1
|
Nooh MH, Alshehri MS, Alzahrani ZS, Alsolami HM, Almutairi AO, AlOtaibi AS, Aljohani AN. The Efficacy and Safety of Intra-articular Low Molecular Weight Fraction of Human Serum Albumin for the Management of Moderate to Moderately Severe Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Cureus 2023; 15:e41240. [PMID: 37529519 PMCID: PMC10387823 DOI: 10.7759/cureus.41240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Osteoarthritis is a chronic degenerative joint disease that affects weight-bearing joints. Low molecular weight fraction of 5% (LMWF-5A) human serum albumin is an intra-articular injection that emerged for the treatment of knee osteoarthritis. The aim of this review is to assess the efficacy and safety of LMWF-5A versus placebo through a systematic review and meta-analysis. The Cochrane Central Register of Controlled Trials (CENTRAL), Medical Literature Analysis and Retrieval System Online (MEDLINE), EBSCO, and ClinicalTrials.gov registry databases were utilized to search for studies. Only randomized controlled trials (RCTs) that evaluated the efficacy of LMWF-5A versus placebo were included. Efficacy endpoints were represented by Western Ontario and McMaster Universities Arthritis Index (WOMAC) A and C scores for pain and function, respectively. Serious adverse events (SAEs), non-serious adverse events (NSAEs), and mortality rates were used to evaluate the safety of the drug. The revised Cochrane risk of bias tool was used for the risk of bias assessment. Seven RCTs (n=2939) that met the inclusion criteria were included. The meta-analysis did not find significant improvement in pain (WOMAC A) (standardized mean difference (SMD)= -0.01, 95% confidence interval (CI) -0.10 - 0.09, P=0.87, I²=30%). Additionally, no significant change in function was noted (WOMAC C) (SMD=0.01, 95% CI -0.08 - 0.10, P=0.87, I²=22%). The pooled analysis did not find a significant difference between LMWF-5A and placebo regarding the incidence of joint swelling (P=0.84), joint stiffness (P=0.53), arthralgia (P=0.53), extremity pain (P=0.45), NSAEs (P=0.21), SAEs (P=0.92), or mortality (P=1.00). However, the subgroup analysis showed a significant reduction of 42% in NSAEs upon administration of 10 mL of LMWF-5A (risk ratio (RR)=0.58, 95% CI 0.35-0.97, P=0.04). In summary, our meta-analysis did not find significant differences between LMWF-5A and placebo regarding the incidence of NSAEs, SAEs, or mortality. On the other hand, LMWF-5A did not demonstrate superiority over saline in terms of efficacy. Therefore, it is not an effective drug for managing knee osteoarthritis.
Collapse
Affiliation(s)
- Mohammad H Nooh
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Medical Research, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Mohammed S Alshehri
- Orthopaedic Surgery, King Abdulaziz Medical City, Jeddah, SAU
- Orthopaedic Surgery, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Medical Research, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Ziyad S Alzahrani
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Medical Research, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Hatem M Alsolami
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Medical Research, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Amal O Almutairi
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Medical Research, King Abdullah International Medical Research Center, Jeddah, SAU
| | | | - Abdulaziz N Aljohani
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Medical Research, King Abdullah International Medical Research Center, Jeddah, SAU
| |
Collapse
|
2
|
Amirsaadat S, Amirazad H, Hashemihesar R, Zarghami N. An update on the effect of intra-articular intervention strategies using nanomaterials in osteoarthritis: Possible clinical application. Front Bioeng Biotechnol 2023; 11:1128856. [PMID: 36873347 PMCID: PMC9978162 DOI: 10.3389/fbioe.2023.1128856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Osteoarthritis (OA) is the most common progressive condition affecting joints. It mainly affects the knees and hips as predominant weight-bearing joints. Knee osteoarthritis (KOA) accounts for a large proportion of osteoarthritis and presents numerous symptoms that impair quality of life, such as stiffness, pain, dysfunction, and even deformity. For more than two decades, intra-articular (IA) treatment options for managing knee osteoarthritis have included analgesics, hyaluronic acid (HA), corticosteroids, and some unproven alternative therapies. Before effective disease-modifying treatments for knee osteoarthritis, treatments are primarily symptomatic, mainly including intra-articular corticosteroids and hyaluronic acid, so these agents represent the most frequently used class of drugs for managing knee osteoarthritis. But research suggests other factors, such as the placebo effect, have an essential role in the effectiveness of these drugs. Several novel intra-articular therapies are currently in the clinical trial processes, such as biological therapies, gene and cell therapies. Besides, it has been shown that the development of novel drug nanocarriers and delivery systems could improve the effectiveness of therapeutic agents in osteoarthritis. This review discusses the various treatment methods and delivery systems for knee osteoarthritis and the new agents that have been introduced or are in development.
