1
|
Waldvogel SM, Posey JE, Goodell MA. Human embryonic genetic mosaicism and its effects on development and disease. Nat Rev Genet 2024; 25:698-714. [PMID: 38605218 PMCID: PMC11408116 DOI: 10.1038/s41576-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Nearly every mammalian cell division is accompanied by a mutational event that becomes fixed in a daughter cell. When carried forward to additional cell progeny, a clone of variant cells can emerge. As a result, mammals are complex mosaics of clones that are genetically distinct from one another. Recent high-throughput sequencing studies have revealed that mosaicism is common, clone sizes often increase with age and specific variants can affect tissue function and disease development. Variants that are acquired during early embryogenesis are shared by multiple cell types and can affect numerous tissues. Within tissues, variant clones compete, which can result in their expansion or elimination. Embryonic mosaicism has clinical implications for genetic disease severity and transmission but is likely an under-recognized phenomenon. To better understand its implications for mosaic individuals, it is essential to leverage research tools that can elucidate the mechanisms by which expanded embryonic variants influence development and disease.
Collapse
Affiliation(s)
- Sarah M Waldvogel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Iourov IY, Vorsanova SG, Yurov YB. A Paradoxical Role for Somatic Chromosomal Mosaicism and Chromosome Instability in Cancer: Theoretical and Technological Aspects. Methods Mol Biol 2024; 2825:67-78. [PMID: 38913303 DOI: 10.1007/978-1-0716-3946-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Somatic chromosomal mosaicism, chromosome instability, and cancer are intimately linked together. Addressing the role of somatic genome variations (encompassing chromosomal mosaicism and instability) in cancer yields paradoxical results. Firstly, somatic mosaicism for specific chromosomal rearrangement causes cancer per se. Secondly, chromosomal mosaicism and instability are associated with a variety of diseases (chromosomal disorders demonstrating less severe phenotypes, complex diseases), which exhibit cancer predisposition. Chromosome instability syndromes may be considered the best examples of these diseases. Thirdly, chromosomal mosaicism and instability are able to result not only in cancerous diseases but also in non-cancerous disorders (brain diseases, autoimmune diseases, etc.). Currently, the molecular basis for these three outcomes of somatic chromosomal mosaicism and chromosome instability remains incompletely understood. Here, we address possible mechanisms for the aforementioned scenarios using a system analysis model. A number of theoretical models based on studies dedicated to chromosomal mosaicism and chromosome instability seem to be valuable for disentangling and understanding molecular pathways to cancer-causing genome chaos. In addition, technological aspects of uncovering causes and consequences of somatic chromosomal mosaicism and chromosome instability are discussed. In total, molecular cytogenetics, cytogenomics, and system analysis are likely to form a powerful technological alliance for successful research against cancer.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| |
Collapse
|
3
|
Vorsanova SG, Yurov YB, Iourov IY. Quantitative FISHing: Implications for Chromosomal Analysis. Methods Mol Biol 2024; 2825:239-246. [PMID: 38913313 DOI: 10.1007/978-1-0716-3946-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Quantifying signals substantially increases the efficiency of fluorescence in situ hybridization (FISH). Quantitative FISH analysis or QFISHing may be useful for differentiation between chromosome loss and chromosomal associations, detection of amplification of chromosomal loci, and/or quantification of chromosomal heteromorphisms (chromosomal DNAs). The latter is applicable to uncovering the parental origin of chromosomes, which is an important FISH application in genome research. In summary, one may acknowledge that QFISHing has a variety of applications in cancer chromosome research. Accordingly, a protocol for this technique is certainly required. Here, QFISHing protocol is described step-by-step.
