1
|
Dotsenko A, Denisenko Y, Zorov I, Rozhkova A, Shashkov I. N-linked glycosylation affects catalytic parameters and fluctuation of the active center of Aspergillus awamori exo-inulinase. Protein Expr Purif 2025; 226:106613. [PMID: 39357631 DOI: 10.1016/j.pep.2024.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Heterogeneous expression of enzymes allows large-scale production with reduced costs. Changes in glycosylation often occur due to changes in the expression host. In the study, the catalytic and biochemical properties of Aspergillus awamori exo-inulinase 1 are compared for A. awamori and Penicillium verruculosum expression hosts. The tertiary structure contains seven sites of N-glycosylation, with two of them located near the active center. If expressed in P. verruculosum, the enzyme was four times less glycosylated and two times more active toward sucrose, raffinose, and stachyose due to an increase in kcat. These substrates with a short chain of 2-4 monosaccharide units were used to characterize the interaction of the substrate with the amino acid residues in the active center while preventing the interaction of the substrate with N-linked glycans. Molecular dynamics simulations showed an increase in the fluctuation of the active center with an increase in the length of N-linked glycans. The fluctuation of the residues N40 and Q57, which interact with the hydroxyl group O5 of the fructose unit in the -1 subsite of the active center, was increased by 1.6 times. The fluctuation of the residue W335, which interacts with the hydroxyl group O1 of the fructose unit together with the catalytic residue D41 and affects the torsion angle geometry of the substrate molecules, was increased by 1.5 times. The residue R188, which analogously to W335 affects the torsion angle geometry of the substrate molecules, was also among the affected residues with a 1.2-fold increase in the fluctuation.
Collapse
Affiliation(s)
- Anna Dotsenko
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Yury Denisenko
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Ivan Zorov
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Aleksandra Rozhkova
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Igor Shashkov
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
2
|
Wang Y, Wang Z, Yu H, Teng H, Wu J, Xu J, Yang L. Enhancing the Thermostability and Catalytic Activity of the Lipase from Rhizopus oryzae via Introducing N-Glycosylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14912-14921. [PMID: 38913033 DOI: 10.1021/acs.jafc.4c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Lipase from Rhizopus oryzae (ROL) exhibits remarkable sn-1,3 stereoselectivity and catalytic activity, but its poor thermostability limits its applications in the production of 1,3-dioleoyl-2-palmitoyl glycerol (OPO, a high-quality substitute for human milk fat). In this work, a semirational method was proposed to engineer the thermostability and catalytic activity of 4M (ROL mutant in our previous study). First, a computer-aided design is performed using 4M as a template, and N-glycosylation mutants are then recombinantly expressed and screened in Pichia pastoris, the optimal mutant N227 exhibited a half-life of 298.8 h at 45 °C, which is 7.23-folds longer than that of 4M. Its catalytic activity also reached 1043.80 ± 61.98 U/mg, representing a 29.2% increase compared to 4M (808.02 ± 47.02 U/mg). Molecular dynamics simulations of N227 suggested that the introduction of glycan enhanced the protein rigidity, while the strong hydrogen bonds formed between the glycan and the protein stabilized the lipase structure, thereby improving its thermostability. The acidolysis reaction between oleic acid (OA) and glycerol tripalmitate (PPP) was successfully carried out using immobilized N227, achieving a molar conversion rate of 90.2% for PPP. This engineering strategy guides the modification of lipases, while the glycomutants obtained in this study have potential applications in the biosynthesis of OPO.
