1
|
Chang Y, Chang M, Bao X, Dong C. Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment. Bioact Mater 2024; 42:379-403. [PMID: 39308543 PMCID: PMC11415837 DOI: 10.1016/j.bioactmat.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Adoptive immunotherapy, notably involving chimeric antigen receptor (CAR)-T cells, has obtained Food and Drug Administration (FDA) approval as a treatment for various hematological malignancies, demonstrating promising preclinical efficacy against cancers. However, the intricate and resource-intensive autologous cell processing, encompassing collection, expansion, engineering, isolation, and administration, hamper the efficacy of this therapeutic modality. Furthermore, conventional CAR T therapy is presently confined to addressing solid tumors due to impediments posed by physical barriers, the potential for cytokine release syndrome, and cellular exhaustion induced by the immunosuppressive and heterogeneous tumor microenvironment. Consequently, a strategic integration of adoptive immunotherapy with synergistic multimodal treatments, such as chemotherapy, radiotherapy, and vaccine therapy etc., emerges as a pivotal approach to surmount these inherent challenges. This collaborative strategy holds the key to addressing the limitations delineated above, thereby facilitating the realization of more precise personalized therapies characterized by heightened therapeutic efficacy. Such synergistic strategy not only serves to mitigate the constraints associated with adoptive immunotherapy but also fosters enhanced clinical applicability, thereby advancing the frontiers of therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Mingyang Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
2
|
Xia YY, Chi KH, Liao AT, Lee JJ. Limited Clinical Efficacy with Potential Adverse Events in a Pilot Study of Autologous Adoptive Cell Therapy in Canine Oral Malignant Melanoma. Vet Sci 2024; 11:150. [PMID: 38668417 PMCID: PMC11053650 DOI: 10.3390/vetsci11040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/29/2024] Open
Abstract
Adoptive cell therapy (ACT) has been studied in several human and canine cancers with some promising clinical outcomes but not in canine oral malignant melanoma (OMM). Our manuscript aimed to explore one kind of ACT, the ex vivo-expanded autologous immune cell infusion in canine OMM, as this tumor remains a treatment dilemma. The study recruited dogs with histopathological diagnoses of oral malignant melanoma, generated their peripheral blood mononuclear cells, expanded them into predominantly non-B non-T cells via stimulations of IL-15, IL-2, and IL-21, and then re-infused the cells into tumor-bearing dogs. Ten dogs were enrolled; three dogs did not report any adverse events; three had a mildly altered appetite; one had a mildly increased liver index, while the other three developed suspected anaphylaxis at different levels. The median progression-free interval was 49 days. Dogs with progressive disease during treatment had a shorter survival. This pilot study indicates limited efficacy with potential adverse events of this ACT. Most recruited patients were in a later stage and had macroscopic disease, which might affect the treatment efficacy. Further exploration of this cell therapy in an adjuvant setting, with adequate protocol modification and standardization, could still be considered.
Collapse
Affiliation(s)
- Yuan-Yuan Xia
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipe 10617, Taiwan; (Y.-Y.X.); (A.T.L.)
- National Taiwan University Veterinary Hospital, College of Bioresources and Agriculture, National Taiwan University, Taipei 10672, Taiwan
| | - Kwan-Hwa Chi
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Radiation Therapy & Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Albert Taiching Liao
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipe 10617, Taiwan; (Y.-Y.X.); (A.T.L.)
