41467-023-41122-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Diagnosis of dementia with Lewy bodies (DLB) is challenging and specific biofluid biomarkers are highly needed. We employed proximity extension-based assays to measure 665 proteins in the cerebrospinal fluid (CSF) from patients with DLB (n = 109), Alzheimer´s disease (AD, n = 235) and cognitively unimpaired controls (n = 190). We identified over 50 CSF proteins dysregulated in DLB, enriched in myelination processes among others. The dopamine biosynthesis enzyme DDC was the strongest dysregulated protein, and could efficiently discriminate DLB from controls and AD (AUC:0.91 and 0.81 respectively). Classification modeling unveiled a 7-CSF biomarker panel that better discriminate DLB from AD (AUC:0.93). A custom multiplex panel for six of these markers (DDC, CRH, MMP-3, ABL1, MMP-10, THOP1) was developed and validated in independent cohorts, including an AD and DLB autopsy cohort. This DLB CSF proteome study identifies DLB-specific protein changes and translates these findings to a practicable biomarker panel that accurately identifies DLB patients, providing promising diagnostic and clinical trial testing opportunities.
Collapse
Affiliation(s)
- Marta Del Campo
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands.
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
| | - Lisa Vermunt
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Carel F W Peeters
- Mathematical & Statistical Methods group (Biometris), Wageningen University & Research, Wageningen, The Netherlands
| | - Anne Sieben
- Lab of neuropathology, Neurobiobank, Institute Born-Bunge, Antwerp University, Edegem, Belgium
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Alberto Lleó
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Mirrelijn van Nee
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Neuroprotection and Neuromodulation Research Group (NEUR), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Brussels, Belgium
| | - Juliette L van Alphen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Sanaz Arezoumandan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Yu L, Petyuk VA, de Paiva Lopes K, Tasaki S, Menon V, Wang Y, Schneider JA, De Jager PL, Bennett DA. Associations of VGF with Neuropathologies and Cognitive Health in Older Adults. Ann Neurol 2023; 94:232-244. [PMID: 37177846 PMCID: PMC10524948 DOI: 10.1002/ana.26676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE VGF is proposed as a potential therapeutic target for Alzheimer's (AD) and other neurodegenerative conditions. The cell-type specific and, separately, peptide specific associations of VGF with pathologic and cognitive outcomes remain largely unknown. We leveraged gene expression and protein data from the human neocortex and investigated the VGF associations with common neuropathologies and late-life cognitive decline. METHODS Community-dwelling older adults were followed every year, died, and underwent brain autopsy. Cognitive decline was captured via annual cognitive testing. Common neurodegenerative and cerebrovascular conditions were assessed during neuropathologic evaluations. Bulk brain RNASeq and targeted proteomics analyses were conducted using frozen tissues from dorsolateral prefrontal cortex of 1,020 individuals. Cell-type specific gene expressions were quantified in a subsample (N = 424) following single nuclei RNASeq analysis from the same cortex. RESULTS The bulk brain VGF gene expression was primarily associated with AD and Lewy bodies. The VGF gene association with cognitive decline was in part accounted for by neuropathologies. Similar associations were observed for the VGF protein. Cell-type specific analyses revealed that, while VGF was differentially expressed in most major cell types in the cortex, its association with neuropathologies and cognitive decline was restricted to the neuronal cells. Further, the peptide fragments across the VGF polypeptide resembled each other in relation to neuropathologies and cognitive decline. INTERPRETATION Multiple pathways link VGF to cognitive health in older age, including neurodegeneration. The VGF gene functions primarily in neuronal cells and its protein associations with pathologic and cognitive outcomes do not map to a specific peptide. ANN NEUROL 2023;94:232-244.
Collapse
Affiliation(s)
- Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | | | - Katia de Paiva Lopes
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Shinya Tasaki
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology & Taub Institute for Research on Alzheimer’s disease and the Aging Brain, Columbia University Irving Medical Center; New York, NY, USA
| | - Yanling Wang
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
- Department of Pathology, Rush University Medical Center; Chicago, IL, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology & Taub Institute for Research on Alzheimer’s disease and the Aging Brain, Columbia University Irving Medical Center; New York, NY, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| |
Collapse
|
16
|
Cocco C, Manai AL, Manca E, Noli B. Brain-Biomarker Changes in Body Fluids of Patients with Parkinson's Disease. Int J Mol Sci 2023; 24:10932. [PMID: 37446110 DOI: 10.3390/ijms241310932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disease that is rarely diagnosed at an early stage. Although the understanding of PD-related mechanisms has greatly improved over the last decade, the diagnosis of PD is still based on neurological examination through the identification of motor symptoms, including bradykinesia, rigidity, postural instability, and resting tremor. The early phase of PD is characterized by subtle symptoms with a misdiagnosis rate of approximately 16-20%. The difficulty in recognizing early PD has implications for the potential use of novel therapeutic approaches. For this reason, it is important to discover PD brain biomarkers that can indicate early dopaminergic dysfunction through their changes in body fluids, such as saliva, urine, blood, or cerebrospinal fluid (CSF). For the CFS-based test, the invasiveness of sampling is a major limitation, whereas the other body fluids are easier to obtain and could also allow population screening. Following the identification of the crucial role of alpha-synuclein (α-syn) in the pathology of PD, a very large number of studies have summarized its changes in body fluids. However, methodological problems have led to the poor diagnostic/prognostic value of this protein and alternative biomarkers are currently being investigated. The aim of this paper is therefore to summarize studies on protein biomarkers that are alternatives to α-syn, particularly those that change in nigrostriatal areas and in biofluids, with a focus on blood, and, eventually, saliva and urine.
Collapse
Affiliation(s)
- Cristina Cocco
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Antonio Luigi Manai
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Elias Manca
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
17
|
Gogishvili D, Vromen EM, Koppes-den Hertog S, Lemstra AW, Pijnenburg YAL, Visser PJ, Tijms BM, Del Campo M, Abeln S, Teunissen CE, Vermunt L. Discovery of novel CSF biomarkers to predict progression in dementia using machine learning. Sci Rep 2023; 13:6531. [PMID: 37085545 PMCID: PMC10121677 DOI: 10.1038/s41598-023-33045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Providing an accurate prognosis for individual dementia patients remains a challenge since they greatly differ in rates of cognitive decline. In this study, we used machine learning techniques with the aim to identify cerebrospinal fluid (CSF) biomarkers that predict the rate of cognitive decline within dementia patients. First, longitudinal mini-mental state examination scores (MMSE) of 210 dementia patients were used to create fast and slow progression groups. Second, we trained random forest classifiers on CSF proteomic profiles and obtained a well-performing prediction model for the progression group (ROC-AUC = 0.82). As a third step, Shapley values and Gini feature importance measures were used to interpret the model performance and identify top biomarker candidates for predicting the rate of cognitive decline. Finally, we explored the potential for each of the 20 top candidates in internal sensitivity analyses. TNFRSF4 and TGF [Formula: see text]-1 emerged as the top markers, being lower in fast-progressing patients compared to slow-progressing patients. Proteins of which a low concentration was associated with fast progression were enriched for cell signalling and immune response pathways. None of our top markers stood out as strong individual predictors of subsequent cognitive decline. This could be explained by small effect sizes per protein and biological heterogeneity among dementia patients. Taken together, this study presents a novel progression biomarker identification framework and protein leads for personalised prediction of cognitive decline in dementia.
Collapse
Affiliation(s)
- Dea Gogishvili
- Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Eleonora M Vromen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Sascha Koppes-den Hertog
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Sanne Abeln
- Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- CWI, Amsterdam , The Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Zhou J, Wade SD, Graykowski D, Xiao MF, Zhao B, Giannini LAA, Hanson JE, van Swieten JC, Sheng M, Worley PF, Dejanovic B. The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration. Sci Transl Med 2023; 15:eadf0141. [PMID: 36989373 PMCID: PMC10467038 DOI: 10.1126/scitranslmed.adf0141] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023]
Abstract
Complement overactivation mediates microglial synapse elimination in neurological diseases such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), but how complement activity is regulated in the brain remains largely unknown. We identified that the secreted neuronal pentraxin Nptx2 binds complement C1q and thereby regulates its activity in the brain. Nptx2-deficient mice show increased complement activity, C1q-dependent microglial synapse engulfment, and loss of excitatory synapses. In a neuroinflammation culture model and in aged TauP301S mice, adeno-associated virus (AAV)-mediated neuronal overexpression of Nptx2 was sufficient to restrain complement activity and ameliorate microglia-mediated synapse loss. Analysis of human cerebrospinal fluid (CSF) samples from a genetic FTD cohort revealed reduced concentrations of Nptx2 and Nptx2-C1q protein complexes in symptomatic patients, which correlated with elevated C1q and activated C3. Together, these results show that Nptx2 regulates complement activity and microglial synapse elimination in the brain and that diminished Nptx2 concentrations might exacerbate complement-mediated neurodegeneration in patients with FTD.