Collapse
Affiliation(s)
- Yong Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
| | - Ziyuan Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, No. 733 Jianshe 3rd Road, Xiaoshan District, Hangzhou, Zhejiang 311200, China
| | - Huifen Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
| | - Haidong Teng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, No. 733 Jianshe 3rd Road, Xiaoshan District, Hangzhou, Zhejiang 311200, China
| | - Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, No. 733 Jianshe 3rd Road, Xiaoshan District, Hangzhou, Zhejiang 311200, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, No. 733 Jianshe 3rd Road, Xiaoshan District, Hangzhou, Zhejiang 311200, China
| |
Collapse
|
3
|
Liu Y, Hoppenbrouwers T, Wang Y, Xie Y, Wei X, Zhang H, Du G, Imam KMSU, Wichers H, Li Z, Bastiaan-Net S. Glycosylation Contributes to Thermostability and Proteolytic Resistance of rFIP-nha ( Nectria haematococca). Molecules 2023; 28:6386. [PMID: 37687215 PMCID: PMC10490071 DOI: 10.3390/molecules28176386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Glycosylation is an important post-translational modification of proteins, contributing to protein function, stability and subcellular localization. Fungal immunomodulatory proteins (FIPs) are a group of small proteins with notable immunomodulatory activity, some of which are glycoproteins. In this study, the impact of glycosylation on the bioactivity and biochemical characteristics of FIP-nha (from Nectria haematococca) is described. Three rFIP-nha glycan mutants (N5A, N39A, N5+39A) were constructed and expressed in Pichia pastoris to study the functionality of the specific N-glycosylation on amino acid N5 and N39. Their protein characteristics, structure, stability and activity were tested. WT and mutants all formed tetramers, with no obvious difference in crystal structures. Their melting temperatures were 82.2 °C (WT), 81.4 °C (N5A), 80.7 °C (N39A) and 80.1 °C (N5+39A), indicating that glycosylation improves thermostability of rFIP-nha. Digestion assays showed that glycosylation on either site improved pepsin resistance, while 39N-glycosylation was important for trypsin resistance. Based on the 3D structure and analysis of enzyme cleavage sites, we conclude that glycosylation might interfere with hydrolysis via increasing steric hindrance. WT and mutants exerted similar bioactivity on tumor cell metabolism and red blood cells hemagglutination. Taken together, these findings indicate that glycosylation of FIP-nha impacts its thermostability and digestion resistance.
Collapse
Affiliation(s)
- Yusi Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China; (Y.W.); (Y.X.); (X.W.); (H.Z.); (G.D.); (K.M.S.U.I.); (Z.L.)
- Wageningen Food and Biobased Research, Wageningen University and Research, 6708 WG Wageningen, The Netherlands; (T.H.); (H.W.)
- Laboratory of Food Chemistry, Wageningen University, 6708 WG Wageningen, The Netherlands
| | - Tamara Hoppenbrouwers
- Wageningen Food and Biobased Research, Wageningen University and Research, 6708 WG Wageningen, The Netherlands; (T.H.); (H.W.)
- Laboratory of Food Quality and Design, Wageningen University, 6708 WG Wageningen, The Netherlands
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China; (Y.W.); (Y.X.); (X.W.); (H.Z.); (G.D.); (K.M.S.U.I.); (Z.L.)
| | - Yingying Xie
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China; (Y.W.); (Y.X.); (X.W.); (H.Z.); (G.D.); (K.M.S.U.I.); (Z.L.)
- Beijing SeekGene BioSciences Co., Ltd., Beijing 102206, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China; (Y.W.); (Y.X.); (X.W.); (H.Z.); (G.D.); (K.M.S.U.I.); (Z.L.)
| | - Haowen Zhang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China; (Y.W.); (Y.X.); (X.W.); (H.Z.); (G.D.); (K.M.S.U.I.); (Z.L.)
| | - Guoming Du
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China; (Y.W.); (Y.X.); (X.W.); (H.Z.); (G.D.); (K.M.S.U.I.); (Z.L.)
| | - Khandader Md Sharif Uddin Imam
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China; (Y.W.); (Y.X.); (X.W.); (H.Z.); (G.D.); (K.M.S.U.I.); (Z.L.)
| | - Harry Wichers
- Wageningen Food and Biobased Research, Wageningen University and Research, 6708 WG Wageningen, The Netherlands; (T.H.); (H.W.)