| | - Jih-Jong Lee
- National Taiwan University Veterinary Hospital, College of Bioresources and Agriculture, National Taiwan University, Taipei 10672, Taiwan
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
3
|
Stevenson VB, Klahn S, LeRoith T, Huckle WR. Canine melanoma: A review of diagnostics and comparative mechanisms of disease and immunotolerance in the era of the immunotherapies. Front Vet Sci 2023; 9:1046636. [PMID: 36686160 PMCID: PMC9853198 DOI: 10.3389/fvets.2022.1046636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Melanomas in humans and dogs are highly malignant and resistant to therapy. Since the first development of immunotherapies, interest in how the immune system interacts within the tumor microenvironment and plays a role in tumor development, progression, or remission has increased. Of major importance are tumor-infiltrating lymphocytes (TILs) where distribution and cell frequencies correlate with survival and therapeutic outcomes. Additionally, efforts have been made to identify subsets of TILs populations that can contribute to a tumor-promoting or tumor-inhibiting environment, such as the case with T regulatory cells versus CD8 T cells. Furthermore, cancerous cells have the capacity to express certain inhibitory checkpoint molecules, including CTLA-4, PD-L1, PD-L2, that can suppress the immune system, a property associated with poor prognosis, a high rate of recurrence, and metastasis. Comparative oncology brings insights to comprehend the mechanisms of tumorigenesis and immunotolerance in humans and dogs, contributing to the development of new therapeutic agents that can modulate the immune response against the tumor. Therapies that target signaling pathways such as mTOR and MEK/ERK that are upregulated in cancer, or immunotherapies with different approaches such as CAR-T cells engineered for specific tumor-associated antigens, DNA vaccines using human tyrosinase or CGSP-4 antigen, anti-PD-1 or -PD-L1 monoclonal antibodies that intercept their binding inhibiting the suppression of the T cells, and lymphokine-activated killer cells are already in development for treating canine tumors. This review provides concise and recent information about diagnosis, comparative mechanisms of tumor development and progression, and the current status of immunotherapies directed toward canine melanoma.
Collapse
Affiliation(s)
- Valentina B. Stevenson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Shawna Klahn
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - William R. Huckle
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Pellin MA. The Use of Oncept Melanoma Vaccine in Veterinary Patients: A Review of the Literature. Vet Sci 2022; 9:597. [PMID: 36356074 PMCID: PMC9693055 DOI: 10.3390/vetsci9110597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 04/28/2024] Open
Abstract
The Oncept melanoma vaccine is xenogeneic DNA vaccine targeting tyrosinase. It is USDA approved for treatment of stage II to III canine oral melanoma and is also used off-label for melanomas arising in other locations and in other species. While the vaccine appears safe, the published data is mixed as to whether it provides a survival benefit, and the use of the vaccine is somewhat controversial in the veterinary oncology community. In this paper, the published literature describing the use of Oncept is reviewed and evaluated.
Collapse
Affiliation(s)
- MacKenzie A Pellin
- School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
5
|
Dog-human translational genomics: state of the art and genomic resources. J Appl Genet 2022; 63:703-716. [PMID: 36074326 DOI: 10.1007/s13353-022-00721-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Innovative models for medical research are strongly required nowadays. Convincing evidence supports dog as the most suitable spontaneous model for several human genetic diseases. Decades of studies on dog genome allowed the identification of hundreds of mutations causing genetic disorders, many of which are proposed as counterparts responsible for human diseases. Traditionally, the murine model is the most extensively used in human translational research. However, this species shows large physiological differences from humans, and it is kept under a controlled artificial environment. Conversely, canine genetic disorders often show pathophysiological and clinical features highly resembling the human counterpart. In addition, dogs share the same environment with humans; therefore, they are naturally exposed to many risk factors. Thus, different branches of translational medicine aim to study spontaneously occurring diseases in dogs to provide a more reliable model for human disorders. This review offers a comprehensive overview of the knowledge and resources available today for all the researchers involved in the field of dog-human translational medicine. Some of the main successful examples from dog-human translational genomics are reported, such as the canine association studies which helped to identify the causal mutation in the human counterpart. We also illustrated the ongoing projects aiming to create public canine big datasets. Finally, specific online databases are discussed along with several information resources that can speed up clinical translational research.
Collapse
|
6
|
Razmara AM, Judge SJ, Gingrich AA, Cruz SM, Culp WTN, Kent MS, Rebhun RB, Canter RJ. Natural Killer and T Cell Infiltration in Canine Osteosarcoma: Clinical Implications and Translational Relevance. Front Vet Sci 2021; 8:771737. [PMID: 34869744 PMCID: PMC8635198 DOI: 10.3389/fvets.2021.771737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Metastatic osteosarcoma has a bleak prognosis in both humans and dogs, and there have been minimal therapeutic advances in recent decades to improve outcomes. Naturally occurring osteosarcoma in dogs is shown to be a highly suitable model for human osteosarcoma, and limited data suggest the similarities between species extend into immune responses to cancer. Studies show that immune infiltrates in canine osteosarcoma resemble those of human osteosarcoma, and the analysis of tumor immune constituents as predictors of therapeutic response is a promising direction for future research. Additionally, clinical studies in dogs have piloted the use of NK transfer to treat osteosarcoma and can serve as valuable precursors to clinical trials in humans. Cytotoxic lymphocytes in dogs and humans with osteosarcoma have increased activation and exhaustion markers within tumors compared with blood. Accordingly, NK and T cells have complex interactions among cancer cells and other immune cells, which can lead to changes in pathways that work both for and against the tumor. Studies focused on NK and T cell interactions within the tumor microenvironment can open the door to targeted therapies, such as checkpoint inhibitors. Specifically, PD-1/PD-L1 checkpoint expression is conserved across tumors in both species, but further characterization of PD-L1 in canine osteosarcoma is needed to assess its prognostic significance compared with humans. Ultimately, a comparative understanding of T and NK cells in the osteosarcoma tumor microenvironment in both dogs and humans can be a platform for translational studies that improve outcomes in both dogs and humans with this frequently aggressive disease.
