1
|
Sperelakis-Beedham B, Gitiaux C, Rajaoba M, Magen M, Derive N, Chansard J, de Sainte Agathe JM, Maurin ML, Assouline Z, Barnerias C, Desguerre I, Steffann J, Barcia G. Uniparental IsoDisomy: a case study on a new mechanism of Friedreich ataxia. Eur J Hum Genet 2024:10.1038/s41431-024-01728-2. [PMID: 39496895 DOI: 10.1038/s41431-024-01728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/17/2024] [Accepted: 10/27/2024] [Indexed: 11/06/2024] Open
Abstract
Friedreich's Ataxia (FRDA) is the most common hereditary ataxia and is mainly caused by biallelic GAA repeat expansion in the FXN gene. Rare patients carrying FXN point mutations or intragenic deletions are reported. We describe the first FRDA patient with a chromosome 9 segmental Uniparental isoDisomy (UPiD) unmasking a homozygous FXN expansion initially undetected by TP-PCR. The child presented with a progressive proprioceptive ataxia associated with peripheral sensory neuronopathy and severe scoliosis. Whole genome sequencing (WGS) identified a maternal segmental Uniparental Isodisomy (UPiD) encompassing FXN. Short tandem repeats analysis on WGS showed a biallelic FXN expansion. The identification of a deletion in the primer-annealing region of the TP-PCR explained the initial TP-PCR failure. This is the first documented case of FRDA caused by segmental UPiD. This case highlights the complexity of the molecular diagnosis of FRDA, and emphasises the importance of integrating results from various technical diagnostic approaches.
Collapse
Affiliation(s)
- Brian Sperelakis-Beedham
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Imagine Institute, Genetics of Mitochondrial Disorders, INSERM, Paris, France
- Université Paris Cité, Paris, France
| | - Cyril Gitiaux
- Université Paris Cité, Paris, France
- Pediatric Neurology and Neurophysiology Department, Necker-Enfants-Malades Hospital, Assistance Publique-Hôpitaux, Paris, France
| | - Marine Rajaoba
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maryse Magen
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Derive
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA Assistance-Publique, Paris, France
| | - Jerome Chansard
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA Assistance-Publique, Paris, France
| | | | - Marie-Laure Maurin
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Zahra Assouline
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Imagine Institute, Genetics of Mitochondrial Disorders, INSERM, Paris, France
| | - Christine Barnerias
- Université Paris Cité, Paris, France
- Pediatric Neurology and Neurophysiology Department, Necker-Enfants-Malades Hospital, Assistance Publique-Hôpitaux, Paris, France
| | - Isabelle Desguerre
- Université Paris Cité, Paris, France
- Pediatric Neurology and Neurophysiology Department, Necker-Enfants-Malades Hospital, Assistance Publique-Hôpitaux, Paris, France
| | - Julie Steffann
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Imagine Institute, Genetics of Mitochondrial Disorders, INSERM, Paris, France
- Université Paris Cité, Paris, France
| | - Giulia Barcia
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
- Imagine Institute, Genetics of Mitochondrial Disorders, INSERM, Paris, France.
- Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Ma Y, Wang J, Wen T, Xu Y, Huang L, Mai Q, Xu Y. An Incidental Detection of a Rare UPD in SNP-Array Based PGT-SR: A Case Report. Reprod Sci 2024; 31:2893-2899. [PMID: 38780745 DOI: 10.1007/s43032-024-01598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Uniparental disomies (UPD) refers to the inheritance of both homologs of a chromosome from only one parent with no representative copy from the other parent. UPD was with an estimated prevalence of 0.15‰ in population. Current understanding of UPD was limited to subjects for which UPD was associated with clinical manifestation due to imprinting disorders or recessive diseases. Segmental UPD was rare, especially for a segmental UPD with a combination of hetero- and isodisomy. This paper presents a couple with reciprocal translocation 46,XY, t(14;22)(q32.3;q12.2) for PGT-SR. Among 8 biopsied blastocysts, one euploid blastocyst (No.4) with segmental loss of heterozygosity (LOH)(22) [arr[hg19] q12.1q22.3 (28,160,407 - 35,407,682)] was detected by B allele frequency. We found the chromosome contained both UPiD(22) [arr[hg19] q12.1q22.3 (28,160,407 - 35,407,682) ×2 hmz mat] and UPhD(22) [arr[hg19] q22.3qter(35,407,682 - 51,169,045) ×2 htz mat] by haplotype analysis. UPDtool software confirmed the result. What's more, the segmental UPD and reciprocal translocation shared the same breakpoint, chr22q12.1 (28,160,407), while the breakpoint between iso- and heterodisomy was chr22q22.3 (35,407,682). We reported the first segmental UPD with a combination of hetero- and isodisomy, which may result from aneuploidy rescue. This case emphasizes the importance of the combination of comprehensive chromosome screening and haplotype analysis to reduce the risk of misdiagnosis.