- Laboratory of Food Chemistry, Wageningen University, 6708 WG Wageningen, The Netherlands
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China; (Y.W.); (Y.X.); (X.W.); (H.Z.); (G.D.); (K.M.S.U.I.); (Z.L.)
| | - Shanna Bastiaan-Net
- Wageningen Food and Biobased Research, Wageningen University and Research, 6708 WG Wageningen, The Netherlands; (T.H.); (H.W.)
| |
Collapse
|
4
|
Dotsenko A, Denisenko J, Zorov I, Wasserman L, Semenova M, Korolev A, Rozhkova A, Sinitsyn A. Single substitution in α-helix of active center enhanced thermostability of Aspergillus awamori exo-inulinase. J Mol Graph Model 2023; 119:108381. [PMID: 36473387 DOI: 10.1016/j.jmgm.2022.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Exo-inulinases are applied in inulin hydrolysis and production of feed additives and need to be stable at temperatures of 60-95 °C. Aspergillus awamori exo-inulinase Inu1 is considerably thermostable, with a Tm of 73.2 °C. However, the thermostability of the enzyme should be improved. A single substitution G338A in α-helix in the active center of the enzyme provided a 3.5 °C improvement in Tm. The time of half-life at 70 °C and 80 °C was increased in 5.7- and 2.7-times, respectively, compared to wild-type. Molecular dynamics simulations demonstrated that the substitution G338A caused a decrease in RMSF not only for the α-helix 337-YAANI-341, but also for the catalytically active residues D41 and E241 and the amino acid residues forming the cleft of the active center. Calculations with Constraint Network Analysis for the variant G338A showed the increase in the stability of intramolecular clusters.
Collapse
Affiliation(s)
- Anna Dotsenko
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Jury Denisenko
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Ivan Zorov
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Luybov Wasserman
- Emanuel Institute of Biochemical Physics RAS, Moscow, 119334, Russia.
| | - Margarita Semenova
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Andrei Korolev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Aleksandra Rozhkova
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Arkady Sinitsyn
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Stojanović S, Ristović M, Stepanović J, Margetić A, Duduk B, Vujčić Z, Dojnov B. Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production. Food Res Int 2022; 160:111755. [DOI: 10.1016/j.foodres.2022.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/04/2022]
|
7
|
Rosenau J, Grothaus IL, Yang Y, Kumar ND, Ciacchi LC, Kelm S, Waespy M. N-glycosylation modulates enzymatic activity of Trypanosoma congolense trans-sialidase. J Biol Chem 2022; 298:102403. [PMID: 35995210 PMCID: PMC9493392 DOI: 10.1016/j.jbc.2022.102403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Trypanosomes cause the devastating disease trypanosomiasis, in which the action of trans-sialidase (TS) enzymes harbored on their surface is a key virulence factor. TS enzymes are N-glycosylated, but the biological functions of their glycans have remained elusive. In this study, we investigated the influence of N-glycans on the enzymatic activity and structural stability of TconTS1, a recombinant TS from the African parasite Trypanosoma congolense. We expressed the enzyme in Chinese hamster ovary Lec1 cells, which produce high-mannose type N-glycans similar to the TS N-glycosylation pattern in vivo. Our MALDI-TOF mass spectrometry data revealed that up to eight putative N-glycosylation sites were glycosylated. In addition, we determined that N-glycan removal via endoglycosidase Hf treatment of TconTS1 led to a decrease in substrate affinity relative to the untreated enzyme but had no impact on the conversion rate. Furthermore, we observed no changes in secondary structure elements of hypoglycosylated TconTS1 in CD experiments. Finally, our molecular dynamics simulations provided evidence for interactions between monosaccharide units of the highly flexible N-glycans and some conserved amino acids located at the catalytic site. These interactions led to conformational changes, possibly enhancing substrate accessibility and enzyme–substrate complex stability. The here-observed modulation of catalytic activity via N-glycans represents a so-far-unknown structure–function relationship potentially inherent in several members of the TS enzyme family.