Collapse
Affiliation(s)
- Aryana M Razmara
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sean J Judge
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Alicia A Gingrich
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sylvia M Cruz
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - William T N Culp
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Robert J Canter
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
IFN-λ Modulates the Migratory Capacity of Canine Mammary Tumor Cells via Regulation of the Expression of Matrix Metalloproteinases and Their Inhibitors. Cells 2021; 10:cells10050999. [PMID: 33922837 PMCID: PMC8145483 DOI: 10.3390/cells10050999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
Interactions between neoplastic and immune cells taking place in tumors drive cancer regulatory mechanisms both in humans and animals. IFN-λ, a potent antiviral factor, is also secreted in the tumor; however, its role in tumor development is still unclear. In our study, we investigate the influence of IFN-λ on the canine mammary tumor (CMT) cell survival and their metastatic potential in vitro. First, we examined, by Western blot, the expression of the IFN-λ receptor complex in three CMT cell lines (P114, CMT-U27 and CMT-U309). We showed that only two cell lines (P114 and CMT-U27) express both (IL-28RA and IL-10Rb) receptor subunits and respond to IFN-λ treatment by STAT phosphorylation and the expression of interferon-stimulated genes. Using MTT, crystal violet and annexin-V assays, we showed a minimal role of IFN-λ in CMT viability. However, IFN-λ administration had a contradictory effect on cell migration in the scratch test, namely, it increased P114 and decreased CMT-U27 motility. Moreover, we demonstrated that this process is related to the expression of extracellular matrix metalloproteinases and their inhibitors; furthermore, it is independent of Akt and ERK signaling pathways. To conclude, we showed that IFN-λ activity is reliant on the expression of two receptor subunits and tumor type, but further investigations are needed.
Collapse
|
8
|
Functional Expression of TRPV1 Ion Channel in the Canine Peripheral Blood Mononuclear Cells. Int J Mol Sci 2021; 22:ijms22063177. [PMID: 33804707 PMCID: PMC8003907 DOI: 10.3390/ijms22063177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
TRPV1, known as a capsaicin receptor, is the best-described transient receptor potential (TRP) ion channel. Recently, it was shown to be expressed by non-excitable cells such as lymphocytes. However, the data regarding the functional expression of the TRPV1 channel in the immune cells are often contradictory. In the present study, we performed a phylogenetical analysis of the canine TRP ion channels, we assessed the expression of TRPV1 in the canine peripheral blood mononuclear cells (PBMC) by qPCR and Western blot, and we determined the functionality of TRPV1 by whole-cell patch-clamp recordings and calcium assay. We found high expression of TRPV2, -M2, and -M7 in the canine PBMCs, while expression of TRPV1, -V4 and, -M5 was relatively low. We confirmed that TRPV1 is expressed on the protein level in the PBMC and it localizes in the plasma membrane. The whole-cell patch-clamp recording revealed that capsaicin application caused a significant increase in the current density. Similarly, the results from the calcium assay show a dose-dependent increase in intracellular calcium level in the presence of capsaicin that was partially abolished by capsazepine. Our study confirms the expression of TRPV1 ion channel on both mRNA and protein levels in the canine PBMC and indicates that the ion channel is functional.