Collapse
Affiliation(s)
- Soumayeh Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Amirazad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hashemihesar
- Department of Histology and Embryology, Faculty of Medicine, Altinbas University, Istanbul, Türkiye
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Cui B, Chen Y, Tian Y, Liu H, Huang Y, Yin G, Xie Q. Effects of medications on incidence and risk of knee and hip joint replacement in patients with osteoarthritis: a systematic review and meta-analysis. Adv Rheumatol 2022; 62:22. [DOI: 10.1186/s42358-022-00253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
This systematic review and meta-analysis aimed to investigate the incidence and risk of knee and hip replacement in patients with osteoarthritis (OA) treated with different medications.
Methods
OVID MEDLINE, OVID EMBASE, Cochrane and Web of Science electronic databases were searched from inception to May 4th, 2022. Clinical trials, including randomized controlled trials, cohort studies and case–control studies, were selected. The meta-analysis effect size was estimated using either incidence with 95% confidence intervals (CIs) or odds ratio (OR)/relative risk (RR) with 95% CIs. The risk of bias and heterogeneity among studies were assessed and analyzed.
Results
Forty studies were included, involving 6,041,254 participants. The incidence of joint replacement in patients with OA varied according to the study design and treatments. The incidence of knee arthroplasty varied from 0 to 70.88%, while the incidence of hip arthroplasty varied from 11.71 to 96.43%. Compared to non-users, bisphosphonate users had a reduced risk of knee replacement (RR = 0.71, 95% CI: 0.66–0.77; adjusted hazard ratio [aHR] = 0.76, 95% CI: 0.70–0.83). Compared to intra-articular corticosteroid users, hyaluronic acid (HA) users had a higher risk of knee arthroplasty (RR = 1.76, 95% CI: 1.38–2.25). No publication bias was observed.
Conclusions
Bisphosphonate treatment is associated with a reduced risk of knee replacement. More studies are needed to validate our results due to the limited number of eligible studies and high heterogeneity among studies.
Collapse
|
4
|
Kuten Pella O, Hornyák I, Horváthy D, Fodor E, Nehrer S, Lacza Z. Albumin as a Biomaterial and Therapeutic Agent in Regenerative Medicine. Int J Mol Sci 2022; 23:10557. [PMID: 36142472 PMCID: PMC9502107 DOI: 10.3390/ijms231810557] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
Albumin is a constitutional plasma protein, with well-known biological functions, e.g., a nutrient for stem cells in culture. However, albumin is underutilized as a biomaterial in regenerative medicine. This review summarizes the advanced therapeutic uses of albumin, focusing on novel compositions that take advantage of the excellent regenerative potential of this protein. Albumin coating can be used for enhancing the biocompatibility of various types of implants, such as bone grafts or sutures. Albumin is mainly known as an anti-attachment protein; however, using it on implantable surfaces is just the opposite: it enhances stem cell adhesion and proliferation. The anticoagulant, antimicrobial and anti-inflammatory properties of albumin allow fine-tuning of the biological reaction to implantable tissue-engineering constructs. Another potential use is combining albumin with natural or synthetic materials that results in novel composites suitable for cardiac, neural, hard and soft tissue engineering. Recent advances in materials have made it possible to electrospin the globular albumin protein, opening up new possibilities for albumin-based scaffolds for cell therapy. Several described technologies have already entered the clinical phase, making good use of the excellent biological, but also regulatory, manufacturing and clinical features of serum albumin.
