1
|
Xie J, Yan J, Ji K, Guo Y, Xu S, Shen D, Li C, Gao H, Zhao L. Fibroblast growth factor 21 enhances learning and memory performance in mice by regulating hippocampal L-lactate homeostasis. Int J Biol Macromol 2024; 271:132667. [PMID: 38801850 DOI: 10.1016/j.ijbiomac.2024.132667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is one endogenous metabolic molecule that functions as a regulator in glucose and lipid homeostasis. However, the effect of FGF21 on L-lactate homeostasis and its mechanism remains unclear until now. Forty-five Six-week-old male C57BL/6 mice were divided into three groups: control, L-lactate, and FGF21 (1.5 mg/kg) groups. At the end of the treatment, nuclear magnetic resonance-based metabolomics, and key proteins related to L-lactate homeostasis were determined respectively to evaluate the efficacy of FGF21 and its mechanisms. The results showed that, compared to the vehicle group, the L-lactate-treated mice displayed learning and memory performance impairments, as well as reduced hippocampal ATP and NADH levels, but increased oxidative stress, mitochondrial dysfunction, and apoptosis, which suggesting inhibited L-lactate-pyruvate conversion in the brain. Conversely, FGF21 treatment ameliorated the L-lactate accumulation state, accompanied by restoration of the learning and memory defects, indicating enhanced L-lactate uptake and utilization in hippocampal neurons. We demonstrated that maintaining constant L-lactate-pyruvate flux is essential for preserving neuronal bioenergetic and redox levels. FGF21 contributed to preparing the brain for situations of high availability of L-lactate, thus preventing neuronal vulnerability in metabolic reprogramming.
Collapse
Affiliation(s)
- Jiaojiao Xie
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiapin Yan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Keru Ji
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuejun Guo
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Sibei Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Danjie Shen
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chen Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hongchang Gao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325035, Zhejiang, China.
| | - Liangcai Zhao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
2
|
Gazzin S, Bellarosa C, Tiribelli C. Molecular events in brain bilirubin toxicity revisited. Pediatr Res 2024; 95:1734-1740. [PMID: 38378754 DOI: 10.1038/s41390-024-03084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/22/2024]
Abstract
The mechanisms involved in bilirubin neurotoxicity are still far from being fully elucidated. Several different events concur to damage mainly the neurons among which inflammation and alteration of the redox state play a major role. An imbalance of cellular calcium homeostasis has been recently described to be associated with toxic concentrations of bilirubin, and this disequilibrium may in turn elicit an inflammatory reaction. The different and age-dependent sensitivity to bilirubin damage must also be considered in describing the dramatic clinical picture of bilirubin-induced neurological damage (BIND) formerly known as kernicterus spectrum disorder (KSD). This review aims to critically address what is known and what is not in the molecular events of bilirubin neurotoxicity to provide hints for a better diagnosis and more successful treatments. Part of these concepts have been presented at the 38th Annual Audrey K. Brown Kernicterus Symposium of Pediatric American Society, Washington DC, May 1, 2023.
Collapse
Affiliation(s)
- Silvia Gazzin
- Liver-Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Cristina Bellarosa
- Liver-Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Claudio Tiribelli
- Liver-Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149, Trieste, Italy.