Collapse
|
9
|
Szopa IM, Granica M, Bujak JK, Łabędź A, Błaszczyk M, Paulos CM, Majchrzak-Kuligowska K. Effective Activation and Expansion of Canine Lymphocytes Using a Novel Nano-Sized Magnetic Beads Approach. Front Immunol 2021; 12:604066. [PMID: 33679741 PMCID: PMC7933476 DOI: 10.3389/fimmu.2021.604066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Expansion protocols for human T lymphocytes using magnetic beads, which serve as artificial antigen presenting cells (aAPCs), is well-studied. Yet, the efficacy of magnetic beads for propagation and functionality of peripheral blood lymphocytes (PBLs) isolated from companion dogs still remains limited. Domestic dog models are important in immuno-oncology field. Thus, we built the platform for induction of canine PBLs function, proliferation and biological activity using nano-sized magnetic beads (termed as MicroBeads) coated with anti-canine CD3 and CD28 antibodies. Herein we reveal that activation of canine PBLs via MicroBeads induces a range of genes involved in immediate-early response to T cell activation in dogs. Furthermore, canine T lymphocytes are effectively activated by MicroBeads, as measured by cluster formation and induction of activation marker CD25 on canine T cells as quickly as 24 h post stimulation. Similar to human T cells, canine PBLs require lower activation signal strength for efficient proliferation and expansion, as revealed by titration studies using a range of MicroBeads in the culture. Additionally, the impact of temperature was assessed in multiple stimulation settings, showing that both 37°C and 38.5°C are optimal for the expansion of canine T cells. In contrast to stimulation using plant mitogen Concanavalin A (ConA), MicroBead-based activation did not increase activation-induced cell death. In turn, MicroBeads supported the propagation of T cells with an effector memory phenotype that secreted substantial IL-2 and IFN-γ. Thus, MicroBeads represent an accessible and affordable tool for conducting immunological studies on domestic dog models. Similarities in inducing intracellular signaling pathways further underscore the importance of this model in comparative medicine. Presented herein MicroBead-based expansion platforms for canine PBLs may benefit adoptive immunotherapy in dogs and facilitate the design of next-generation clinical trials in humans.
Collapse
Affiliation(s)
- Iwona Monika Szopa
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Monika Granica
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Joanna Katarzyna Bujak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agata Łabędź
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Maciej Błaszczyk
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Chrystal Mary Paulos
- Department of Surgery, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Kinga Majchrzak-Kuligowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Silva EVDS, Nascente EDP, Miguel MP, Alves CEF, Moura VMBDD. Elucidating tumor immunosurveillance and immunoediting: a comprehensive review. CIÊNCIA ANIMAL BRASILEIRA 2021. [DOI: 10.1590/1809-6891v22e-68544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract The action of the immune system against neoplastic diseases has become one of the main sources of research. The biological pathways of this system are known to contribute in limiting the progression and elimination of the tumor, and are delineated by concepts and mechanisms of immunosurveillance and immunoediting. Immunosurveillance is considered the process by which the immune system recognizes and inhibits the neoplastic process. The concept of immunoediting arises in the sense that immune system is able to shape the antigenic profile of the tumor due to selective pressure, based on the stages of tumor elimination, balance and evasion. The immune response occurs against tumor antigens and changes in the tumor microenvironment, involving different components of the innate immune system, such as T cells, natural Killer cells, B lymphocytes and macrophages. In this sense, knowing these concepts and understanding their respective mechanisms becomes essential in the investigation of new strategies for cancer prevention and cure. Thus, this review presents historical aspects and definitions of immunosurveillance and tumor immunoediting, with emphasis on its importance and applicability, such as on the different methods used in immunotherapy.
Collapse
|
11
|
A Review of Immunotherapeutic Strategies in Canine Malignant Melanoma. Vet Sci 2019; 6:vetsci6010015. [PMID: 30759787 PMCID: PMC6466282 DOI: 10.3390/vetsci6010015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
In dogs, melanomas are relatively common tumors and the most common form of oral malignancy. Biological behavior is highly variable, usually aggressive, and frequently metastatic, with reported survival times of three months for oral or mucosal melanomas in advanced disease stages. Classical clinical management remains challenging; thus, novel and more efficacious treatment strategies are needed. Evidence-based medicine supports the role of the immune system to treat neoplastic diseases. Besides, immunotherapy offers the possibility of a precise medicinal approach to treat cancer. In recent years, multiple immunotherapeutic strategies have been developed, and are now recognized as a pillar of treatment. In addition, dogs represent a good model for translational medicine purposes. This review will cover the most relevant immunotherapeutic strategies for the treatment of canine malignant melanoma, divided among five different categories, namely, monoclonal antibodies, nonspecific immunotherapy activated by bacteria, vaccines, gene therapy, and lymphokine-activated killer cell therapy.
Collapse
|