Collapse
Affiliation(s)
| | - István Hornyák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Dénes Horváthy
- Department of Interventional Radiology, Semmelweis University, 1122 Budapest, Hungary
| | - Eszter Fodor
- Institute for Sports and Health Sciences, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Stefan Nehrer
- Center for Regenerative Medicine, Danube University Krems, 3500 Krems an der Donau, Austria
| | - Zsombor Lacza
- Orthosera GmbH, 3500 Krems an der Donau, Austria
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
- Institute for Sports and Health Sciences, Hungarian University of Sports Science, 1123 Budapest, Hungary
| |
Collapse
|
5
|
Siddiq MAB, Clegg D, Jansen TL, Rasker JJ. Emerging and New Treatment Options for Knee Osteoarthritis. Curr Rheumatol Rev 2021; 18:20-32. [PMID: 34784876 DOI: 10.2174/1573397117666211116111738] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
Osteoarthritis (OA) is the most prevalent type of arthritis worldwide, resulting in pain and often chronic disability and a significant burden on healthcare systems globally. Non-steroidal anti-inflammatory drugs (NSAIDs), analgesics, intra-articular corticosteroid injections are of little value in the long term, and opioids may have ominous consequences. Radiotherapy of knee OA has no added value. Physical therapy, exercises, weight loss, and lifestyle modifications may give pain relief, improve physical functioning and quality of life. However, no single treatment has regenerating potential for damaged articular cartilage. Due to a better understanding of osteoarthritis, innovative new treatment options have been developed. In this narrative review, we focus on emerging OA knee treatments, relieving symptoms, and regenerating damaged articular cartilage that includes intra-articular human serum albumin, conventional disease-modifying anti-rheumatic drugs (DMARDs), lipid-lowering agents (statin), nerve growth factors antagonists, bone morphogenetic protein, fibroblast growth factors, Platelet-Rich Plasma (PRP), Mesenchymal Stem Cells (MSC), exosomes, interleukin-1 blockers, gene-based therapy, and bisphosphonate.
Collapse
Affiliation(s)
- Md Abu Bakar Siddiq
- Department of Physical Medicine and Rheumatology, Brahmanbaria Medical College, Brahmanbaria. Bangladesh
| | - Danny Clegg
- School of Health and Social Care, London South Bank University, London. United Kingdom
| | - Tim L Jansen
- Department of Rheumatology, Viecuri MC, Venlo. Netherlands
| | - Johannes J Rasker
- Faculty of Behavioral, Management and Social sciences, Department Psychology, Health and Technology, University of Twente, Enschede . Netherlands
| |
Collapse
|
6
|
Thomas G, Frederick E, Thompson L, Bar-Or R, Mulugeta Y, Hausburg M, Roshon M, Mains C, Bar-Or D. LMWF5A suppresses cytokine release by modulating select inflammatory transcription factor activity in stimulated PBMC. J Transl Med 2020; 18:452. [PMID: 33256749 PMCID: PMC7702209 DOI: 10.1186/s12967-020-02626-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Background Dysregulation of transcription and cytokine expression has been implicated in the pathogenesis of a variety inflammatory diseases. The resulting imbalance between inflammatory and resolving transcriptional programs can cause an overabundance of pro-inflammatory, classically activated macrophage type 1 (M1) and/or helper T cell type 1 (Th1) products, such as IFNγ, TNFα, IL1-β, and IL12, that prevent immune switching to resolution and healing. The low molecular weight fraction of human serum albumin (LMWF5A) is a novel biologic drug that is currently under clinical investigation for the treatment of osteoarthritis and the hyper-inflammatory response associated with COVID-19. This study aims to elucidate transcriptional mechanisms of action involved with the ability of LMWF5A to reduce pro-inflammatory cytokine release. Methods ELISA arrays were used to identify cytokines and chemokines influenced by LMWF5A treatment of LPS-stimulated peripheral blood mononuclear cells (PBMC). The resulting profiles were analyzed by gene enrichment to gain mechanistic insight into the biologic processes and transcription factors (TFs) underlying the identified differentially expressed cytokines. DNA-binding ELISAs, luciferase reporter assays, and TNFα or IL-1β relative potency were then employed to confirm the involvement of enriched pathways and TFs. Results LMWF5A was found to significantly inhibit a distinct set of pro-inflammatory cytokines (TNFα, IL-1β, IL-12, CXCL9, CXCL10, and CXCL11) associated with pro-inflammatory M1/Th1 immune profiles. Gene enrichment analysis also suggests these cytokines are, in part, regulated by NF-κB and STAT transcription factors. Data from DNA-binding and reporter assays support this with LMWF5A inhibition of STAT1α DNA-binding activity as well as a reduction in overall NF-κB-driven luciferase expression. Experiments using antagonists specific for the immunomodulatory and NF-κB/STAT-repressing transcription factors, peroxisome proliferator-activated receptor (PPAR)γ and aryl hydrocarbon receptor (AhR), indicate these pathways are involved in the LMWF5A mechanisms of action by reducing LMWF5A drug potency as measured by TNFα and IL-1β release. Conclusion In this report, we provide evidence that LMWF5A reduces pro-inflammatory cytokine release by activating the immunoregulatory transcription factors PPARγ and AhR. In addition, our data indicate that LMWF5A suppresses NF-κB and STAT1α pro-inflammatory pathways. This suggests that LMWF5A acts through these mechanisms to decrease pro-inflammatory transcription factor activity and subsequent inflammatory cytokine production.