| |
Collapse
|
3
|
Llido JP, Fioriti E, Pascut D, Giuffrè M, Bottin C, Zanconati F, Tiribelli C, Gazzin S. Bilirubin-Induced Transcriptomic Imprinting in Neonatal Hyperbilirubinemia. BIOLOGY 2023; 12:834. [PMID: 37372119 DOI: 10.3390/biology12060834] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Recent findings indicated aberrant epigenetic control of the central nervous system (CNS) development in hyperbilirubinemic Gunn rats as an additional cause of cerebellar hypoplasia, the landmark of bilirubin neurotoxicity in rodents. Because the symptoms in severely hyperbilirubinemic human neonates suggest other regions as privileged targets of bilirubin neurotoxicity, we expanded the study of the potential impact of bilirubin on the control of postnatal brain development to regions correlating with human symptoms. Histology, transcriptomic, gene correlation, and behavioral studies were performed. The histology revealed widespread perturbation 9 days after birth, restoring in adulthood. At the genetic level, regional differences were noticed. Bilirubin affected synaptogenesis, repair, differentiation, energy, extracellular matrix development, etc., with transient alterations in the hippocampus (memory, learning, and cognition) and inferior colliculi (auditory functions) but permanent changes in the parietal cortex. Behavioral tests confirmed the presence of a permanent motor disability. The data correlate well both with the clinic description of neonatal bilirubin-induced neurotoxicity, as well as with the neurologic syndromes reported in adults that suffered neonatal hyperbilirubinemia. The results pave the way for better deciphering the neurotoxic features of bilirubin and evaluating deeply the efficacy of new therapeutic approaches against the acute and long-lasting sequels of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- John Paul Llido
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - Emanuela Fioriti
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| | - Devis Pascut
- Liver Cancer Unit, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| | - Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| | - Silvia Gazzin
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| |
Collapse
|
4
|
Lin Q, Chen L, Zheng H, Tan H, Zhang G, Zheng W. Imaging of nerve injury in neonatal acute bilirubin encephalopathy using 1H-MRS and Glu-CEST techniques. Front Neurosci 2023; 17:1110349. [PMID: 37056307 PMCID: PMC10086169 DOI: 10.3389/fnins.2023.1110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
ObjectivesTo investigate the significance of proton magnetic resonance spectroscopy (1H-MRS) and glutamate chemical exchange saturation transfer (Glu-CEST) techniques in assessing the condition and prognosis of acute bilirubin encephalopathy patients and to understand the mechanism of nerve injury in this disease.Materials and methodsFrom September 2019 to February 2021, 31 neonates with acute bilirubin encephalopathy and 16 healthy neonates were enrolled in this study. All the quantitative results of 1H-MRS, Glu-CEST, and conventional magnetic resonance imaging (MRI) of all neonates were analyzed. The associations between statistically significant indicators of imaging and developmental quotients (DQ) were analyzed.ResultsThe 31 cases were assigned to the mild subgroup (n = 21) and moderate and severe subgroup (n = 10) according to the bilirubin-induced neurologic dysfunction (BIND) scores. The case group had elevated Cho and GABA absolute concentrations compared to the normal control group (all p < 0.05). Compared with the normal control group, the absolute concentration of GABA of the moderate and severe subgroup was significantly larger (p < 0.05). Compared with the normal control group, the Glu-CEST% values in the left basal ganglia, right thalamus, left frontal cortex and bilateral medial geniculate body of the case group was significantly larger (all p < 0.05). The moderate and severe subgroup had higher Glu-CEST% values in the left basal ganglia, right thalamus, and bilateral medial geniculate body than the normal control group (all p < 0.05). A negative association was revealed between the DQ scores and the Glu-CEST% values in the left basal ganglia (r = −0.888, p < 0.05).ConclusionThe combination of 1H-MRS and Glu-CEST techniques can monitor the intracerebral metabolite level of acute bilirubin encephalopathy and evaluate the illness severity.
Collapse
Affiliation(s)
- Qihuan Lin
- Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lanmei Chen
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Hongyi Zheng
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Tan
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Gengbiao Zhang
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Wenbin Zheng
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- *Correspondence: Wenbin Zheng,
| |
Collapse
|
5
|
Wu C, Jin Y, Cui Y, Zhu Y, Yin S, Li C. Effects of bilirubin on the development and electrical activity of neural circuits. Front Cell Neurosci 2023; 17:1136250. [PMID: 37025700 PMCID: PMC10070809 DOI: 10.3389/fncel.2023.1136250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
In the past several decades, bilirubin has attracted great attention for central nervous system (CNS) toxicity in some pathological conditions with severely elevated bilirubin levels. CNS function relies on the structural and functional integrity of neural circuits, which are large and complex electrochemical networks. Neural circuits develop from the proliferation and differentiation of neural stem cells, followed by dendritic and axonal arborization, myelination, and synapse formation. The circuits are immature, but robustly developing, during the neonatal period. It is at the same time that physiological or pathological jaundice occurs. The present review comprehensively discusses the effects of bilirubin on the development and electrical activity of neural circuits to provide a systematic understanding of the underlying mechanisms of bilirubin-induced acute neurotoxicity and chronic neurodevelopmental disorders.