Collapse
Affiliation(s)
- Jiechao Zhou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Sarah D. Wade
- Broad Institute of MIT and Harvard, Cambridge, 02142, USA
| | | | - Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Binhui Zhao
- Broad Institute of MIT and Harvard, Cambridge, 02142, USA
| | - Lucia A. A. Giannini
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Rotterdam, 3015 GD, Netherlands
| | | | - John C. van Swieten
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Rotterdam, 3015 GD, Netherlands
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, 02142, USA
| | - Paul F. Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | | |
Collapse
|
19
|
Quality Control—A Stepchild in Quantitative Proteomics: A Case Study for the Human CSF Proteome. Biomolecules 2023; 13:biom13030491. [PMID: 36979426 PMCID: PMC10046854 DOI: 10.3390/biom13030491] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Proteomic studies using mass spectrometry (MS)-based quantification are a main approach to the discovery of new biomarkers. However, a number of analytical conditions in front and during MS data acquisition can affect the accuracy of the obtained outcome. Therefore, comprehensive quality assessment of the acquired data plays a central role in quantitative proteomics, though, due to the immense complexity of MS data, it is often neglected. Here, we address practically the quality assessment of quantitative MS data, describing key steps for the evaluation, including the levels of raw data, identification and quantification. With this, four independent datasets from cerebrospinal fluid, an important biofluid for neurodegenerative disease biomarker studies, were assessed, demonstrating that sample processing-based differences are already reflected at all three levels but with varying impacts on the quality of the quantitative data. Specifically, we provide guidance to critically interpret the quality of MS data for quantitative proteomics. Moreover, we provide the free and open source quality control tool MaCProQC, enabling systematic, rapid and uncomplicated data comparison of raw data, identification and feature detection levels through defined quality metrics and a step-by-step quality control workflow.
Collapse
|
20
|
Sensi SL, Russo M, Tiraboschi P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer's disease and synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:187-218. [PMID: 36796942 DOI: 10.1016/b978-0-323-85538-9.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is the most common disorder associated with cognitive impairment. Recent observations emphasize the pathogenic role of multiple factors inside and outside the central nervous system, supporting the notion that AD is a syndrome of many etiologies rather than a "heterogeneous" but ultimately unifying disease entity. Moreover, the defining pathology of amyloid and tau coexists with many others, such as α-synuclein, TDP-43, and others, as a rule, not an exception. Thus, an effort to shift our AD paradigm as an amyloidopathy must be reconsidered. Along with amyloid accumulation in its insoluble state, β-amyloid is becoming depleted in its soluble, normal states, as a result of biological, toxic, and infectious triggers, requiring a shift from convergence to divergence in our approach to neurodegeneration. These aspects are reflected-in vivo-by biomarkers, which have become increasingly strategic in dementia. Similarly, synucleinopathies are primarily characterized by abnormal deposition of misfolded α-synuclein in neurons and glial cells and, in the process, depleting the levels of the normal, soluble α-synuclein that the brain needs for many physiological functions. The soluble to insoluble conversion also affects other normal brain proteins, such as TDP-43 and tau, accumulating in their insoluble states in both AD and dementia with Lewy bodies (DLB). The two diseases have been distinguished by the differential burden and distribution of insoluble proteins, with neocortical phosphorylated tau deposition more typical of AD and neocortical α-synuclein deposition peculiar to DLB. We propose a reappraisal of the diagnostic approach to cognitive impairment from convergence (based on clinicopathologic criteria) to divergence (based on what differs across individuals affected) as a necessary step for the launch of precision medicine.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pietro Tiraboschi
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
21
|
Alamro H, Bajic V, Macvanin MT, Isenovic ER, Gojobori T, Essack M, Gao X. Type 2 Diabetes Mellitus and its comorbidity, Alzheimer's disease: Identifying critical microRNA using machine learning. Front Endocrinol (Lausanne) 2023; 13:1084656. [PMID: 36743910 PMCID: PMC9893111 DOI: 10.3389/fendo.2022.1084656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression in healthy and diseased states, and numerous studies have established their tremendous potential as a tool for improving the diagnosis of Type 2 Diabetes Mellitus (T2D) and its comorbidities. In this regard, we computationally identify novel top-ranked hub miRNAs that might be involved in T2D. We accomplish this via two strategies: 1) by ranking miRNAs based on the number of T2D differentially expressed genes (DEGs) they target, and 2) using only the common DEGs between T2D and its comorbidity, Alzheimer's disease (AD) to predict and rank miRNA. Then classifier models are built using the DEGs targeted by each miRNA as features. Here, we show the T2D DEGs targeted by hsa-mir-1-3p, hsa-mir-16-5p, hsa-mir-124-3p, hsa-mir-34a-5p, hsa-let-7b-5p, hsa-mir-155-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-mir-129-2-3p, and hsa-mir-146a-5p are capable of distinguishing T2D samples from the controls, which serves as a measure of confidence in the miRNAs' potential role in T2D progression. Moreover, for the second strategy, we show other critical miRNAs can be made apparent through the disease's comorbidities, and in this case, overall, the hsa-mir-103a-3p models work well for all the datasets, especially in T2D, while the hsa-mir-124-3p models achieved the best scores for the AD datasets. To the best of our knowledge, this is the first study that used predicted miRNAs to determine the features that can separate the diseased samples (T2D or AD) from the normal ones, instead of using conventional non-biology-based feature selection methods.
Collapse
Affiliation(s)
- Hind Alamro
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- College of Computer and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vladan Bajic
- Department of Radiology and Molecular Genetics, VINCA Institute of Nuclear Science - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirjana T. Macvanin
- Department of Radiology and Molecular Genetics, VINCA Institute of Nuclear Science - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Esma R. Isenovic
- Department of Radiology and Molecular Genetics, VINCA Institute of Nuclear Science - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
22
|
Wang Z, Liu X, Wang W, Xu J, Sun H, Wei J, Yu Y, Zhao Y, Wang X, Liao Z, Sun W, Jia L, Zhang Y. UPLC-MS based integrated plasma proteomic and metabolomic profiling of TSC-RAML and its relationship with everolimus treatment. Front Mol Biosci 2023; 10:1000248. [PMID: 36891236 PMCID: PMC9986496 DOI: 10.3389/fmolb.2023.1000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Aim: To profile the plasma proteomics and metabolomics of patients with renal cysts, sporadic angiomyolipoma (S-AML) and tuberous sclerosis complex related angiomyolipoma (TSC-RAML) before and after everolimus treatment, and to find potential diagnostic and prognostic biomarkers as well as reveal the underlying mechanism of TSC tumorigenesis. Materials and Methods: We retrospectively measured the plasma proteins and metabolites from November 2016 to November 2017 in a cohort of pre-treatment and post-treatment TSC-RAML patients and compared them with renal cyst and S-AML patients by ultra-performance liquid chromatography-mass spectrometer (UPLC-MS). The tumor reduction rates of TSC-RAML were assessed and correlated with the plasma protein and metabolite levels. In addition, functional analysis based on differentially expressed molecules was performed to reveal the underlying mechanisms. Results: Eighty-five patients with one hundred and ten plasma samples were enrolled in our study. Multiple proteins and metabolites, such as pre-melanosome protein (PMEL) and S-adenosylmethionine (SAM), demonstrated both diagnostic and prognostic effects. Functional analysis revealed many dysregulated pathways, including angiogenesis synthesis, smooth muscle proliferation and migration, amino acid metabolism and glycerophospholipid metabolism. Conclusion: The plasma proteomics and metabolomics pattern of TSC-RAML was clearly different from that of other renal tumors, and the differentially expressed plasma molecules could be used as prognostic and diagnostic biomarkers. The dysregulated pathways, such as angiogenesis and amino acid metabolism, may shed new light on the treatment of TSC-RAML.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenda Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiyu Xu
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Haidan Sun
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wei
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yuncui Yu
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yang Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xu Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhangcheng Liao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Sun
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Lulu Jia
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Raulin AC, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu CC. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener 2022; 17:72. [PMID: 36348357 PMCID: PMC9644639 DOI: 10.1186/s13024-022-00574-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-β (Aβ) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aβ-related or Aβ-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.