Collapse
Affiliation(s)
- Svetlana G Vorsanova
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
| | - Yuri B Yurov
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
| | - Ivan Y Iourov
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
| |
Collapse
|
4
|
Yurov YB, Vorsanova SG, Iourov IY. FISHing for Chromosome Instability and Aneuploidy in the Alzheimer's Disease Brain. Methods Mol Biol 2022; 2561:191-204. [PMID: 36399271 DOI: 10.1007/978-1-0716-2655-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fluorescence in situ hybridization (FISH) is the method of choice for visualizing chromosomal DNA in post-mitotic cells. The availability of chromosome-enumeration (centromeric), site-specific, and multicolor-banding DNA probes offers opportunities to uncover genomic changes, at the chromosomal level, in single interphase nuclei. Alzheimer's disease (AD) has been associated repeatedly with (sub)chromosome instability and aneuploidy, likely affecting the brain. Although the types and rates of chromosome instability in the AD brain remain a matter of debate, molecular cytogenetic analysis of brain cells appears to be important for uncovering mechanisms of neurodegeneration. Here, we describe a FISH protocol for studying chromosome instability and aneuploidy in the AD brain.
Collapse
Affiliation(s)
- Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia. .,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
5
|
Iourov IY, Heng HH. Editorial: Somatic genomic mosaicism & human disease. Front Genet 2022; 13:1045559. [PMID: 36276972 PMCID: PMC9585291 DOI: 10.3389/fgene.2022.1045559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ivan Y. Iourov
- Yurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
- *Correspondence: Ivan Y. Iourov,
| | - Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, United States
- Department of Pathology, Wayne State University School of Medicine, Detroit, United States
| |
Collapse
|
6
|
|
7
|
Vorsanova SG, Demidova IA, Kolotii AD, Kurinnaia OS, Kravets VS, Soloviev IV, Yurov YB, Iourov IY. Klinefelter syndrome mosaicism in boys with neurodevelopmental disorders: a cohort study and an extension of the hypothesis. Mol Cytogenet 2022; 15:8. [PMID: 35248137 PMCID: PMC8897849 DOI: 10.1186/s13039-022-00588-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 01/14/2023] Open
Abstract
Abstract
Background
Klinefelter syndrome is a common chromosomal (aneuploidy) disorder associated with an extra X chromosome in males. Regardless of numerous studies dedicated to somatic gonosomal mosaicism, Klinefelter syndrome mosaicism (KSM) has not been systematically addressed in clinical cohorts. Here, we report on the evaluation of KSM in a large cohort of boys with neurodevelopmental disorders. Furthermore, these data have been used for an extension of the hypothesis, which we have recently proposed in a report on Turner’s syndrome mosaicism in girls with neurodevelopmental disorders.
Results
Klinefelter syndrome-associated karyotypes were revealed in 49 (1.1%) of 4535 boys. Twenty one boys (0.5%) were non-mosaic 47,XXY individuals. KSM was found in 28 cases (0.6%) and manifested as mosaic aneuploidy (50,XXXXXY; 49,XXXXY; 48,XXXY; 48,XXYY; 47,XXY; and 45,X were detected in addition to 47,XXY/46,XY) and mosaic supernumerary marker chromosomes derived from chromosome X (ring chromosomes X and rearranged chromosomes X). It is noteworthy that KSM was concomitant with Rett-syndrome-like phenotypes caused by MECP2 mutations in 5 boys (0.1%).
Conclusion
Our study provides data on the occurrence of KSM in neurodevelopmental disorders among males. Accordingly, it is proposed that KSM may be a possible element of pathogenic cascades in psychiatric and neurodegenerative diseases. These observations allowed us to extend the hypothesis proposed in our previous report on the contribution of somatic gonosomal mosaicism (Turner’s syndrome mosaicism) to the etiology of neurodevelopmental disorders. Thus, it seems to be important to monitor KSM (a possible risk factor or a biomarker for adult-onset multifactorial brain diseases) and analysis of neuromarkers for aging in individuals with Klinefelter syndrome. Cases of two or more supernumerary chromosomes X were all associated with KSM. Finally, Rett syndrome-like phenotypes associated with KSM appear to be more common in males with neurodevelopmental disorders than previously recognized.