Collapse
|
6
|
Models of bilirubin neurological damage: lessons learned and new challenges. Pediatr Res 2022:10.1038/s41390-022-02351-x. [PMID: 36302856 DOI: 10.1038/s41390-022-02351-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Jaundice (icterus) is the visible manifestation of the accumulation of bilirubin in the tissue and is indicative of potential toxicity to the brain. Since its very first description more than 2000 years ago, many efforts have been undertaken to understand the molecular determinants of bilirubin toxicity to neuronal cells to reduce the risk of neurological sequelae through the use of available chemicals and in vitro, ex vivo, in vivo, and clinical models. Although several studies have been performed, important questions remain unanswered, such as the reasons for regional sensitivity and the interplay with brain development. The number of new molecular effects identified has increased further, which has added even more complexity to the understanding of the condition. As new research challenges emerged, so does the need to establish solid models of prematurity. METHODS This review critically summarizes the key mechanisms of severe neonatal hyperbilirubinemia and the use of the available models and technologies for translational research. IMPACT We critically review the conceptual dogmas and models used for studying bilirubin-induced neurotoxicity. We point out the pitfalls and translational gaps, and suggest new clinical research challenges. We hope to inform researchers on the pro and cons of the models used, and to help direct their experimental focus in a most translational research.
Collapse
|
7
|
Effects of Fibroblast Growth Factor 21 on Lactate Uptake and Usage in Mice with Diabetes-Associated Cognitive Decline. Mol Neurobiol 2022; 59:5656-5672. [PMID: 35761156 DOI: 10.1007/s12035-022-02926-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/11/2022] [Indexed: 10/17/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exerts beneficial effects on glucose and lipid metabolic homeostasis. However, the impact of FGF21 on type 1 diabetes-associated cognitive decline (DACD) and its mechanisms of action remain unclear. In this study, we aimed to evaluate the effects of FGF21 on lactate uptake and usage in a mouse model of streptozotocin-induced DACD. Six-week-old male C57BL/6 mice were divided into the control, diabetic, and FGF21 (which received 2 mg/kg recombinant human FGF21) groups. At the end of the treatment period, learning and memory performance, nuclear magnetic resonance-based metabonomics, and expressions of various hippocampal protein were analyzed to determine the efficacy of FGF21. The results showed that compared to the control mice, the diabetic mice had reduced long-term memory performance after the hyperglycemic insult; decreased hippocampal levels of lactate dehydrogenase-B (LDH-B) activity, bioenergy metabolites, and monocarboxylate transporter 2 (MCT2); and increased lactate levels. Impaired phosphoinositide 3-kinase (PI3K) signaling was also observed in the diabetic mice. However, FGF21 treatment improved LDH-B activity, β-nicotinamide adenine dinucleotide, and ATP levels, and increased MCT2 expression and PI3K signaling pathway, which in turn improved the learning and memory defects. These findings demonstrated that the effects of FGF21 on DACD were associated with its ability to improve LDH-B-mediated lactate usage and MCT2-dependent lactate uptake. Further, these beneficial effects of FGF21 in the hippocampus were mediated by the PI3K signaling pathways.
Collapse
|
8
|
Metabolic effects induced by chronic stress in the amygdala of diabetic rats: A study based on ex vivo 1H NMR spectroscopy. Brain Res 2019; 1723:146377. [DOI: 10.1016/j.brainres.2019.146377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 02/02/2023]
|
9
|
Zhao L, Dong M, Ren M, Li C, Zheng H, Gao H. Metabolomic Analysis Identifies Lactate as an Important Pathogenic Factor in Diabetes-associated Cognitive Decline Rats. Mol Cell Proteomics 2018; 17:2335-2346. [PMID: 30171160 PMCID: PMC6283288 DOI: 10.1074/mcp.ra118.000690] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/19/2018] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus causes brain structure changes and cognitive decline, and it has been estimated that diabetes doubles the risk for dementia. Until now, the pathogenic mechanism of diabetes-associated cognitive decline (DACD) has remained unclear. Using metabolomics, we show that lactate levels increased over time in the hippocampus of rats with streptozotocin-induced diabetes, as compared with age-matched control rats. Additionally, mRNA levels, protein levels, and enzymatic activity of lactate dehydrogenase-A (LDH-A) were significantly up-regulated, suggesting increased glycolysis activity. Importantly, by specifically blocking the glycolysis pathway through an LDH-A inhibitor, chronic diabetes-induced memory impairment was prevented. Analyzing the underlying mechanism, we show that the expression levels of cAMP-dependent protein kinase and of phosphorylated transcription factor cAMP response element-binding proteins were decreased in 12-week diabetic rats. We suggest that G protein-coupled receptor 81 mediates cognitive decline in the diabetic rat. In this study, we report that progressively increasing lactate levels is an important pathogenic factor in DACD, directly linking diabetes to cognitive dysfunction. LDH-A may be considered as a potential target for alleviating or treating DACD in the future.