Collapse
Affiliation(s)
- Gregory Thomas
- Ampio Pharmaceuticals Inc, 373 Inverness Parkway Suite 200, Englewood, CO, 80122, USA
| | - Elizabeth Frederick
- Ampio Pharmaceuticals Inc, 373 Inverness Parkway Suite 200, Englewood, CO, 80122, USA
| | - Lisa Thompson
- Ampio Pharmaceuticals Inc, 373 Inverness Parkway Suite 200, Englewood, CO, 80122, USA
| | - Raphael Bar-Or
- Ampio Pharmaceuticals Inc, 373 Inverness Parkway Suite 200, Englewood, CO, 80122, USA.,Trauma Research Department, Swedish Medical Center, 501 E. Hampden Ave. Rm 4-454, Englewood, CO, 80113, USA.,Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO, 80228, USA.,Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO, 80907, USA.,Centura Health Systems, 9100 E. Mineral Cir, Centennial, CO, 80112, USA
| | - Yetti Mulugeta
- Ampio Pharmaceuticals Inc, 373 Inverness Parkway Suite 200, Englewood, CO, 80122, USA
| | - Melissa Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Ave. Rm 4-454, Englewood, CO, 80113, USA.,Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO, 80228, USA.,Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO, 80907, USA.,Centura Health Systems, 9100 E. Mineral Cir, Centennial, CO, 80112, USA
| | - Michael Roshon
- Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO, 80907, USA
| | - Charles Mains
- Centura Health Systems, 9100 E. Mineral Cir, Centennial, CO, 80112, USA
| | - David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Ave. Rm 4-454, Englewood, CO, 80113, USA. .,Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO, 80228, USA. .,Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO, 80907, USA. .,Centura Health Systems, 9100 E. Mineral Cir, Centennial, CO, 80112, USA. .,Department of Molecular Biology, Rocky Vista University, 8401 S Chambers Rd, Parker, CO, 80134, USA.
| |
Collapse
|
7
|
Bar-Or D, Thomas G, Rael LT, Frederick E, Hausburg M, Bar-Or R, Brody E. On the Mechanisms of Action of the Low Molecular Weight Fraction of Commercial Human Serum Albumin in Osteoarthritis. Curr Rheumatol Rev 2020; 15:189-200. [PMID: 30451114 PMCID: PMC6791032 DOI: 10.2174/1573397114666181119121519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 01/05/2023]
Abstract
The low molecular weight fraction of commercial human serum albumin (LMWF5A) has been shown to successfully relieve pain and inflammation in severe osteoarthritis of the knee (OAK). LMWF5A contains at least three active components that could account for these antiinflammatory and analgesic effects. We summarize in vitro experiments in bone marrow-derived mesenchymal stem cells, monocytic cell lines, chondrocytes, peripheral blood mononuclear cells, fibroblast-like synoviocytes, and endothelial cells on the biochemistry of anti-inflammatory changes induced by LMWF5A. We then look at four of the major pathways that cut across cell-type considerations to examine which biochemical reactions are affected by mTOR, COX-2, CD36, and AhR pathways. All three components show anti-inflammatory activities in at least some of the cell types. The in vitro experiments show that the effects of LMWF5A in chondrocytes and bone marrow- derived stem cells in particular, coupled with recent data from previous clinical trials of single and multiple injections of LMWF5A into OAK patients demonstrated improvements in pain, function, and Patient Global Assessment (PGA), as well as high responder rates that could be attributed to the multiple mechanism of action (MOA) pathways are summarized here. In vitro and in vivo data are highly suggestive of LMWF5A being a disease-modifying drug for OAK.
Collapse
Affiliation(s)
- David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Gregory Thomas
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Leonard T Rael
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States
| | - Elizabeth Frederick
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Melissa Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States
| | - Raphael Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Edward Brody
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, United States
| |
Collapse
|