Collapse
|
24
|
Saunders TS, Gadd DA, Spires‐Jones TL, King D, Ritchie C, Muniz‐Terrera G. Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review. Eur J Neurosci 2022; 56:5650-5713. [PMID: 35338546 PMCID: PMC9790745 DOI: 10.1111/ejn.15656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 12/30/2022]
Abstract
A biomarker associated with cognition in neurodegenerative dementias would aid in the early detection of disease progression, complement clinical staging and act as a surrogate endpoint in clinical trials. The current systematic review evaluates the association between cerebrospinal fluid protein markers of synapse loss and neuronal injury and cognition. We performed a systematic search which revealed 67 studies reporting an association between cerebrospinal fluid markers of interest and neuropsychological performance. Despite the substantial heterogeneity between studies, we found some evidence for an association between neurofilament-light and worse cognition in Alzheimer's diseases, frontotemporal dementia and typical cognitive ageing. Moreover, there was an association between cerebrospinal fluid neurogranin and cognition in those with an Alzheimer's-like cerebrospinal fluid biomarker profile. Some evidence was found for cerebrospinal fluid neuronal pentraxin-2 as a correlate of cognition across dementia syndromes. Due to the substantial heterogeneity of the field, no firm conclusions can be drawn from this review. Future research should focus on improving standardization and reporting as well as establishing the importance of novel markers such as neuronal pentraxin-2 and whether such markers can predict longitudinal cognitive decline.
Collapse
Affiliation(s)
- Tyler S. Saunders
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| | - Danni A. Gadd
- Center for Genomic and Experimental Medicine, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tara L. Spires‐Jones
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Declan King
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Craig Ritchie
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| | - Graciela Muniz‐Terrera
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| |
Collapse
|
25
|
Bolsewig K, Hok-A-Hin Y, Sepe F, Boonkamp L, Jacobs D, Bellomo G, Paoletti FP, Vanmechelen E, Teunissen C, Parnetti L, Willemse E. A Combination of Neurofilament Light, Glial Fibrillary Acidic Protein, and Neuronal Pentraxin-2 Discriminates Between Frontotemporal Dementia and Other Dementias. J Alzheimers Dis 2022; 90:363-380. [DOI: 10.3233/jad-220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The differential diagnosis of frontotemporal dementia (FTD) is still a challenging task due to its symptomatic overlap with other neurological diseases and the lack of biofluid-based biomarkers. Objective: To investigate the diagnostic potential of a combination of novel biomarkers in cerebrospinal fluid (CSF) and blood. Methods: We included 135 patients from the Centre for Memory Disturbances, University of Perugia, with the diagnoses FTD (n = 37), mild cognitive impairment due to Alzheimer’s disease (MCI-AD, n = 47), Lewy body dementia (PDD/DLB, n = 22), and cognitively unimpaired patients as controls (OND, n = 29). Biomarker levels of neuronal pentraxin-2 (NPTX2), neuronal pentraxin receptor, neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were measured in CSF, as well as NfL and GFAP in serum. We assessed biomarker differences by analysis of covariance and generalized linear models (GLM). We performed receiver operating characteristics analyses and Spearman correlation to determine biomarker associations. Results: CSF NPTX2 and serum GFAP levels varied most between diagnostic groups. The combination of CSF NPTX2, serum NfL and serum GFAP differentiated FTD from the other groups with good accuracy FTD versus MCI-AD: area under the curve (AUC [95% CI] = 0.89 [0.81–0.96]; FTD versus PDD/DLB: AUC = 0.82 [0.71–0.93]; FTD versus OND: AUC = 0.80 [0.70–0.91]). CSF NPTX2 and serum GFAP correlated positively only in PDD/DLB (ρ= 0.56, p < 0.05). NPTX2 and serum NfL did not correlate in any of the diagnostic groups. Serum GFAP and serum NfL correlated positively in all groups (ρ= 0.47–0.74, p < 0.05). Conclusion: We show the combined potential of CSF NPTX2, serum NfL, and serum GFAP to differentiate FTD from other neurodegenerative disorders.
Collapse
Affiliation(s)
- Katharina Bolsewig
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Yanaika Hok-A-Hin
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Federica Sepe
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Lynn Boonkamp
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | | | - Giovanni Bellomo
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Federico Paolini Paoletti
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | | | - Charlotte Teunissen
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Lucilla Parnetti
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Eline Willemse
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| |
Collapse
|
26
|
Joshi R, Salton SRJ. Neurotrophin Crosstalk in the Etiology and Treatment of Neuropsychiatric and Neurodegenerative Disease. Front Mol Neurosci 2022; 15:932497. [PMID: 35909451 PMCID: PMC9335126 DOI: 10.3389/fnmol.2022.932497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/23/2022] [Indexed: 12/27/2022] Open
Abstract
This article reviews the current progress in our understanding of the mechanisms by which growth factors, including brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), and select neurotrophin-regulated gene products, such as VGF (non-acronymic) and VGF-derived neuropeptides, function in the central nervous system (CNS) to modulate neuropsychiatric and neurodegenerative disorders, with a discussion of the possible therapeutic applications of these growth factors to major depressive disorder (MDD) and Alzheimer’s disease (AD). BDNF and VEGF levels are generally decreased regionally in the brains of MDD subjects and in preclinical animal models of depression, changes that are associated with neuronal atrophy and reduced neurogenesis, and are reversed by conventional monoaminergic and novel ketamine-like antidepressants. Downstream of neurotrophins and their receptors, VGF was identified as a nerve growth factor (NGF)- and BDNF-inducible secreted protein and neuropeptide precursor that is produced and trafficked throughout the CNS, where its expression is greatly influenced by neuronal activity and exercise, and where several VGF-derived peptides modulate neuronal activity, function, proliferation, differentiation, and survival. Moreover, levels of VGF are reduced in the CSF of AD subjects, where it has been repetitively identified as a disease biomarker, and in the hippocampi of subjects with MDD, suggesting possible shared mechanisms by which reduced levels of VGF and other proteins that are similarly regulated by neurotrophin signaling pathways contribute to and potentially drive the pathogenesis and progression of co-morbid neuropsychiatric and neurodegenerative disorders, particularly MDD and AD, opening possible therapeutic windows.
Collapse
Affiliation(s)
- Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen R. J. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Stephen R. J. Salton,
| |
Collapse
|
27
|
Bousiges O, Blanc F. Biomarkers of Dementia with Lewy Bodies: Differential Diagnostic with Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23126371. [PMID: 35742814 PMCID: PMC9223587 DOI: 10.3390/ijms23126371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Dementia with Lewy Bodies (DLB) is a common form of cognitive neurodegenerative disease. Only one third of patients are correctly diagnosed due to the clinical similarity mainly with Alzheimer’s disease (AD). In this review, we evaluate the interest of different biomarkers: cerebrospinal fluid (CSF), brain MRI, FP-CIT SPECT, MIBG SPECT, PET by focusing more specifically on differential diagnosis between DLB and AD. FP-CIT SPECT is of high interest to discriminate DLB and AD, but not at the prodromal stage (i.e., MCI). MIBG SPECT with decreased cardiac sympathetic activity, perfusion SPECT with occipital hypoperfusion, FDG PET with occipital hypometabolism and cingulate island signs are of interest at the dementia stage but with a lower validity. Brain MRI has shown differences in group study with lower grey matter concentration of the Insula in prodromal DLB, but its interest in clinical routines is not demonstrated. Concerning CSF biomarkers, many studies have already examined the relevance of AD biomarkers but also alpha-synuclein assays in DLB, so we will focus as comprehensively as possible on other biomarkers (especially those that do not appear to be directly related to synucleinopathy) that may be of interest in the differential diagnosis between AD and DLB. Furthermore, we would like to highlight the growing interest in CSF synuclein RT-QuIC, which seems to be an excellent discrimination tool but its application in clinical routine remains to be demonstrated, given the non-automation of the process.