Collapse
Affiliation(s)
- Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Minjian Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Mengqian Ren
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
10
|
Metabolic Changes Associated with a Rat Model of Diabetic Depression Detected by Ex Vivo 1H Nuclear Magnetic Resonance Spectroscopy in the Prefrontal Cortex, Hippocampus, and Hypothalamus. Neural Plast 2018; 2018:6473728. [PMID: 29849562 PMCID: PMC5911311 DOI: 10.1155/2018/6473728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/12/2018] [Accepted: 03/11/2018] [Indexed: 01/08/2023] Open
Abstract
Diabetic patients often present with comorbid depression. However, the pathogenetic mechanisms underlying diabetic depression (DD) remain unclear. To explore the mechanisms underpinning the pathogenesis of the disease, we used ex vivo 1H nuclear magnetic resonance spectroscopy and immunohistochemistry to investigate the main metabolic and pathological changes in various rat brain areas in an animal model of DD. Compared with the control group, rats in the DD group showed significant decreases in neurotransmitter concentrations of glutamate (Glu) and glutamine (Gln) in the prefrontal cortex (PFC), hippocampus, and hypothalamus and aspartate and glycine in the PFC and hypothalamus. Gamma-aminobutyric acid (GABA) was decreased only in the hypothalamus. Levels of the energy product, lactate, were higher in the PFC, hippocampus, and hypothalamus of rats with DD than those in control rats, while creatine was lower in the PFC and hippocampus, and alanine was lower in the hypothalamus. The levels of other brain metabolites were altered, including N-acetyl aspartate, taurine, and choline. Immunohistochemistry analysis revealed that expressions of both glutamine synthetase and glutaminase were decreased in the PFC, hippocampus, and hypothalamus of rats with DD. The metabolic changes in levels of Glu, Gln, and GABA indicate an imbalance of the Glu-Gln metabolic cycle between astrocytes and neurons. Our results suggest that the development of DD in rats may be linked to brain metabolic changes, including inhibition of the Glu-Gln cycle, increases in anaerobic glycolysis, and disturbances in the lactate-alanine shuttle, and associated with dysfunction of neurons and astrocytes.
Collapse
|
11
|
Huang Q, Li C, Xia N, Zhao L, Wang D, Yang Y, Gao H. Neurochemical changes in unilateral cerebral hemisphere during the subacute stage of focal cerebral ischemia-reperfusion in rats: An ex vivo 1H magnetic resonance spectroscopy study. Brain Res 2018; 1684:67-74. [PMID: 29408682 DOI: 10.1016/j.brainres.2018.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/23/2022]
Abstract
Understanding the subacute may shed light on the mechanism of cerebral ischemia. The present study aimed to explore metabolic features underlying subacute stage of ischemia-reperfusion injury and developing effective treatments. Rats were divided into three groups: the permanent middle cerebral artery occlusion (pMCAO), transient cerebral focal ischemia (tMCAO) and sham group. Evaluation of animal models was performed by the neurological deficit, MR images and pathological morphological abnormality. To elucidate metabolic changes, we conducted a comparative analysis of metabolic composition of unilateral brain tissue using 1H nuclear magnetic resonance spectroscopy. The successful model was observed low signal on T1WI and high signal on T2WI lesions in the left cerebral. Histopathological results confirmed the formation of apparent lesions in the left striatum, hippocampus CA1 and cortex tissues of subacute cerebral ischemia rats and showed that rats with focal cerebral ischemia-reperfusion could alleviate the extent of pathological damage degree. In pMCAO rats 7 days after surgery, decreased levels of N-acetyl aspartate (NAA), γ-aminobutyric acid (GABA), glutamate (Glu) and succinate (Suc) concomitantly with increased levels of glutamine (Gln), myo-inositol (m-Ins) and lactate (Lac) were observed compared to the control. Whereas, increased level of Lac with decreased levels of NAA, GABA, Glu, Suc, creatine (Cre) were observed in the tMCAO rats. This demonstrated that experimental subacute ischemic stroke in rats caused extensive perturbation in energy metabolism, the tricarboxylic acid cycle and GABA shunt, which provided essential information for understanding the pathogenesis of subacute cerebral ischemia-reperfusion and provided guidance in choosing the suitable therapeutic schedule.
