1
|
Andersen K, Tjønnfjord GE, Hestdalen ML, Spetalen S, Panagopoulos I. Complex Genetic Evolution and Treatment Challenges in Myeloid Neoplasms: A Case of Persistent t(2;3)(p15~23;q26)/ MECOM Rearrangement, SF3B1 Mutation, and Transient TNIP1::PDGFRB Chimera. Cancer Genomics Proteomics 2025; 22:24-33. [PMID: 39730178 PMCID: PMC11696316 DOI: 10.21873/cgp.20483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM Myelodysplastic syndromes (MDSs) are clonal bone marrow disorders characterized by ineffective hematopoiesis. They are classified based on morphology and genetic alterations, with SF3B1 variants linked to favorable prognosis and MECOM rearrangements associated with poor outcomes. The combined effects of these alterations remain unclear. We report an MDS patient carrying both SF3B1 and MECOM alterations who developed transient eosinophilia accompanied by a TNIP1::PDGFRB chimera in a subset of MECOM-affected cells. CASE REPORT A 73-year-old woman was diagnosed with myeloid neoplasia with excess blasts and multilineage dysplasia (MDS-EB1). Six months later, SF3B1 mutations were identified, leading to a diagnosis of MDS-SF3B1. Despite azacitidine treatment, her condition worsened, showing hypercellular bone marrow and eosinophilia. Genetic analysis revealed a t(2;3)(p15~23;q26)/MECOM rearrangement and TNIP1::PDGFRB chimera. Imatinib eradicated eosinophilia and reduced TNIP1::PDGFRB-positive cells, but the MECOM-clone persisted. Subsequent treatments, including hydroxyurea, mercaptopurine, and low-dose cytarabine, were ineffective. FLT3 mutations and high EVI1 transcript levels were later detected. The patient succumbed to progressive disease. CONCLUSION This case highlights the complexity of MDS and the importance of genetic abnormalities in treatment planning. Persistent MECOM rearrangement and the TNIP1::PDGFRB chimera emphasize the need for further research into resistance mechanisms.
Collapse
Affiliation(s)
- Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Malu Lian Hestdalen
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway
| | - Signe Spetalen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| |
Collapse
|
2
|
DeKryger W, Chroneos ZC. Emerging concepts of myosin 18A isoform mechanobiology in organismal and immune system physiology, development, and function. FASEB J 2024; 38:e23649. [PMID: 38776246 DOI: 10.1096/fj.202400350r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024]
Abstract
Alternative and combinatorial splicing of myosin 18A (MYO18A) gene transcripts results in expression of MYO18A protein isoforms and isoform variants with different membrane and subcellular localizations, and functional properties. MYO18A proteins are members of the myosin superfamily consisting of a myosin-like motor domain, an IQ motif, and a coiled-coil domain. MYO18A isoforms, however, lack the ability to hydrolyze ATP and do not perform ATP-dependent motor activity. MYO18A isoforms are distinguished by different amino- and carboxy-terminal extensions and domains. The domain organization and functions of MYO18Aα, MYO18Aβ, and MYO18Aγ have been studied experimentally. MYO18Aα and MYO18Aβ have a common carboxy-terminal extension but differ by the presence or absence of an amino-terminal KE repeat and PDZ domain, respectively. The amino- and carboxy-terminal extensions of MYO18Aγ contain unique proline and serine-rich domains. Computationally predicted MYO18Aε and MYO18Aδ isoforms contain the carboxy-terminal serine-rich extension but differ by the presence or absence of the amino-terminal KE/PDZ extension. Additional isoform variants within each category arise by alternative utilization or inclusion/exclusion of small exons. MYO18Aα variants are expressed in somatic cells and mature immune cells, whereas MYO18Aβ variants occur mainly in myeloid and natural killer cells. MYO18Aγ expression is selective to cardiac and skeletal muscle. In the present review perspective, we discuss current and emerging concepts of the functional specialization of MYO18A proteins in membrane and cytoskeletal dynamics, cellular communication and signaling, endocytic and exocytic organelle movement, viral infection, and as the SP-R210 receptor for surfactant protein A.