Collapse
Affiliation(s)
- Jana Rosenau
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Isabell Louise Grothaus
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany; University of Bremen, Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, 28359 Bremen, Germany
| | - Yikun Yang
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Nilima Dinesh Kumar
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Lucio Colombi Ciacchi
- University of Bremen, Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, 28359 Bremen, Germany
| | - Sørge Kelm
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Mario Waespy
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany.
| |
Collapse
|
8
|
Li X, Shen J, Chen X, Chen L, Wan S, Qiu X, Chen K, Chen C, Tan H. Humanization of Yeasts for Glycan-Type End-Products. Front Microbiol 2022; 13:930658. [PMID: 35875538 PMCID: PMC9300968 DOI: 10.3389/fmicb.2022.930658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Yeasts are often considered microorganisms for producing human therapeutic glycosylated end-products at an industrial scale. However, the products with non-humanized glycans limited their usage. Therefore, various methods to develop humanized glycosylated end-products have been widely reported in yeasts. To make full use of these methods, it is necessary to summarize the present research to find effective approaches to producing humanized products. The present research focuses on yeast species selection, glycosyltransferase deletion, expression of endoglycosidase, and expression of proteins with galactosylated and or sialylated glycans. Nevertheless, the yeasts will have growth defects with low bioactivity when the key enzymes are deleted. It is necessary to express the corresponding repairing protein. Compared with N-glycosylation, the function of yeast protein O-glycosylation is not well-understood. Yeast proteins have a wide variety of O-glycans in different species, and it is difficult to predict glycosylation sites, which limits the humanization of O-glycosylated yeast proteins. The future challenges include the following points: there are still many important potential yeasts that have never been tried to produce glycosylated therapeutic products. Their glycosylation pathway and related mechanisms for producing humanized glycosylated proteins have rarely been reported. On the other hand, the amounts of key enzymes on glycan pathways in human beings are significantly more than those in yeasts. Therefore, there is still a challenge to produce a large body of humanized therapeutic end-products in suitable yeast species, especially the protein with complex glycans. CRISPR-Cas9 system may provide a potential approach to address the important issue.
Collapse
|
9
|
Cen X, Zhang R, He L, Tang X, Wu Q, Zhou J, Huang Z. Deletion of the Loop Linking Two Domains of Exo-Inulinase InuAMN8 Diminished the Enzymatic Thermo-Halo-Alcohol Tolerance. Front Microbiol 2022; 13:924447. [PMID: 35814689 PMCID: PMC9260423 DOI: 10.3389/fmicb.2022.924447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Inulin is the rich water-soluble storage polysaccharide after starch in nature, and utilization of inulin through hydrolysis of exo-inulinases has attracted much attention. Thermo-halo-alcohol tolerance is essential for exo-inulinase applications, while no report reveals the molecular basis involved in halo-alcohol tolerance of exo-inulinases via experimental data. In this study, two loops of exo-inulinase InuAMN8, including the loop built with 360GHVRLGPQP368 linking domains of Glyco_hydro_32N and Glyco_hydro_32C and another loop built with 169GGAG172 in the catalytic domain, were deleted to generate mutants MutG360Δ9 and MutG169Δ4, respectively. After heterologous expression, purification, and dialysis, InuAMN8, MutG169Δ4, and MutG360Δ9 showed half-lives of 144, 151, and 7 min at 50°C, respectively. InuAMN8 and MutG169Δ4 were very stable, while MutG360Δ9 showed a half-life of approximately 60 min in 5.0% (w/v) NaCl, and they showed half-lives of approximately 60 min in 25.0, 25.0, and 5.0% (w/v) ethanol, respectively. Structural analysis indicated that two cation-π bonds, which contributed to thermal properties of InuAMN8 at high temperatures, broke in MutG360Δ9. Four basic amino acid residues were exposed to the structural surface of MutG360Δ9 and formed positive and neutral electrostatic potential that caused detrimental effects on halo-alcohol tolerance. The study may provide a better understanding of the loop-function relationships that are involved in thermo-halo-alcohol adaptation of enzymes in extreme environment.