Collapse
Affiliation(s)
- Yuanlin Ma
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road No. 1, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Yuexiu District, 510080, Guangzhou, Guangdong, China
| | - Jing Wang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road No. 1, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Yuexiu District, 510080, Guangzhou, Guangdong, China
| | - Tianrui Wen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road No. 1, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Yuexiu District, 510080, Guangzhou, Guangdong, China
| | - Yan Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road No. 1, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Yuexiu District, 510080, Guangzhou, Guangdong, China
| | - Linhuan Huang
- Fetal Medicine Centre, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Qingyun Mai
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road No. 1, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Yuexiu District, 510080, Guangzhou, Guangdong, China
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road No. 1, Yuexiu District, 510080, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Yuexiu District, 510080, Guangzhou, Guangdong, China.
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Yuexiu District, 510080, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Peng C, Hu L, Bu X, Li H, Jiang X, Zhou S, Deng L, He J, LinPeng S. The genetics and clinical outcomes in 151 cases of fetal growth restriction: A Chinese single-center study. Eur J Obstet Gynecol Reprod Biol 2024; 298:128-134. [PMID: 38756052 DOI: 10.1016/j.ejogrb.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE To determine the detection rate of chromosomal abnormalities and pregnancy outcomes in fetuses with intrauterine growth restriction. Study design A total of 151 fetal samples with intrauterine growth restriction were divided into the isolated fetal growth restriction (FGR) group, FGR group with structural malformation, and FGR group with non-structural malformation, according to ultrasound abnormalities. The enrolled patients were divided into an early onset FGR group (<32 weeks) and a late-onset FGR group (≥32 weeks). Chromosomal karyotype and microarray analyses were performed and pregnancy outcomes were monitored. Results The karyotypes of 122 patients were analyzed. Four patients exhibited abnormal chromosome numbers or structures. Variations in copy number were detected in 151 cases; 19 cases were found to have chromosomal abnormalities, with a positivity rate of 12.6 %. There was one trisomy in 18 cases, one trisomy in 21 cases, eight pathogenic copy number variations (CNVs), and nine CNVs of unknown clinical significance. The detection rate of FGR combined with structural malformation was significantly higher than that of isolated FGR group. The detection rate of FGR with structural malformations was significantly higher than that with non-structural malformations. The positive detection rate in the FGR group was similar to that in the FGR group with non-structural malformations, with no statistical significance. Chromosomal abnormalities were detected in 17 patients with early onset FGR, with a positivity rate of 13.8 %. Two cases of chromosomal abnormalities were detected in the late-onset FGR group, with a positive rate of 7.1 %, with no statistical significance. A total of 151 fetuses with FGR were followed up for pregnancy outcomes, resulting in 36 cases of pregnancy termination and 13 cases of loss to follow-up. Among the 102 delivered fetuses, six exhibited delayed growth and development, one presented with hypospadias, and another failed the hearing screening. The remaining 94 fetuses demonstrated normal growth and development. Conclusions This study confirms the value of CNV detection in fetuses and dynamic ultrasound monitoring for fetuses with intrauterine growth restriction.
Collapse
Affiliation(s)
- Can Peng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410007, China
| | - LanPing Hu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410007, China
| | - XiuFen Bu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410007, China
| | - HongYu Li
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410007, China
| | - XuanYu Jiang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410007, China
| | - ShiHao Zhou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410007, China
| | - Li Deng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410007, China
| | - Jun He
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410007, China.
| | - SiYuan LinPeng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410007, China.
