1
|
Villalonga E, Mosrin C, Normand T, Girardin C, Serrano A, Žunar B, Doudeau M, Godin F, Bénédetti H, Vallée B. LIM Kinases, LIMK1 and LIMK2, Are Crucial Node Actors of the Cell Fate: Molecular to Pathological Features. Cells 2023; 12:cells12050805. [PMID: 36899941 PMCID: PMC10000741 DOI: 10.3390/cells12050805] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) are serine/threonine and tyrosine kinases and the only two members of the LIM kinase family. They play a crucial role in the regulation of cytoskeleton dynamics by controlling actin filaments and microtubule turnover, especially through the phosphorylation of cofilin, an actin depolymerising factor. Thus, they are involved in many biological processes, such as cell cycle, cell migration, and neuronal differentiation. Consequently, they are also part of numerous pathological mechanisms, especially in cancer, where their involvement has been reported for a few years and has led to the development of a wide range of inhibitors. LIMK1 and LIMK2 are known to be part of the Rho family GTPase signal transduction pathways, but many more partners have been discovered over the decades, and both LIMKs are suspected to be part of an extended and various range of regulation pathways. In this review, we propose to consider the different molecular mechanisms involving LIM kinases and their associated signalling pathways, and to offer a better understanding of their variety of actions within the physiology and physiopathology of the cell.
Collapse
Affiliation(s)
- Elodie Villalonga
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Christine Mosrin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Thierry Normand
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Caroline Girardin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Amandine Serrano
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Michel Doudeau
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Fabienne Godin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
- Correspondence: ; Tel.: +33-(0)2-38-25-76-11
| |
Collapse
|
2
|
Bu Q, Zhang J, Guo X, Feng Y, Yan H, Cheng W, Feng Z, Cao M. The antidepressant effects and serum metabonomics of bifid triple viable capsule in a rat model of chronic unpredictable mild stress. Front Nutr 2022; 9:947697. [PMID: 36185696 PMCID: PMC9520780 DOI: 10.3389/fnut.2022.947697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Probiotics have shown potential antidepressant effects. This study evaluated the effect and probable mechanisms of bifid triple viable capsules (BTVCs) on a rat model of chronic unpredictable mild stress (CUMS). Materials and methods Rats were randomly divided into Normal, CUMS model, fluoxetine hydrochloride (FLX), BTVCs, and FLX+BTVCs groups. Depressive-like behaviours, pathological changes in the hippocampus, changes in serum metabolites and potential biomarkers, and metabolic pathways were detected via behavioural tests, haematoxylin-eosin staining, nissl staining, non-targetted metabolomics, and ingenuity pathway analysis (IPA). Results The rats displayed depressive-like behaviours after CUMS exposure, but BTVCs ameliorated the depressive-like behaviours. In addition, the pathological results showed that the hippocampal tissue was damaged in rats after CUMS exposure and that the damage was effectively alleviated by treatment with BTVCs. A total of 20 potential biomarkers were identified. Treatment with BTVCs regulated D-phenylalanine, methoxyeugenol, (±)-myristoylcarnitine, 18:3 (6Z, 9Z, 12Z) /P-18:1 (11Z), propionyl-L-carnitine, and arachidonic acid (AA) concentrations, all compounds that are involved with biosynthesis of unsaturated fatty acids, glycerophospholipid metabolism, linoleic acid metabolism and AA metabolism. The IPA demonstrated that endothelin-1 signalling and cyclic adenosine monophosphate response element binding protein (CREB) signalling in neurons may be involved in the development of depression. Conclusion Our findings suggest that BTVCs can alleviate depressive-like behaviours, restore damage to the hippocampus in CUMS rats and regulate serum metabolism, which may be related to endothelin-1 signalling or CREB signalling in neurons.