Collapse
Affiliation(s)
- Qun Huang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035 China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035 China
| | - Nengzhi Xia
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035 China
| | - Dan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035 China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035 China.
| |
Collapse
|
12
|
Dal Ben M, Bottin C, Zanconati F, Tiribelli C, Gazzin S. Evaluation of region selective bilirubin-induced brain damage as a basis for a pharmacological treatment. Sci Rep 2017; 7:41032. [PMID: 28102362 PMCID: PMC5244479 DOI: 10.1038/srep41032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
The neurologic manifestations of neonatal hyperbilirubinemia in the central nervous system (CNS) exhibit high variations in the severity and appearance of motor, auditory and cognitive symptoms, which is suggestive of a still unexplained selective topography of bilirubin-induced damage. By applying the organotypic brain culture (OBC: preserving in vitro the cellular complexity, connection and architecture of the in vivo brain) technique to study hyperbilirubinemia, we mapped the regional target of bilirubin-induced damage, demonstrated a multifactorial toxic action of bilirubin, and used this information to evaluate the efficacy of drugs applicable to newborns to protect the brain. OBCs from 8-day-old rat pups showed a 2–13 fold higher sensitivity to bilirubin damage than 2-day-old preparations. The hippocampus, inferior colliculus and cerebral cortex were the only brain regions affected, presenting a mixed inflammatory-oxidative mechanism. Glutamate excitotoxicity was appreciable in only the hippocampus and inferior colliculus. Single drug treatment (indomethacin, curcumin, MgCl2) significantly improved cell viability in all regions, while the combined (cocktail) administration of the three drugs almost completely prevented damage in the most affected area (hippocampus). Our data may supports an innovative (complementary to phototherapy) approach for directly protecting the newborn brain from bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Matteo Dal Ben
- Italian Liver Foundation (Fondazione Italiana Fegato), AREA Science Park, Trieste, Italy
| | - Cristina Bottin
- Department of Medical Sciences (Dipartimento di Scienze Mediche), Ospedale di Cattinara, Univestità degli Studi di Trieste, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical Sciences (Dipartimento di Scienze Mediche), Ospedale di Cattinara, Univestità degli Studi di Trieste, Trieste, Italy
| | - Claudio Tiribelli
- Italian Liver Foundation (Fondazione Italiana Fegato), AREA Science Park, Trieste, Italy
| | - Silvia Gazzin
- Italian Liver Foundation (Fondazione Italiana Fegato), AREA Science Park, Trieste, Italy
| |
Collapse
|
13
|
Zheng Y, Yang Y, Dong B, Zheng H, Lin X, Du Y, Li X, Zhao L, Gao H. Metabonomic profiles delineate potential role of glutamate-glutamine cycle in db/db mice with diabetes-associated cognitive decline. Mol Brain 2016; 9:40. [PMID: 27090642 PMCID: PMC4835835 DOI: 10.1186/s13041-016-0223-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/11/2016] [Indexed: 12/02/2022] Open
Abstract
Background Diabetes-associated cognition decline is one of central nervous system complications in diabetic mellitus, while its pathogenic mechanism remains unclear. In this study, 1H nuclear magnetic resonance-based metabonomics and immunohistochemistry was used to explore key metabolic alterations in hippocampus of type 2 diabetic db/db mice with cognition decline in order to advance understanding of mechanisms underlying the pathogenesis of the disease. Results Metabonomics reveals that lactate level was significantly increased in hippocampus of db/db mice with cognition decline compared with age-matched wild-type mice. Several tricarboxylic acid cycle intermediates including succinate and citrate were reduced in hippocampus of db/db mice with cognition decline. Moreover, an increase in glutamine level and a decrease in glutamate and γ-aminobutyric acid levels were observed in db/db mice. Results from immunohistochemistry analysis show that glutamine synthetase was increased and glutaminase and glutamate decarboxylase were decreased in db/db mice. Conclusions Our results suggest that the development of diabetes-associated cognition decline in db/db mice is most likely implicated in a reduction in energy metabolism and a disturbance of glutamate-glutamine shuttling between neurons and astrocytes in hippocampus. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0223-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongquan Zheng
- Radiology Department of the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yunjun Yang
- Radiology Department of the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaodong Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yao Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|