| |
Collapse
|
4
|
Bonaglia MC, Salvo E, Sironi M, Bertuzzo S, Errichiello E, Mattina T, Zuffardi O. Case Report: Decrypting an interchromosomal insertion associated with Marfan's syndrome: how optical genome mapping emphasizes the morbid burden of copy-neutral variants. Front Genet 2023; 14:1244983. [PMID: 37811140 PMCID: PMC10551147 DOI: 10.3389/fgene.2023.1244983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Optical genome mapping (OGM), which allows analysis of ultra-high molecular weight (UHMW) DNA molecules, represents a response to the restriction created by short-read next-generation-sequencing, even in cases where the causative variant is a neutral copy-number-variant insensitive to quantitative investigations. This study aimed to provide a molecular diagnosis to a boy with Marfan syndrome (MFS) and intellectual disability (ID) carrying a de novo translocation involving chromosomes 3, 4, and 13 and a 1.7 Mb deletion at the breakpoint of chromosome 3. No FBN1 alteration explaining his Marfan phenotype was highlighted. UHMW gDNA was isolated from both the patient and his parents and processed using OGM. Genome assembly was followed by variant calling and annotation. Multiple strategies confirmed the results. The 3p deletion, which disrupted ROBO2, (MIM*602431) included three copy-neutral insertions. Two came from chromosome 13; the third contained 15q21.1, including the FBN1 from intron-45 onwards, thus explaining the MFS phenotype. We could not attribute the ID to a specific gene variant nor to the reshuffling of topologically associating domains (TADs). Our patient did not have vesicular reflux-2, as reported by missense alterations of ROBO2 (VUR2, MIM#610878), implying that reduced expression of all or some isoforms has a different effect than some of the point mutations. Indeed, the ROBO2 expression pattern and its role as an axon-guide suggests that its partial deletion is responsible for the patient's neurological phenotype. Conclusion: OGM testing 1) highlights copy-neutral variants that could remain invisible if no loss of heterozygosity is observed and 2) is mandatory before other molecular studies in the presence of any chromosomal rearrangement for an accurate genotype-phenotype relationship.
Collapse
Affiliation(s)
| | - Eliana Salvo
- Cytogenetics Laboratory, Scientific Institute, IRCCS E. Medea, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. Medea, Lecco, Italy
| | - Sara Bertuzzo
- Cytogenetics Laboratory, Scientific Institute, IRCCS E. Medea, Lecco, Italy
| | - Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Teresa Mattina
- Medical Genetics Unit, University of Catania, Catania, Italy
- Clinic G.B. Morgagni, Catania, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Zuffardi O, Fichera M, Bonaglia MC. The embryo battle against adverse genomes: Are de novo terminal deletions the rescue of unfavorable zygotic imbalances? Eur J Med Genet 2022; 65:104532. [PMID: 35724817 DOI: 10.1016/j.ejmg.2022.104532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 04/02/2022] [Accepted: 05/21/2022] [Indexed: 11/03/2022]
Abstract
De novo distal deletions are structural variants considered to be already present in the zygote. However, investigations especially in the prenatal setting have documented that they are often in mosaic with cell lines in which the same deleted chromosome shows different types of aberrations such as: 1) neutral copy variants with loss of heterozygosity that replace the deleted region with equivalent portions of the homologous chromosome and create distal uniparental disomy (UPD); 2) derivative chromosomes where the deleted one ends with the distal region of another chromosome or has the shape of a ring; 3) U-type mirror dicentric or inv-dup del rearrangements. Unstable dicentrics had already been entailed as causative of terminal deletions even when no trace of the reciprocal inv-dup del had been detected. To clarify the mechanism of origin of distal deletions, we examined PubMed using as keywords: complex/mosaic chromosomal deletions, distal UPD, U-type dicentrics, inv-dup del chromosomes, excluding the recurrent inv-dup del(8p)s which are known to originate by NAHR at the maternal meiosis. The literature has shown that U-type dicentrics leading to nearly complete trisomy and therefore incompatible with zygotic survival underlie many types of de novo unbalanced rearrangements, including terminal deletions. In the early embryo, the position of the postzygotic breaks of the dicentric, the different ways of acquiring telomeres by the broken portions and the selection of the most favorable cell lines in the different tissues determine the prevalence of one or the other rearrangement. Multiple lines with simple terminal deletions, inv-dup dels, unbalanced translocations and segmental UPDs can coexist in various mosaic combinations although it is rare to identify them all in the blood. Regarding the origin of the dicentric, among the 30 cases of non-recurrent inv-dup del with sufficient genotyping information, paternal origin was markedly prevalent with consistently identical polymorphisms within the duplication region, regardless of parental origin. The non-random parental origin made any postzygotic origin unlikely and suggested the occurrence of these dicentrics mainly in spermatogenesis. This study strengthens the evidence that non-recurrent de novo structural rearrangements are often secondary to the rescue of a zygotic genome incompatible with embryo survival.
Collapse
Affiliation(s)
- Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy.
| | - Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| |
Collapse
|