Collapse
Affiliation(s)
- Olivier Bousiges
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000 Strasbourg, France
- Team IMIS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg and CNRS, 67000 Strasbourg, France;
- CM2R (Research and Resources Memory Centre), Geriatrics Department, Day Hospital and Cognitive-Behavioral Unit University Hospitals of Strasbourg, 67000 Strasbourg, France
- Correspondence:
| | - Frédéric Blanc
- Team IMIS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg and CNRS, 67000 Strasbourg, France;
- CM2R (Research and Resources Memory Centre), Geriatrics Department, Day Hospital and Cognitive-Behavioral Unit University Hospitals of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
28
|
Peinado JR, Chaplot K, Jarvela TS, Barbieri EM, Shorter J, Lindberg I. Sequestration of TDP-43 216-414 Aggregates by Cytoplasmic Expression of the proSAAS Chaperone. ACS Chem Neurosci 2022; 13:1651-1665. [PMID: 35549000 PMCID: PMC9731516 DOI: 10.1021/acschemneuro.2c00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
As neurons age, protein homeostasis becomes less efficient, resulting in misfolding and aggregation. Chaperone proteins perform vital functions in the maintenance of cellular proteostasis, and chaperone-based therapies that promote sequestration of toxic aggregates may prove useful in blocking the development of neurodegenerative disease. We previously demonstrated that proSAAS, a small secreted neuronal protein, exhibits potent chaperone activity against protein aggregation in vitro and blocks the cytotoxic effects of amyloid and synuclein oligomers in cell culture systems. We now examine whether cytoplasmic expression of proSAAS results in interactions with protein aggregates in this cellular compartment. We report that expression of proSAAS within the cytoplasm generates dense, membraneless 2 μm proSAAS spheres which progressively fuse to form larger spheres, suggesting liquid droplet-like properties. ProSAAS spheres selectively accumulate a C-terminally truncated fluorescently tagged form of TDP-43, initiating its cellular redistribution; these TDP-43-containing spheres also exhibit dynamic fusion. Efficient encapsulation of TDP-43 into proSAAS spheres is driven by its C-terminal prion-like domain; spheres must be formed for sequestration to occur. Three proSAAS sequences, a predicted coiled-coil, a conserved region (residues 158-169), and the positively charged sequence 181-185, are all required for proSAAS to form spheres able to encapsulate TDP-43 aggregates. Substitution of lysines for arginines in the 181-185 sequence results in nuclear translocation of proSAAS and encapsulation of nuclear-localized TDP-43216-414. As a functional output, we demonstrate that proSAAS expression results in cytoprotection against full-length TDP-43 toxicity in yeast. We conclude that proSAAS can act as a functional holdase for TDP-43 via this phase-separation property, representing a cytoprotectant whose unusual biochemical properties can potentially be exploited in the design of therapeutic molecules.
Collapse
Affiliation(s)
- Juan R. Peinado
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Kriti Chaplot
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Timothy S. Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Edward M. Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| |
Collapse
|
29
|
Zhu S, Bäckström D, Forsgren L, Trupp M. Alterations in Self-Aggregating Neuropeptides in Cerebrospinal Fluid of Patients with Parkinsonian Disorders. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1169-1189. [PMID: 35253777 PMCID: PMC9198747 DOI: 10.3233/jpd-213031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Parkinson’s disease (PD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA) present with similar movement disorder symptoms but distinct protein aggregates upon pathological examination. Objective: Discovery and validation of candidate biomarkers in parkinsonian disorders for differential diagnosis of subgroup molecular etiologies. Methods: Untargeted liquid chromatography (LC)-mass spectrometry (MS) proteomics was used for discovery profiling in cerebral spinal fluid (CSF) followed by LC-MS/MS based multiple reaction monitoring for validation of candidates. We compared clinical variation within the parkinsonian cohort including PD subgroups exhibiting tremor dominance (TD) or postural instability gait disturbance and those with detectable leukocytes in CSF. Results: We have identified candidate peptide biomarkers and validated related proteins with targeted quantitative multiplexed assays. Dopamine-drug naïve patients at first diagnosis exhibit reduced levels of signaling neuropeptides, chaperones, and processing proteases for packaging of self-aggregating peptides into dense core vesicles. Distinct patterns of biomarkers were detected in the parkinsonian disorders but were not robust enough to offer a differential diagnosis. Different biomarker changes were detected in male and female patients with PD. Subgroup specific candidate biomarkers were identified for TD PD and PD patients with leukocytes detected in CSF. Conclusion: PD, MSA, and PSP exhibit overlapping as well as distinct protein biomarkers that suggest specific molecular etiologies. This indicates common sensitivity of certain populations of selectively vulnerable neurons in the brain, and distinct therapeutic targets for PD subgroups. Our report validates a decrease in CSF levels of self-aggregating neuropeptides in parkinsonian disorders and supports the role of native amyloidogenic proteins in etiologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shaochun Zhu
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - David Bäckström
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Prodynorphin and Proenkephalin in Cerebrospinal Fluid of Sporadic Creutzfeldt–Jakob Disease. Int J Mol Sci 2022; 23:ijms23042051. [PMID: 35216166 PMCID: PMC8877714 DOI: 10.3390/ijms23042051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Proenkephalin (PENK) and prodynorphin (PDYN) are endogenous opioid peptides mainly produced in the striatum and, to a lesser extent, in the cerebral cortex. Dysregulated metabolism and altered cerebrospinal fluid (CSF) levels of PENK and PDYN have been described in several neurodegenerative diseases. However, no study to date investigated these peptides in the CSF of sporadic Creutzfeldt–Jakob disease (sCJD). Using liquid chromatography-multiple reaction monitoring mass spectrometry, we evaluated the CSF PDYN- and PENK-derived peptide levels in 25 controls and 63 patients with sCJD belonging to the most prevalent molecular subtypes (MM(V)1, VV2 and MV2K). One of the PENK-derived peptides was significantly decreased in each sCJD subtype compared to the controls without a difference among subtypes. Conversely, PDYN-derived peptides were selectively decreased in the CSF of sCJD MV2K, a subtype with a more widespread overall pathology compared to the sCJD MM(V)1 and the VV2 subtypes, which we confirmed by semiquantitative analysis of cortical and striatal neuronal loss and astrocytosis. In sCJD CSF PENK and PDYN were associated with CSF biomarkers of neurodegeneration but not with clinical variables and showed a poor diagnostic performance. CSF PDYN and PENK-derived peptides had no significant diagnostic and prognostic values in sCJD; however, the distinct marker levels between molecular subtypes might help to better understand the basis of phenotypic heterogeneity determined by divergent neuronal targeting.
Collapse
|
31
|
Cervantes González A, Belbin O. Fluid markers of synapse degeneration in synucleinopathies. J Neural Transm (Vienna) 2022; 129:187-206. [PMID: 35147800 DOI: 10.1007/s00702-022-02467-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
The abnormal accumulation of α-synuclein in the brain is a common feature of Parkinson's disease (PD), PD dementia (PDD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), and synucleinopathies that present with overlapping but distinct clinical symptoms that include motor and cognitive deficits. Synapse degeneration is the crucial neuropathological event in these synucleinopathies and the neuropathological correlate of connectome dysfunction. The cognitive and motor deficits resulting from the connectome dysfunction are currently measured by scalar systems that are limited in their sensitivity and largely subjective. Ideally, a marker of synapse degeneration would correlate with measures of cognitive or motor impairment, and could therefore be used as a more objective, surrogate biomarker of the core clinical features of these diseases. Furthermore, an objective surrogate biomarker that can detect and monitor the progression of synapse degeneration would improve patient management and clinical trial design, and could provide a measure of therapeutic response. Here, we review the published findings relating to candidate biomarkers of synapse degeneration in PD, PDD, DLB, and MSA patient-derived biofluids and discuss the findings in the context of the mechanisms associated with α-synuclein-mediated synapse degeneration. Understanding these mechanisms is essential not only for discovery of biomarkers, but also to improve our understanding of the earliest changes in disease pathogenesis of synucleinopathies.