Collapse
Affiliation(s)
- Xiaolong Cen
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
| | - Limei He
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
- *Correspondence: Junpei Zhou, ,
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
- Zunxi Huang,
| |
Collapse
|
10
|
Tian M, Wang Z, Fu J, Lv P, Liang C, Li Z, Yang L, Liu T, Li M, Luo W. N-glycosylation as an effective strategy to enhance characteristics of Rhizomucor miehei lipase for biodiesel production. Enzyme Microb Technol 2022; 160:110072. [DOI: 10.1016/j.enzmictec.2022.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
|
11
|
Versluys M, Porras-Domínguez JR, De Coninck T, Van Damme EJM, Van den Ende W. A novel chicory fructanase can degrade common microbial fructan product profiles and displays positive cooperativity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1602-1622. [PMID: 34750605 DOI: 10.1093/jxb/erab488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Fructan metabolism in bacteria and plants relies on fructosyltransferases and fructanases. Plant fructanases (fructan exohydrolase, FEH) only hydrolyse terminal fructose residues. Levan (β-2,6 linkages) is the most abundant fructan type in bacteria. Dicot fructan accumulators, such as chicory (Cichorium intybus), accumulate inulin (β-2,1 linkages), harbouring several 1-FEH isoforms for their degradation. Here, a novel chicory fructanase with high affinity for levan was characterized, providing evidence that such enzymes widely occur in higher plants. It is adapted to common microbial fructan profiles, but has low affinity towards chicory inulin, in line with a function in trimming of microbial fructans in the extracellular environment. Docking experiments indicate the importance of an N-glycosylation site close to the active site for substrate specificity. Optimal pH and temperature for levan hydrolysis are 5.0 and 43.7 °C, respectively. Docking experiments suggested multiple substrate binding sites and levan-mediated enzyme dimerization, explaining the observed positive cooperativity. Alignments show a single amino acid shift in the position of a conserved DXX(R/K) couple, typical for sucrose binding in cell wall invertases. A possible involvement of plant fructanases in levan trimming is discussed, in line with the emerging 'fructan detour' concepts, suggesting that levan oligosaccharides act as signalling entities during plant-microbial interactions.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | | | - Tibo De Coninck
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
12
|
Tian M, Yang L, Lv P, Wang Z, Fu J, Miao C, Li Z, Li L, Liu T, Du W, Luo W. Improvement of methanol tolerance and catalytic activity of Rhizomucor miehei lipase for one-step synthesis of biodiesel by semi-rational design. BIORESOURCE TECHNOLOGY 2022; 348:126769. [PMID: 35092821 DOI: 10.1016/j.biortech.2022.126769] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Exploiting highly active and methanol-resistant lipase is of great significance for biodiesel production. A semi-rational directed evolution method combined with N-glycosylation is reported, and all mutants exhibiting higher catalytic activity and methanol tolerance than the wild type (WT). Mutant N267 retained 64% activity after incubation in 50% methanol for 8 h, which was 48% greater than that of WT. The catalytic activity of mutants N267 and N167 was 30- and 71- fold higher than that of WT. Molecular dynamics simulations of N267 showed that the formation of new strong hydrogen bonds between glycan and the protein stabilized the structure of lipase and improved its methanol tolerance. N267 achieved biodiesel yields of 99.33% (colza oil) and 81.70% (waste soybean oil) for 24 h, which was much higher than WT (51.6% for rapeseed oil and 44.73% for wasted soybean oil). The engineered ProRML mutant has high potential for commercial biodiesel production.
Collapse
Affiliation(s)
- Miao Tian
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lingmei Yang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Pengmei Lv
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Zhiyuan Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Junying Fu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Changlin Miao
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Zhibing Li
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Lianhua Li
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Wenyi Du
- Sichuan MoDe Technology Co., Ltd., Chengdu 610000, People's Republic of China
| | - Wen Luo
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.