Collapse
|
8
|
Iourov IY, Vorsanova SG. COVID-19 and Aging-Related Genome (Chromosome) Instability in the Brain: Another Possible Time-Bomb of SARS-CoV-2 Infection. Front Aging Neurosci 2022; 14:786264. [PMID: 35309884 PMCID: PMC8928435 DOI: 10.3389/fnagi.2022.786264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ivan Y. Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
- *Correspondence: Ivan Y. Iourov
| | - Svetlana G. Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
9
|
Datta S, Patel M, Kashyap S, Patel D, Singh U. Chimeric chromosome landscapes of human somatic cell cultures show dependence on stress and regulation of genomic repeats by CGGBP1. Oncotarget 2022; 13:136-155. [PMID: 35070079 PMCID: PMC8765472 DOI: 10.18632/oncotarget.28174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Genomes of somatic cells in culture are prone to spontaneous mutations due to errors in replication and DNA repair. Some of these errors, such as chromosomal fusions, are not rectifiable and subject to selection or elimination in growing cultures. Somatic cell cultures are thus expected to generate background levels of potentially stable chromosomal chimeras. A description of the landscape of such spontaneously generated chromosomal chimeras in cultured cells will help understand the factors affecting somatic mosaicism. Here we show that short homology-associated non-homologous chromosomal chimeras occur in normal human fibroblasts and HEK293T cells at genomic repeats. The occurrence of chromosomal chimeras is enhanced by heat stress and depletion of a repeat regulatory protein CGGBP1. We also present evidence of homologous chromosomal chimeras between allelic copies in repeat-rich DNA obtained by methylcytosine immunoprecipitation. The formation of homologous chromosomal chimeras at Alu and L1 repeats increases upon depletion of CGGBP1. Our data are derived from de novo sequencing from three different cell lines under different experimental conditions and our chromosomal chimera detection pipeline is applicable to long as well as short read sequencing platforms. These findings present significant information about the generation, sensitivity and regulation of somatic mosaicism in human cell cultures.
Collapse
Affiliation(s)
- Subhamoy Datta
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Manthan Patel
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK
| | - Sukesh Kashyap
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Divyesh Patel
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
- Current address: Research Programs Unit, Applied Tumor Genomics Program, Faculty of Medicine, University of Helsinki, Biomedicum, Helsinki 00290, Finland
| | - Umashankar Singh
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
10
|
Diab NS, Barish S, Dong W, Zhao S, Allington G, Yu X, Kahle KT, Brueckner M, Jin SC. Molecular Genetics and Complex Inheritance of Congenital Heart Disease. Genes (Basel) 2021; 12:1020. [PMID: 34209044 PMCID: PMC8307500 DOI: 10.3390/genes12071020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
Congenital heart disease (CHD) is the most common congenital malformation and the leading cause of mortality therein. Genetic etiologies contribute to an estimated 90% of CHD cases, but so far, a molecular diagnosis remains unsolved in up to 55% of patients. Copy number variations and aneuploidy account for ~23% of cases overall, and high-throughput genomic technologies have revealed additional types of genetic variation in CHD. The first CHD risk genotypes identified through high-throughput sequencing were de novo mutations, many of which occur in chromatin modifying genes. Murine models of cardiogenesis further support the damaging nature of chromatin modifying CHD mutations. Transmitted mutations have also been identified through sequencing of population scale CHD cohorts, and many transmitted mutations are enriched in cilia genes and Notch or VEGF pathway genes. While we have come a long way in identifying the causes of CHD, more work is required to end the diagnostic odyssey for all CHD families. Complex genetic explanations of CHD are emerging but will require increasingly sophisticated analysis strategies applied to very large CHD cohorts before they can come to fruition in providing molecular diagnoses to genetically unsolved patients. In this review, we discuss the genetic architecture of CHD and biological pathways involved in its pathogenesis.
Collapse
Affiliation(s)
- Nicholas S. Diab
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; (N.S.D.); (S.B.); (W.D.)
| | - Syndi Barish
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; (N.S.D.); (S.B.); (W.D.)