Collapse
Affiliation(s)
- William DeKryger
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Zissis C Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
3
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
4
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
5
|
Zhang H, Paliga A, Hobbs E, Moore S, Olson S, Long N, Dao KHT, Tyner JW. Two myeloid leukemia cases with rare FLT3 fusions. Cold Spring Harb Mol Case Stud 2018; 4:a003079. [PMID: 30559310 PMCID: PMC6318770 DOI: 10.1101/mcs.a003079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Genetic rearrangements involving FLT3 are rare and only recently have been detected in myeloid/lymphoid neoplasms associated with eosinophilia (MLN-eos) and chronic myeloproliferative disorders. Here we report two cases with FLT3 fusions in patients demonstrating mixed features of myelodysplastic/myeloproliferative neoplasms. In the first case, FLT3 was fused with a new fusion partner MYO18A in a patient with marrow features most consistent with atypical chronic myeloid leukemia; the second case involving ETV6-FLT3 fusion was observed in a case with bone marrow features most consistent with chronic myelomonocytic leukemia. Notably, we observed that samples from both patients demonstrated FLT3 inhibitor (quizartinib and sorafenib) sensitivity in ex vivo drug screening assay.
Collapse
Affiliation(s)
- Haijiao Zhang
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Aleksandra Paliga
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Evie Hobbs
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Stephen Moore
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Susan Olson
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Nicola Long
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Kim-Hien T Dao
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon 97239, USA
| |
Collapse
|
6
|
Kuna RS, Field SJ. GOLPH3: a Golgi phosphatidylinositol(4)phosphate effector that directs vesicle trafficking and drives cancer. J Lipid Res 2018; 60:269-275. [PMID: 30266835 DOI: 10.1194/jlr.r088328] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/25/2018] [Indexed: 12/17/2022] Open
Abstract
GOLPH3 is a peripheral membrane protein localized to the Golgi and its vesicles, but its purpose had been unclear. We found that GOLPH3 binds specifically to the phosphoinositide phosphatidylinositol(4)phosphate [PtdIns(4)P], which functions at the Golgi to promote vesicle exit for trafficking to the plasma membrane. PtdIns(4)P is enriched at the trans-Golgi and so recruits GOLPH3. Here, a GOLPH3 complex is formed when it binds to myosin18A (MYO18A), which binds F-actin. This complex generates a pulling force to extract vesicles from the Golgi; interference with this GOLPH3 complex results in dramatically reduced vesicle trafficking. The GOLPH3 complex has been identified as a driver of cancer in humans, likely through multiple mechanisms that activate secretory trafficking. In this review, we summarize the literature that identifies the nature of the GOLPH3 complex and its role in cancer. We also consider the GOLPH3 complex as a hub with the potential to reveal regulation of the Golgi and suggest the possibility of GOLPH3 complex inhibition as a therapeutic approach in cancer.
Collapse
Affiliation(s)
- Ramya S Kuna
- Division of Endocrinology and Metabolism, Department of Medicine, University of California at San Diego, La Jolla, CA
| | - Seth J Field
- Division of Endocrinology and Metabolism, Department of Medicine, University of California at San Diego, La Jolla, CA
| |
Collapse
|
7
|
Abstract
MYO18A is a divergent member of the myosin family characterized by the presence of an amino-terminal PDZ domain. MYO18A has been found in a few different complexes involved in intracellular transport processes. MYO18A is found in a complex with LURAP1 and MRCK that functions in retrograde treadmilling of actin. It also has been found in a complex with PAK2, βPIX, and GIT1, functioning to transport that protein complex from focal adhesions to the leading edge. Finally, a high proportion of MYO18A is found in complex with GOLPH3 at the trans Golgi, where it functions to promote vesicle budding for Golgi-to-plasma membrane trafficking. Interestingly, MYO18A has been implicated as a cancer driver, as have other components of the GOLPH3 pathway. It remains uncertain as to whether or not MYO18A has intrinsic motor activity. While many questions remain, MYO18A is a fascinatingly unique myosin that is essential in higher organisms.
Collapse
|