Collapse
Affiliation(s)
- Alba Cervantes González
- Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau) and Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Olivia Belbin
- Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau) and Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
32
|
Scott GD, Arnold MR, Beach TG, Gibbons CH, Kanthasamy AG, Lebovitz RM, Lemstra AW, Shaw LM, Teunissen CE, Zetterberg H, Taylor AS, Graham TC, Boeve BF, Gomperts SN, Graff-Radford NR, Moussa C, Poston KL, Rosenthal LS, Sabbagh MN, Walsh RR, Weber MT, Armstrong MJ, Bang JA, Bozoki AC, Domoto-Reilly K, Duda JE, Fleisher JE, Galasko DR, Galvin JE, Goldman JG, Holden SK, Honig LS, Huddleston DE, Leverenz JB, Litvan I, Manning CA, Marder KS, Pantelyat AY, Pelak VS, Scharre DW, Sha SJ, Shill HA, Mari Z, Quinn JF, Irwin DJ. Fluid and Tissue Biomarkers of Lewy Body Dementia: Report of an LBDA Symposium. Front Neurol 2022; 12:805135. [PMID: 35173668 PMCID: PMC8841880 DOI: 10.3389/fneur.2021.805135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
The Lewy Body Dementia Association (LBDA) held a virtual event, the LBDA Biofluid/Tissue Biomarker Symposium, on January 25, 2021, to present advances in biomarkers for Lewy body dementia (LBD), which includes dementia with Lewy bodies (DLBs) and Parkinson's disease dementia (PDD). The meeting featured eight internationally known scientists from Europe and the United States and attracted over 200 scientists and physicians from academic centers, the National Institutes of Health, and the pharmaceutical industry. Methods for confirming and quantifying the presence of Lewy body and Alzheimer's pathology and novel biomarkers were discussed.
Collapse
Affiliation(s)
- Gregory D. Scott
- Department of Pathology, Oregon Health and Science University, Portland, OR, United States
- Department of Pathology and Laboratory Services, VA Portland Medical Center, Portland, OR, United States
| | - Moriah R. Arnold
- Graduate Program in Biomedical Sciences, School of Medicine M.D./Ph.D. Program, Oregon Health and Science University, Portland, OR, United States
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology and Brain and Body Donation Program, Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Christopher H. Gibbons
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Anumantha G. Kanthasamy
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| | | | - Afina W. Lemstra
- Department of Neurology, Amsterdam University Medical Center (UMC), Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | | | - Todd C. Graham
- Lewy Body Dementia Association, Lilburn, GA, United States
| | - Bradley F. Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, MN, United States
| | - Stephen N. Gomperts
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | | | - Charbel Moussa
- Department of Neurology, Georgetown University Medical Center, Washington DC, CA, United States
| | - Kathleen L. Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Liana S. Rosenthal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Ryan R. Walsh
- Barrow Neurological Institute and Muhammed Ali Parkinson Center, Phoenix, AZ, United States
| | - Miriam T. Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Melissa J. Armstrong
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jee A. Bang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrea C. Bozoki
- Department of Neurology, University of North Carolina, Chapel Hill, NC, United States
| | | | - John E. Duda
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jori E. Fleisher
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, United States
| | - Douglas R. Galasko
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jennifer G. Goldman
- Shirley Ryan Abilitylab and Department of Physical Medicine and Rehabilitation and Neurology, Parkinson's Disease and Movement Disorders, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Samantha K. Holden
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lawrence S. Honig
- Columbia University Irving Medical Center, New York, NY, United States
| | - Daniel E. Huddleston
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, United States
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Carol A. Manning
- Department of Neurology, University of Virginia, Charlottesville, VA, United States
| | - Karen S. Marder
- Columbia University Irving Medical Center, New York, NY, United States
| | - Alexander Y. Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Victoria S. Pelak
- Departments of Neurology and Ophthalmology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Douglas W. Scharre
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sharon J. Sha
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Holly A. Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Zoltan Mari
- Lou Ruvo Center for Brain Health, Cleveland Clinic Lerner College of Medicine, Las Vegas, NV, United States
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Department of Neurology, VA Portland Medical Center, Portland, OR, United States
| | - David J. Irwin
- Department of Neurology, University of Pennsylvania Health System, Philadelphia, PA, United States
- Digital Neuropathology Laboratory, Philadelphia, PA, United States
- Lewy Body Disease Research Center of Excellence, Philadelphia, PA, United States
- Frontotemporal Degeneration Center, Philadelphia, PA, United States
| |
Collapse
|
33
|
Yu Z, Du M, Lu L. A Novel 16-Genes Signature Scoring System as Prognostic Model to Evaluate Survival Risk in Patients with Glioblastoma. Biomedicines 2022; 10:biomedicines10020317. [PMID: 35203526 PMCID: PMC8869708 DOI: 10.3390/biomedicines10020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Previous studies have found that gene expression levels are associated with prognosis and some genes can be used to predict the survival risk of glioblastoma (GBM) patients. However, most of them just built the survival-related gene signature, and personal survival risk can be evaluated only in group. This study aimed to find the prognostic survival related genes of GBM, and construct survival risk prediction model, which can be used to evaluate survival risk by individual. We collected gene expression data and clinical information from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Cox regression analysis and LASSO-cox regression analysis were performed to get survival-related genes and establish the overall survival prediction model. The ROC curve and Kaplan Meier analysis were used to evaluate the prediction ability of the model in training set and two independent cohorts. We also analyzed the biological functions of survival-related genes by GO and KEGG enrichment analysis. We identified 99 genes associated with overall survival and selected 16 genes (IGFBP2, GPRASP1, C1R, CHRM3, CLSTN2, NELL1, SEZ6L2, NMB, ICAM5, HPCAL4, SNAP91, PCSK1N, PGBD5, INA, UCHL1 and LHX6) to establish the survival risk prediction model. Multivariate Cox regression analysis indicted that the risk score could predict overall survival independent of age and gender. ROC analyses showed that our model was more robust than four existing signatures. The sixteen genes can also be potential transcriptional biomarkers and the model can assist doctors on clinical decision-making and personalized treatment of GBM patients.
Collapse
|
34
|
Richter N, David LS, Grothe MJ, Teipel S, Dietlein M, Tittgemeyer M, Neumaier B, Fink GR, Onur OA, Kukolja J. Age and Anterior Basal Forebrain Volume Predict the Cholinergic Deficit in Patients with Mild Cognitive Impairment due to Alzheimer’s Disease. J Alzheimers Dis 2022; 86:425-440. [DOI: 10.3233/jad-210261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Early and severe neuronal loss in the cholinergic basal forebrain is observed in Alzheimer’s disease (AD). To date, cholinomimetics play a central role in the symptomatic treatment of AD dementia. Although basic research indicates that a cholinergic deficit is present in AD before dementia, the efficacy of cholinomimetics in mild cognitive impairment (MCI) remains controversial. Predictors of cholinergic impairment could guide individualized therapy. Objective: To investigate if the extent of the cholinergic deficit, measured using positron emission tomography (PET) and the tracer 11C-N-methyl-4-piperidyl acetate (MP4A), could be predicted from the volume of cholinergic basal forebrain nuclei in non-demented AD patients. Methods: Seventeen patients with a high likelihood of MCI due to AD and 18 age-matched cognitively healthy adults underwent MRI-scanning. Basal forebrain volume was assessed using voxel-based morphometry and a cytoarchitectonic atlas of cholinergic nuclei. Cortical acetylcholinesterase (AChE) activity was measured using MP4A-PET. Results: Cortical AChE activity and nucleus basalis of Meynert (Ch4 area) volume were significantly decreased in MCI. The extent of the cholinergic deficit varied considerably across patients. Greater volumes of anterior basal forebrain nuclei (Ch1/2 area) and younger age (Spearman’s rho (17) = –0.596, 95% -CI [–0.905, –0.119] and 0.593, 95% -CI [0.092, 0.863])) were associated with a greater cholinergic deficit. Conclusion: Data suggest that less atrophy of the Ch1/2 area and younger age are associated with a more significant cholinergic deficit in MCI due to AD. Further investigations are warranted to determine if the individual response to cholinomimetics can be inferred from these measures.