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; (N.S.D.); (S.B.); (W.D.)
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Shujuan Zhao
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (S.Z.); (X.Y.)
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Xiaobing Yu
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (S.Z.); (X.Y.)
- Department of Computer Science & Engineering, Washington University, St. Louis, MO 63130, USA
| | - Kristopher T. Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA;
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Martina Brueckner
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; (N.S.D.); (S.B.); (W.D.)
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (S.Z.); (X.Y.)
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Iourov IY, Yurov YB, Vorsanova SG, Kutsev SI. Chromosome Instability, Aging and Brain Diseases. Cells 2021; 10:cells10051256. [PMID: 34069648 PMCID: PMC8161106 DOI: 10.3390/cells10051256] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Chromosome instability (CIN) has been repeatedly associated with aging and progeroid phenotypes. Moreover, brain-specific CIN seems to be an important element of pathogenic cascades leading to neurodegeneration in late adulthood. Alternatively, CIN and aneuploidy (chromosomal loss/gain) syndromes exhibit accelerated aging phenotypes. Molecularly, cellular senescence, which seems to be mediated by CIN and aneuploidy, is likely to contribute to brain aging in health and disease. However, there is no consensus about the occurrence of CIN in the aging brain. As a result, the role of CIN/somatic aneuploidy in normal and pathological brain aging is a matter of debate. Still, taking into account the effects of CIN on cellular homeostasis, the possibility of involvement in brain aging is highly likely. More importantly, the CIN contribution to neuronal cell death may be responsible for neurodegeneration and the aging-related deterioration of the brain. The loss of CIN-affected neurons probably underlies the contradiction between reports addressing ontogenetic changes of karyotypes within the aged brain. In future studies, the combination of single-cell visualization and whole-genome techniques with systems biology methods would certainly define the intrinsic role of CIN in the aging of the normal and diseased brain.
Collapse
Affiliation(s)
- Ivan Y. Iourov
- Yurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia; (Y.B.Y.); (S.G.V.)
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
- Correspondence: ; Tel.: +7-495-109-03-93 (ext. 3500)
| | - Yuri B. Yurov
- Yurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia; (Y.B.Y.); (S.G.V.)
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia
| | - Svetlana G. Vorsanova
- Yurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia; (Y.B.Y.); (S.G.V.)
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia
| | | |
Collapse
|
12
|
Iourov IY, Vorsanova SG, Kurinnaia OS, Zelenova MA, Vasin KS, Yurov YB. Causes and Consequences of Genome Instability in Psychiatric and Neurodegenerative Diseases. Mol Biol 2021. [DOI: 10.1134/s0026893321010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Iourov IY, Vorsanova SG, Yurov YB. Systems Cytogenomics: Are We Ready Yet? Curr Genomics 2021; 22:75-78. [PMID: 34220294 PMCID: PMC8188578 DOI: 10.2174/1389202922666210219112419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022] Open
Abstract
With the introduction of systems theory to genetics, numerous opportunities for genomic research have been identified. Consequences of DNA sequence variations are systematically evaluated using the network- or pathway-based analysis, a technological basis of systems biology or, more precisely, systems genomics. Despite comprehensive descriptions of advantages offered by systems genomic approaches, pathway-based analysis is uncommon in cytogenetic (cytogenomic) studies, i.e. genome analysis at the chromosomal level. Here, we would like to express our opinion that current cytogenomics benefits from the application of systems biology methodology. Accordingly, systems cytogenomics appears to be a biomedical area requiring more attention than it actually receives.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, 117152, Russia.,Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, 125412, Russia.,Department of Medical Biological Disciplines, Belgorod State University, 308015, Belgorod, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, 117152, Russia.,Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, 125412, Russia
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, 117152, Russia.,Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, 125412, Russia