| |
Collapse
|
13
|
He L, Zhang R, Shen J, Miao Y, Zeng C, Tang X, Wu Q, Zhou J, Huang Z. Improving the low-temperature properties of an exo-inulinase via the deletion of a loop fragment located in its catalytic pocket. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Tian M, Yang L, Wang Z, Lv P, Fu J, Miao C, Li M, Liu T, Luo W. Improved methanol tolerance of Rhizomucor miehei lipase based on N‑glycosylation within the α-helix region and its application in biodiesel production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:237. [PMID: 34911574 PMCID: PMC8675521 DOI: 10.1186/s13068-021-02087-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Liquid lipases are widely used to convert oil into biodiesel. Methanol-resistant lipases with high catalytic activity are the first choice for practical production. Rhizomucor miehei lipase (RML) is a single-chain α/β-type protein that is widely used in biodiesel preparation. Improving the catalytic activity and methanol tolerance of RML is necessary to realise the industrial production of biodiesel. RESULTS In this study, a semi-rational design method was used to optimise the catalytic activity and methanol tolerance of ProRML. After N-glycosylation modification of the α-helix of the mature peptide in ProRML, the resulting mutants N218, N93, N115, N260, and N183 increased enzyme activity by 66.81, 13.54, 10.33, 3.69, and 2.39 times than that of WT, respectively. The residual activities of N218 and N260 were 88.78% and 86.08% after incubation in 50% methanol for 2.5 h, respectively. In addition, the biodiesel yield of all mutants was improved when methanol was added once and reacted for 24 h with colza oil as the raw material. N260 and N218 increased the biodiesel yield from 9.49% to 88.75% and 90.46%, respectively. CONCLUSIONS These results indicate that optimising N-glycosylation modification in the α-helix structure is an effective strategy for improving the performance of ProRML. This study provides an effective approach to improve the design of the enzyme and the properties of lipase mutants, thereby rendering them suitable for industrial biomass conversion.
Collapse
Affiliation(s)
- Miao Tian
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lingmei Yang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Zhiyuan Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Pengmei Lv
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.
| | - Junying Fu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Changlin Miao
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Ming Li
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, People's Republic of China
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| | - Wen Luo
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
15
|
Wang CH, Xiong WP, Huang C, Li XM, Wang QY, Huang RB. Engineering better catalytic activity and acidic adaptation into Kluyveromyces marxianus exoinulinase using site-directed mutagenesis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2472-2482. [PMID: 33034040 DOI: 10.1002/jsfa.10873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exoinulinase catalyzes the successive removal of individual fructose moiety from the non-reducing end of the inulin molecule, which is useful for biotechnological applications like producing fructan-based non-grain biomass energy and high-fructose syrup. In this study, an exoinulinase (KmINU) from Kluyveromyces marxianus DSM 5418 was tailored for increased catalytic activity and acidic adaptation for inulin hydrolysis processes by rational site-directed mutagenesis. RESULTS Three mutations, S124Y, N158S and Q215V distal to the catalytic residues of KmINU were designed and heterologously expressed in Pichia pastoris GS115. Compared to the wild-type, S124Y shifted the pH-activity profile towards acidic pH values and increased the catalytic activity and catalytic efficiency by 59% and 99% to 688.4 ± 17.03 s-1 and 568.93 L mmol-1 s-1 , respectively. N158S improved the catalytic activity under acidic pH conditions, giving a maximum value of 464.06 ± 14.06 s-1 on inulin at pH 4.5. Q215V markedly improved the substrate preference for inulin over sucrose by 5.56-fold, and showed catalytic efficiencies of 208.82 and 6.88 L mmol-1 s-1 towards inulin and sucrose, respectively. Molecular modeling and computational docking indicated that structural reorientation may underlie the increased catalytic activity, acidic adaptation and substrate preference. CONCLUSIONS The KmINU mutants may serve as industrially promising candidates for inulin hydrolysis. Protein engineering of exoinulinase here provides a successful example of the extent to which mutating non-conserved substrate recognition and binding residues distal to the active site can be used for industrial enzyme improvements. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng-Hua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Wu-Ping Xiong