Collapse
Affiliation(s)
- Nils Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
- Max-Planck-Institute for Metabolism Research, Cologne, Cologne, Germany
| | - Lara-Sophia David
- Department of Neurology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Michel J. Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Movement Disorders Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Markus Dietlein
- Department of Nuclear Medicine, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Marc Tittgemeyer
- Max-Planck-Institute for Metabolism Research, Cologne, Cologne, Germany
| | - Bernd Neumaier
- Max-Planck-Institute for Metabolism Research, Cologne, Cologne, Germany
- Nuclear Chemistry, Institute of Neuroscience and Medicine (INM-5), Research Center Jülich, Jülich, Germany
- Institute for Radiochemistry and Experimental Molecular Imaging, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Oezguer A. Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Juraj Kukolja
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
35
|
Lindberg I, Shu Z, Lam H, Helwig M, Yucer N, Laperle A, Svendsen C, Di Monte DA, Maidment NT. The proSAAS Chaperone Provides Neuroprotection and Attenuates Transsynaptic α-Synuclein Spread in Rodent Models of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1463-1478. [PMID: 35527562 PMCID: PMC9731515 DOI: 10.3233/jpd-213053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Parkinson's disease involves aberrant aggregation of the synaptic protein alpha-synuclein (aSyn) in the nigrostriatal tract. We have previously shown that proSAAS, a small neuronal chaperone, blocks aSyn-induced dopaminergic cytotoxicity in primary nigral cultures. OBJECTIVE To determine if proSAAS overexpression is neuroprotective in animal models of Parkinson's disease. METHODS proSAAS- or GFP-encoding lentivirus was injected together with human aSyn-expressing AAV unilaterally into the substantia nigra of rats and motor asymmetry assessed using a battery of motor performance tests. Dopamine neuron survival was assessed by nigral stereology and striatal tyrosine hydroxylase (TH) densitometry. To examine transsynaptic spread of aSyn, aSyn AAV was injected into the vagus of mice in the presence of AAVs encoding either GFP or proSAAS; the spread of aSyn-positive neurites into rostral nuclei was quantified following immunohistochemistry. RESULTS Coinjection of proSAAS-encoding lentivirus profoundly reduced the motor asymmetry caused by unilateral nigral AAV-mediated human aSyn overexpression. This was accompanied by significant amelioration of the human aSyn-induced loss of both nigral TH-positive cells and striatal TH-positive terminals, demonstrating clear proSAAS-mediated protection of the nigrostriatal tract. ProSAAS overexpression reduced human aSyn protein levels in nigra and striatum and reduced the loss of TH protein in both regions. Following vagal administration of human aSyn-encoding AAV, the number of human aSyn-positive neurites in the pons and caudal midbrain was considerably reduced in mice coinjected with proSAAS-, but not GFP-encoding AAV, supporting proSAAS-mediated blockade of transsynaptic aSyn transmission. CONCLUSION The proSAAS chaperone may represent a promising target for therapeutic development in Parkinson's disease.
Collapse
Affiliation(s)
- Iris Lindberg
- University of Maryland-Baltimore;,To whom correspondence should be addressed: Iris Lindberg, Ph.D., Department of Anatomy and Neurobiology, University of Maryland Medical School, University of Maryland-Baltimore, Baltimore, MD 21201, Phone: (410) 7064778, and Nigel T. Maidment, Ph.D., Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles CA 90024, Phone: (310) 206-7767,
| | - Zhan Shu
- University of California-Los Angeles
| | - Hoa Lam
- University of California-Los Angeles
| | | | - Nur Yucer
- Cedars-Sinai Medical Center, Los Angeles
| | | | | | | | - Nigel T. Maidment
- University of California-Los Angeles;,To whom correspondence should be addressed: Iris Lindberg, Ph.D., Department of Anatomy and Neurobiology, University of Maryland Medical School, University of Maryland-Baltimore, Baltimore, MD 21201, Phone: (410) 7064778, and Nigel T. Maidment, Ph.D., Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles CA 90024, Phone: (310) 206-7767,
| |
Collapse
|
36
|
Bergström S, Öijerstedt L, Remnestål J, Olofsson J, Ullgren A, Seelaar H, van Swieten JC, Synofzik M, Sanchez-Valle R, Moreno F, Finger E, Masellis M, Tartaglia C, Vandenberghe R, Laforce R, Galimberti D, Borroni B, Butler CR, Gerhard A, Ducharme S, Rohrer JD, Månberg A, Graff C, Nilsson P. A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers: a GENFI study. Mol Neurodegener 2021; 16:79. [PMID: 34838088 PMCID: PMC8626910 DOI: 10.1186/s13024-021-00499-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND A detailed understanding of the pathological processes involved in genetic frontotemporal dementia is critical in order to provide the patients with an optimal future treatment. Protein levels in CSF have the potential to reflect different pathophysiological processes in the brain. We aimed to identify and evaluate panels of CSF proteins with potential to separate symptomatic individuals from individuals without clinical symptoms (unaffected), as well as presymptomatic individuals from mutation non-carriers. METHODS A multiplexed antibody-based suspension bead array was used to analyse levels of 111 proteins in CSF samples from 221 individuals from families with genetic frontotemporal dementia. The data was explored using LASSO and Random forest. RESULTS When comparing affected individuals with unaffected individuals, 14 proteins were identified as potentially important for the separation. Among these, four were identified as most important, namely neurofilament medium polypeptide (NEFM), neuronal pentraxin 2 (NPTX2), neurosecretory protein VGF (VGF) and aquaporin 4 (AQP4). The combined profile of these four proteins successfully separated the two groups, with higher levels of NEFM and AQP4 and lower levels of NPTX2 in affected compared to unaffected individuals. VGF contributed to the models, but the levels were not significantly lower in affected individuals. Next, when comparing presymptomatic GRN and C9orf72 mutation carriers in proximity to symptom onset with mutation non-carriers, six proteins were identified with a potential to contribute to a separation, including progranulin (GRN). CONCLUSION In conclusion, we have identified several proteins with the combined potential to separate affected individuals from unaffected individuals, as well as proteins with potential to contribute to the separation between presymptomatic individuals and mutation non-carriers. Further studies are needed to continue the investigation of these proteins and their potential association to the pathophysiological mechanisms in genetic FTD.
Collapse
Affiliation(s)
- Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Linn Öijerstedt
- Swedish FTD Initiative, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Unit of Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Julia Remnestål
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Jennie Olofsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Abbe Ullgren
- Swedish FTD Initiative, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Unit of Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | | | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Raquel Sanchez-Valle
- Alzheimer’s disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa Spain
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Daniela Galimberti
- Fondazione IRCCS Ospedale Policlinico, Milan, Italy
- University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Chris R. Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg- Essen, Duisburg, Germany
| | - Simon Ducharme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Québec Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec Canada
| | - Jonathan D. Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Caroline Graff
- Swedish FTD Initiative, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Unit of Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| |
Collapse
|
37
|
Brockmann K, Quadalti C, Lerche S, Rossi M, Wurster I, Baiardi S, Roeben B, Mammana A, Zimmermann M, Hauser AK, Deuschle C, Schulte C, Waniek K, Lachmann I, Sjödin S, Brinkmalm A, Blennow K, Zetterberg H, Gasser T, Parchi P. Association between CSF alpha-synuclein seeding activity and genetic status in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathol Commun 2021; 9:175. [PMID: 34717775 PMCID: PMC8556894 DOI: 10.1186/s40478-021-01276-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
The clinicopathological heterogeneity in Lewy-body diseases (LBD) highlights the need for pathology-driven biomarkers in-vivo. Misfolded alpha-synuclein (α-Syn) is a lead candidate based on its crucial role in disease pathophysiology. Real-time quaking-induced conversion (RT-QuIC) analysis of CSF has recently shown high sensitivity and specificity for the detection of misfolded α-Syn in patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In this study we performed the CSF RT-QuIC assay in 236 PD and 49 DLB patients enriched for different genetic forms with mutations in GBA, parkin, PINK1, DJ1, and LRRK2. A subgroup of 100 PD patients was also analysed longitudinally. We correlated kinetic seeding parameters of RT-QuIC with genetic status and CSF protein levels of molecular pathways linked to α-Syn proteostasis. Overall, 85% of PD and 86% of DLB patients showed positive RT-QuIC α-Syn seeding activity. Seeding profiles were significantly associated with mutation status across the spectrum of genetic LBD. In PD patients, we detected positive α-Syn seeding in 93% of patients carrying severe GBA mutations, in 78% with LRRK2 mutations, in 59% carrying heterozygous mutations in recessive genes, and in none of those with bi-allelic mutations in recessive genes. Among PD patients, those with severe GBA mutations showed the highest seeding activity based on RT-QuIC kinetic parameters and the highest proportion of samples with 4 out of 4 positive replicates. In DLB patients, 100% with GBA mutations showed positive α-Syn seeding compared to 79% of wildtype DLB. Moreover, we found an association between α-Syn seeding activity and reduced CSF levels of proteins linked to α-Syn proteostasis, specifically lysosome-associated membrane glycoprotein 2 and neurosecretory protein VGF. These findings highlight the value of α-Syn seeding activity as an in-vivo marker of Lewy-body pathology and support its use for patient stratification in clinical trials targeting α-Syn.