| |
Collapse
|
14
|
Vorsanova SG, Kolotii AD, Kurinnaia OS, Kravets VS, Demidova IA, Soloviev IV, Yurov YB, Iourov IY. Turner's syndrome mosaicism in girls with neurodevelopmental disorders: a cohort study and hypothesis. Mol Cytogenet 2021; 14:9. [PMID: 33573679 PMCID: PMC7879607 DOI: 10.1186/s13039-021-00529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Turner's syndrome is associated with either monosomy or a wide spectrum of structural rearrangements of chromosome X. Despite the interest in studying (somatic) chromosomal mosaicism, Turner's syndrome mosaicism (TSM) remains to be fully described. This is especially true for the analysis of TSM in clinical cohorts (e.g. cohorts of individuals with neurodevelopmental disorders). Here, we present the results of studying TSM in a large cohort of girls with neurodevelopmental disorders and a hypothesis highlighting the diagnostic and prognostic value. RESULTS Turner's syndrome-associated karyotypes were revealed in 111 (2.8%) of 4021 girls. Regular Turner's syndrome-associated karyotypes were detected in 35 girls (0.9%). TSM was uncovered in 76 girls (1.9%). TSM manifested as mosaic aneuploidy (45,X/46,XX; 45,X/47,XXX/46,XX; 45,X/47,XXX) affected 47 girls (1.2%). Supernumerary marker chromosomes derived from chromosome X have been identified in 11 girls with TSM (0.3%). Isochromosomes iX(q) was found in 12 cases (0.3%); one case was non-mosaic. TSM associated with ring chromosomes was revealed in 5 girls (0.1%). CONCLUSION The present cohort study provides data on the involvement of TSM in neurodevelopmental disorders among females. Thus, TSM may be an element of pathogenic cascades in brain diseases (i.e. neurodegenerative and psychiatric disorders). Our data allowed us to propose a hypothesis concerning ontogenetic variability of TSM levels. Accordingly, it appears that molecular cytogenetic monitoring of TSM, which is a likely risk factor/biomarker for adult-onset multifactorial diseases, is required.
Collapse
Affiliation(s)
- Svetlana G Vorsanova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Alexey D Kolotii
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Oksana S Kurinnaia
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Victor S Kravets
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Irina A Demidova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Ilya V Soloviev
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Yuri B Yurov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Ivan Y Iourov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412. .,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522. .,Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia, 308015.
| |
Collapse
|
15
|
The Cytogenomic "Theory of Everything": Chromohelkosis May Underlie Chromosomal Instability and Mosaicism in Disease and Aging. Int J Mol Sci 2020; 21:ijms21218328. [PMID: 33171981 PMCID: PMC7664247 DOI: 10.3390/ijms21218328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/28/2023] Open
Abstract
Mechanisms for somatic chromosomal mosaicism (SCM) and chromosomal instability (CIN) are not completely understood. During molecular karyotyping and bioinformatic analyses of children with neurodevelopmental disorders and congenital malformations (n = 612), we observed colocalization of regular chromosomal imbalances or copy number variations (CNV) with mosaic ones (n = 47 or 7.7%). Analyzing molecular karyotyping data and pathways affected by CNV burdens, we proposed a mechanism for SCM/CIN, which had been designated as “chromohelkosis” (from the Greek words chromosome ulceration/open wound). Briefly, structural chromosomal imbalances are likely to cause local instability (“wreckage”) at the breakpoints, which results either in partial/whole chromosome loss (e.g., aneuploidy) or elongation of duplicated regions. Accordingly, a function for classical/alpha satellite DNA (protection from the wreckage towards the centromere) has been hypothesized. Since SCM and CIN are ubiquitously involved in development, homeostasis and disease (e.g., prenatal development, cancer, brain diseases, aging), we have metaphorically (ironically) designate the system explaining chromohelkosis contribution to SCM/CIN as the cytogenomic “theory of everything”, similar to the homonymous theory in physics inasmuch as it might explain numerous phenomena in chromosome biology. Recognizing possible empirical and theoretical weaknesses of this “theory”, we nevertheless believe that studies of chromohelkosis-like processes are required to understand structural variability and flexibility of the genome.
Collapse
|