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Cheng Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xiao-Ming Li
- Nanning Sinozyme Biotechnology Co., Ltd, Nanning, China
| | - Qing-Yan Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Ri-Bo Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
16
|
Singh R, Singh T, Hassan M, Kennedy JF. Updates on inulinases: Structural aspects and biotechnological applications. Int J Biol Macromol 2020; 164:193-210. [DOI: 10.1016/j.ijbiomac.2020.07.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
|
17
|
Ma J, Li T, Tan H, Liu W, Yin H. The Important Roles Played in Substrate Binding of Aromatic Amino Acids in Exo-Inulinase From Kluyveromyces cicerisporus CBS 4857. Front Mol Biosci 2020; 7:569797. [PMID: 33102520 PMCID: PMC7545266 DOI: 10.3389/fmolb.2020.569797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/03/2020] [Indexed: 11/13/2022] Open
Abstract
Inulinase is a member of the glycoside hydrolase family 32 (GH32). It catalyzes the randomly hydrolyzation of 2,1-β-D-fructosidic linkages in inulin and plays a role in the production of high-fructose syrup. In this study, detailed roles of the conserved residues W79, F113, M117, R181, C239, and W334 of the exo-inulinase from Kluyveromyces cicerisporus CBS4857 (KcINU1) in substrate binding and stabilization were evaluated by in silico analysis and site-directed mutagenesis. These residues belong to the conserved WG, FSGSMV, RDP, ECP, and WQY regions of the GH32 and are located around the catalytic pocket of KcINU1. Zymogram assay showed relatively weaker band for F113W and similar band for M117A compared to the wild-type enzyme toward inulin and sucrose, whereas all other variants showed no observable stain on the native polyacrylamide gel electrophoresis. These results were further confirmed with the dinitrosalicylic acid colorimetric method. It showed that the residual activities of F113W toward inulin and sucrose were 33.8 ± 3.3% and 96.2 ± 5.5%, respectively, and that of M117A were 103.8 ± 1.3% and 166.5 ± 12%, respectively. Results from fluorescence spectra indicated that there is a significant conformational change that happened in F113W compared to the wild-type enzyme, while M117A exhibited limited impact although the quenching effect was increased.
Collapse
Affiliation(s)
- Junyan Ma
- Natural Products and Glyco-Biotechnology Research Group, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Medical College, Dalian University, Dalian, China
| | - Tang Li
- Natural Products and Glyco-Biotechnology Research Group, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Haidong Tan
- Natural Products and Glyco-Biotechnology Research Group, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wujun Liu
- Natural Products and Glyco-Biotechnology Research Group, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Heng Yin
- Natural Products and Glyco-Biotechnology Research Group, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
18
|
He L, Zhang R, Shen J, Miao Y, Tang X, Wu Q, Zhou J, Huang Z. Removal of N-terminal tail changes the thermostability of the low-temperature-active exo-inulinase InuAGN25. Bioengineered 2020; 11:921-931. [PMID: 32865156 PMCID: PMC8291819 DOI: 10.1080/21655979.2020.1809921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exo-inulinases are members of the glycoside hydrolase family 32 and function by hydrolyzing inulin into fructose with yields up to 90–95%. The N-terminal tail contributes to enzyme thermotolerance, which plays an important role in enzyme applications. However, the role of N-terminal amino acid residues in the thermal performance and structural properties of exo-inulinases remains to be elucidated. In this study, three and six residues of the N-terminus starting from Gln23 of the exo-inulinase InuAGN25 were deleted and expressed in Escherichia coli. After digestion with human rhinovirus 3 C protease to remove the N-terminal amino acid fusion sequence that may affect the thermolability of enzymes, wild-type RfsMInuAGN25 and its mutants RfsMutNGln23Δ3 and RfsMutNGln23Δ6 were produced. Compared with RfsMInuAGN25, thermostability of RfsMutNGln23Δ3 was enhanced while that of RfsMutNGln23Δ6 was slightly reduced. Compared with the N-terminal structures of RfsMInuAGN25 and RfsMutNGln23Δ6, RfsMutNGln23Δ3 had a higher content of (1) the helix structure, (2) salt bridges (three of which were organized in a network), (3) cation–π interactions (one of which anchored the N-terminal tail). These structural properties may account for the improved thermostability of RfsMutNGln23Δ3. The study provides a better understanding of the N-terminus–function relationships that are useful for rational design of thermostability of exo-inulinases.
Collapse
Affiliation(s)
- Limei He
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Jidong Shen
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Ying Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| |
Collapse
|