Collapse
|
38
|
Quinn JP, Kandigian SE, Trombetta BA, Arnold SE, Carlyle BC. VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases. Brain Commun 2021; 3:fcab261. [PMID: 34778762 PMCID: PMC8578498 DOI: 10.1093/braincomms/fcab261] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Neurosecretory protein VGF (non-acronymic) belongs to the granin family of neuropeptides. VGF and VGF-derived peptides have been repeatedly identified in well-powered and well-designed multi-omic studies as dysregulated in neurodegenerative and psychiatric diseases. New therapeutics is urgently needed for these devastating and costly diseases, as are new biomarkers to improve disease diagnosis and mechanistic understanding. From a list of 537 genes involved in Alzheimer's disease pathogenesis, VGF was highlighted by the Accelerating Medicines Partnership in Alzheimer's disease as the potential therapeutic target of greatest interest. VGF levels are consistently decreased in brain tissue and CSF samples from patients with Alzheimer's disease compared to controls, and its levels correlate with disease severity and Alzheimer's disease pathology. In the brain, VGF exists as multiple functional VGF-derived peptides. Full-length human VGF1-615 undergoes proteolytic processing by prohormone convertases and other proteases in the regulated secretory pathway to produce at least 12 active VGF-derived peptides. In cell and animal models, these VGF-derived peptides have been linked to energy balance regulation, neurogenesis, synaptogenesis, learning and memory, and depression-related behaviours throughout development and adulthood. The C-terminal VGF-derived peptides, TLQP-62 (VGF554-615) and TLQP-21 (VGF554-574) have differential effects on Alzheimer's disease pathogenesis, neuronal and microglial activity, and learning and memory. TLQP-62 activates neuronal cell-surface receptors and regulates long-term hippocampal memory formation. TLQP-62 also prevents immune-mediated memory impairment, depression-like and anxiety-like behaviours in mice. TLQP-21 binds to microglial cell-surface receptors, triggering microglial chemotaxis and phagocytosis. These actions were reported to reduce amyloid-β plaques and decrease neuritic dystrophy in a transgenic mouse model of familial Alzheimer's disease. Expression differences of VGF-derived peptides have also been associated with frontotemporal lobar dementias, amyotrophic lateral sclerosis, Lewy body diseases, Huntington's disease, pain, schizophrenia, bipolar disorder, depression and antidepressant response. This review summarizes current knowledge and highlights questions for future investigation regarding the roles of VGF and its dysregulation in neurodegenerative and psychiatric disease. Finally, the potential of VGF and VGF-derived peptides as biomarkers and novel therapeutic targets for neurodegenerative and psychiatric diseases is highlighted.
Collapse
Affiliation(s)
- James P Quinn
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Savannah E Kandigian
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Bianca A Trombetta
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven E Arnold
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Becky C Carlyle
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Lleó A, Carmona-Iragui M, Videla L, Fernández S, Benejam B, Pegueroles J, Barroeta I, Altuna M, Valldeneu S, Xiao MF, Xu D, Núñez-Llaves R, Querol-Vilaseca M, Sirisi S, Bejanin A, Iulita MF, Clarimón J, Blesa R, Worley P, Alcolea D, Fortea J, Belbin O. VAMP-2 is a surrogate cerebrospinal fluid marker of Alzheimer-related cognitive impairment in adults with Down syndrome. Alzheimers Res Ther 2021; 13:119. [PMID: 34183050 PMCID: PMC8240298 DOI: 10.1186/s13195-021-00861-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is an urgent need for objective markers of Alzheimer's disease (AD)-related cognitive impairment in people with Down syndrome (DS) to improve diagnosis, monitor disease progression, and assess response to disease-modifying therapies. Previously, GluA4 and neuronal pentraxin 2 (NPTX2) showed limited potential as cerebrospinal fluid (CSF) markers of cognitive impairment in adults with DS. Here, we compare the CSF profile of a panel of synaptic proteins (Calsyntenin-1, Neuroligin-2, Neurexin-2A, Neurexin-3A, Syntaxin-1B, Thy-1, VAMP-2) to that of NPTX2 and GluA4 in a large cohort of subjects with DS across the preclinical and clinical AD continuum and explore their correlation with cognitive impairment. METHODS We quantified the synaptic panel proteins by selected reaction monitoring in CSF from 20 non-trisomic cognitively normal controls (mean age 44) and 80 adults with DS grouped according to clinical AD diagnosis (asymptomatic, prodromal AD or AD dementia). We used regression analyses to determine CSF changes across the AD continuum and explored correlations with age, global cognitive performance (CAMCOG), episodic memory (modified cued-recall test; mCRT) and CSF biomarkers, CSF Aβ42:40 ratio, CSF Aβ1-42, CSF p-tau, and CSF NFL. P values were adjusted for multiple testing. RESULTS In adults with DS, VAMP-2 was the only synaptic protein to correlate with episodic memory (delayed recall adj.p = .04) and age (adj.p = .0008) and was the best correlate of CSF Aβ42:40 (adj.p = .0001), p-tau (adj.p < .0001), and NFL (adj.p < .0001). Compared to controls, mean VAMP-2 levels were lower in asymptomatic adults with DS only (adj.p = .02). CSF levels of Neurexin-3A, Thy-1, Neurexin-2A, Calysntenin-1, Neuroligin-2, GluA4, and Syntaxin-1B all strongly correlated with NPTX2 (p < .0001), which was the only synaptic protein to show reduced CSF levels in DS at all AD stages compared to controls (adj.p < .002). CONCLUSION These data show proof-of-concept for CSF VAMP-2 as a potential marker of synapse degeneration that correlates with CSF AD and axonal degeneration markers and cognitive performance.
Collapse
Affiliation(s)
- Alberto Lleó
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Maria Carmona-Iragui
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Laura Videla
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Susana Fernández
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Bessy Benejam
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Jordi Pegueroles
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Isabel Barroeta
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Miren Altuna
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Silvia Valldeneu
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Desheng Xu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Raúl Núñez-Llaves
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Marta Querol-Vilaseca
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Sònia Sirisi
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Alexandre Bejanin
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - M Florencia Iulita
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
| | - Jordi Clarimón
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Rafael Blesa
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Paul Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Daniel Alcolea
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Juan Fortea
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Olivia Belbin
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau), Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, c/Sant Quintí, 77-79, 08025, Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
40
|
Lerche S, Sjödin S, Brinkmalm A, Blennow K, Wurster I, Roeben B, Zimmermann M, Hauser AK, Liepelt-Scarfone I, Waniek K, Lachmann I, Gasser T, Zetterberg H, Brockmann K. CSF Protein Level of Neurotransmitter Secretion, Synaptic Plasticity, and Autophagy in PD and DLB. Mov Disord 2021; 36:2595-2604. [PMID: 34180557 DOI: 10.1002/mds.28704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Molecular pathways associated with α-synuclein proteostasis have been detected in genetic studies and in cell models and include autophagy, ubiquitin-proteasome system, mitochondrial homeostasis, and synaptic plasticity. However, we lack biomarkers that are representative for these pathways in human biofluids. OBJECTIVE The objective of this study was to evaluate CSF protein profiles of pathways related to α-synuclein proteostasis. METHODS We assessed CSF protein profiles associated with neurotransmitter secretion, synapse plasticity, and autophagy in 2 monocentric cohorts with α-synucleinopathy (385 PD patients and 67 DLB patients). We included 80 PD patients and 17 DLB patients with variants in the glucocerebrosidase gene to serve as proxy for accelerated α-synuclein pathology with pronounced clinical trajectories. RESULTS (1) Proteins associated with neurotransmitter secretion, synaptic plasticity, and endolysosomal autophagy were lower in PD and DLB patients compared with healthy controls. (2) These patterns were more pronounced in DLB than in PD patients, accentuated by GBA variant status in both entities. (3) CSF levels of these proteins were positively associated with CSF levels of total α-synuclein, with lower levels of proteostasis proteins related to lower levels of total α-synuclein. (4) These findings could be confirmed longitudinally. PD patients with low CSF profiles of proteostasis proteins showed lower CSF levels of α-synuclein longitudinally compared with PD patients with a normal proteostasis profile. CONCLUSION CSF proteins associated with neurotransmitter secretion, synaptic plasticity, and endolysosomal autophagy might serve as biomarkers related to α-synuclein proteostasis in PD and DLB. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stefanie Lerche
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Simon Sjödin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Isabel Wurster
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Benjamin Roeben
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Milan Zimmermann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Ann-Kathrin Hauser
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Inga Liepelt-Scarfone
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | | | | | - Thomas Gasser
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
41
|
Jin Y, Vadukul DM, Gialama D, Ge Y, Thrush R, White JT, Aprile FA. The Diagnostic Potential of Amyloidogenic Proteins. Int J Mol Sci 2021; 22:4128. [PMID: 33923609 PMCID: PMC8074075 DOI: 10.3390/ijms22084128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are a highly prevalent class of diseases, whose pathological mechanisms start before the appearance of any clear symptoms. This fact has prompted scientists to search for biomarkers that could aid early treatment. These currently incurable pathologies share the presence of aberrant aggregates called amyloids in the nervous system, which are composed of specific proteins. In this review, we discuss how these proteins, their conformations and modifications could be exploited as biomarkers for diagnostic purposes. We focus on proteins that are associated with the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and frontotemporal dementia. We also describe current challenges in detection, the most recent techniques with diagnostic potentials and possible future developments in diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Antonio Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (Y.J.); (D.M.V.); (D.G.); (Y.G.); (R.T.); (J.T.W.)
| |
Collapse
|
42
|
Combi R, Salsone M, Villa C, Ferini-Strambi L. Genetic Architecture and Molecular, Imaging and Prodromic Markers in Dementia with Lewy Bodies: State of the Art, Opportunities and Challenges. Int J Mol Sci 2021; 22:3960. [PMID: 33921279 PMCID: PMC8069386 DOI: 10.3390/ijms22083960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is one of the most common causes of dementia and belongs to the group of α-synucleinopathies. Due to its clinical overlap with other neurodegenerative disorders and its high clinical heterogeneity, the clinical differential diagnosis of DLB from other similar disorders is often difficult and it is frequently underdiagnosed. Moreover, its genetic etiology has been studied only recently due to the unavailability of large cohorts with a certain diagnosis and shows genetic heterogeneity with a rare contribution of pathogenic mutations and relatively common risk factors. The rapid increase in the reported cases of DLB highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods proposed by the International DLB consortium rely on a list of criteria that comprises both clinical observations and the use of biomarkers. Herein, we summarize the up-to-now reported knowledge on the genetic architecture of DLB and discuss the use of prodromal biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.
Collapse
Affiliation(s)
- Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Maria Salsone
- Institute of Molecular Bioimaging and Physiology, National Research Council, 20054 Segrate (MI), Italy;
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
- Department of Clinical Neurosciences, “Vita-Salute” San Raffaele University, 20127 Milan, Italy
| |
Collapse
|
43
|
Pathologically Decreased CSF Levels of Synaptic Marker NPTX2 in DLB Are Correlated with Levels of Alpha-Synuclein and VGF. Cells 2020; 10:cells10010038. [PMID: 33383752 PMCID: PMC7824459 DOI: 10.3390/cells10010038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Dementia with Lewy bodies (DLB) is a neurodegenerative disease where synaptic loss and reduced synaptic integrity are important neuropathological substrates. Neuronal Pentraxin 2(NPTX2) is a synaptic protein that drives the GABAergic inhibitory circuit. Our aim was to examine if NPTX2 cerebral spinal fluid (CSF) levels in DLB patients were altered and how these levels related to other synaptic protein levels and to cognitive function and decline. Methods: NPTX2, VGF, and α-synuclein levels were determined in CSF of cognitive healthy (n = 27), DLB (n = 48), and AD (n = 20) subjects. Multiple cognitive domains were tested, and data were compared using linear models. Results: Decreased NPTX2 levels were observed in DLB (median = 474) and AD (median = 453) compared to cognitive healthy subjects (median = 773). Strong correlations between NPTX2, VGF, and α-synuclein were observed dependent on diagnosis. Combined, these markers had a high differentiating power between DLB and cognitive healthy subjects (AUC = 0.944). Clinically, NPTX2 levels related to global cognitive function and cognitive decline in the visual spatial domain. Conclusion: NPTX2 CSF levels were reduced in DLB and closely correlated to decreased VGF and α-synuclein CSF levels. CSF NPTX2 levels in DLB related to decreased functioning in the visual spatial domain.
Collapse
|
44
|
Álvarez I, Diez-Fairen M, Aguilar M, González JM, Ysamat M, Tartari JP, Carcel M, Alonso A, Brix B, Arendt P, Pastor P. Added value of cerebrospinal fluid multimarker analysis in diagnosis and progression of dementia. Eur J Neurol 2020; 28:1142-1152. [PMID: 33236496 DOI: 10.1111/ene.14658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Recently, some emerging cerebrospinal fluid (CSF) markers have been proposed as diagnostic tools for Alzheimer disease (AD) that can have an effect on disease progression. We analyze the accuracy of these CSF markers for diagnosis of AD in reference to brain amyloid positron emission tomography (PET). We also investigated whether they help in differentiating AD from other dementias and examined their influence in tracing the progression to dementia. METHODS Amyloid-β (Aβ) 1-42, total tau (t-tau), phosphorylated tau, Aβ40 , Aβ38 , beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), neurogranin (ng), phosphorylated neurofilament heavy-chain, and α-synuclein (α-syn) CSF levels were analyzed in 319 subjects, among whom 57 also underwent an amyloid PET scan. We also analyzed longitudinal clinical data from 239 subjects. RESULTS Emerging CSF markers, especially ng/BACE-1 ratio (area under the curve = 0.77) and their combinations with core AD CSF markers (all AUCs >0.85), showed high accuracy to discriminate amyloid PET positivity. Subjects with AD had higher CSF BACE-1, ng, and α-syn levels than those with non-AD dementia. CSF t-tau/α-syn ratio was higher in subjects with dementia with Lewy bodies than in those with frontotemporal dementia. Most emerging/core AD ratios predicted a faster conversion from mild cognitive impairment (MCI) stage to AD and appeared to be helpful when core AD CSF markers were discordant. In addition, the rate of cognitive decline was associated with all CSF core AD markers, several emerging/core AD two-marker ratios, and CSF ng levels. CONCLUSIONS These results suggest that emerging biomarkers in conjunction with core AD markers improve diagnosis of AD, are associated with the conversion from MCI into AD, and predict a faster progression of dementia.
Collapse
Affiliation(s)
- Ignacio Álvarez
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Monica Diez-Fairen
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Miquel Aguilar
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Jose Manuel González
- Centre de Tecnologia Diagnòstica, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Montse Ysamat
- Centre de Tecnologia Diagnòstica, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Juan Pablo Tartari
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Maria Carcel
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Britta Brix
- Institute of Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany
| | - Philipp Arendt
- Institute of Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| |
Collapse
|
45
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|