Collapse
Affiliation(s)
- Qinpeng Bu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Jingkai Zhang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xiang Guo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Yifei Feng
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Huan Yan
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Weimin Cheng
- Department of Hematology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
- *Correspondence: Zhitao Feng,
| | - Meiqun Cao
- Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Meiqun Cao,
| |
Collapse
|
3
|
Kim JE, Park H, Kim TH, Kang TC. LONP1 Regulates Mitochondrial Accumulations of HMGB1 and Caspase-3 in CA1 and PV Neurons Following Status Epilepticus. Int J Mol Sci 2021; 22:2275. [PMID: 33668863 PMCID: PMC7956547 DOI: 10.3390/ijms22052275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Lon protease 1 (LONP1) is a highly conserved serine peptidase that plays an important role in the protein quality control system in mammalian mitochondria. LONP1 catalyzes the degradation of oxidized, dysfunctional, and misfolded matrix proteins inside mitochondria and regulates mitochondrial gene expression and genome integrity. Therefore, LONP1 is up-regulated and suppresses cell death in response to oxidative stress, heat shock, and nutrient starvation. On the other hand, translocation of high mobility group box 1 (HMGB1) and active caspase-3 into mitochondria is involved in apoptosis of parvalbumin (PV) cells (one of the GABAergic interneurons) and necrosis of CA1 neurons in the rat hippocampus, respectively, following status epilepticus (SE). In the present study, we investigated whether LONP1 may improve neuronal viability to prevent or ameliorate translocation of active caspase-3 and HMGB1 in mitochondria within PV and CA1 neurons. Following SE, LONP1 expression was up-regulated in mitochondria of PV and CA1 neurons. LONP1 knockdown deteriorated SE-induced neuronal death with mitochondrial accumulation of active caspase-3 and HMGB1 in PV cells and CA1 neurons, respectively. LONP1 knockdown did not affect the aberrant mitochondrial machinery induced by SE. Therefore, our findings suggest, for the first time, that LONP1 may contribute to the alleviation of mitochondrial overloads of active caspase-3 and HMGB1, and the maintenance of neuronal viability against SE.
Collapse
Affiliation(s)
| | | | | | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym Unversity, Chuncheon 24252, Korea; (J.-E.K.); (H.P.); (T.-H.K.)
| |
Collapse
|
4
|
Lee DS, Kim JE. Protein disulfide isomerase-mediated S-nitrosylation facilitates surface expression of P2X7 receptor following status epilepticus. J Neuroinflammation 2021; 18:14. [PMID: 33407649 PMCID: PMC7788848 DOI: 10.1186/s12974-020-02058-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background P2X7 receptor (P2X7R) is an ATP-gated nonselective cationic channel playing important roles in a variety of physiological functions, including inflammation, and apoptotic or necrotic cell death. An extracellular domain has ten cysteine residues forming five intrasubunit disulfide bonds, which are needed for the P2X7R trafficking to the cell surface and the recognition of surface epitopes of apoptotic cells and bacteria. However, the underlying mechanisms of redox/S-nitrosylation of cysteine residues on P2X7R and its role in P2X7R-mediated post-status epilepticus (SE, a prolonged seizure activity) events remain to be answered. Methods Rats were given pilocarpine (380 mg/kg i.p.) to induce SE. Animals were intracerebroventricularly infused Nω-nitro-l-arginine methyl ester hydrochloride (L-NAME, a NOS inhibitor) 3 days before SE, or protein disulfide isomerase (PDI) siRNA 1 day after SE using an osmotic pump. Thereafter, we performed Western blot, co-immunoprecipitation, membrane fraction, measurement of S-nitrosylated (SNO)-thiol and total thiol, Fluoro-Jade B staining, immunohistochemistry, and TUNEL staining. Results SE increased S-nitrosylation ratio of P2X7R and the PDI-P2X7R bindings, which were abolished by L-NAME and PDI knockdown. In addition, both L-NAME and PDI siRNA attenuated SE-induced microglial activation and astroglial apoptosis. L-NAME and PDI siRNA also ameliorated the increased P2X7R surface expression induced by SE. Conclusions These findings suggest that PDI-mediated redox/S-nitrosylation may facilitate the trafficking of P2X7R, which promotes microglial activation and astroglial apoptosis following SE. Therefore, our findings suggest that PDI-mediated regulations of dynamic redox status and S-nitrosylation of P2X7R may be a critical mechanism in the neuroinflammation and astroglial death following SE.
Collapse
Affiliation(s)
- Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Kangwon-Do, Chuncheon, 24252, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Kangwon-Do, Chuncheon, 24252, South Korea.
| |
Collapse
|
5
|
Kang TC. Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) and Mitochondrial Dynamics/Mitophagy in Neurological Diseases. Antioxidants (Basel) 2020; 9:antiox9070617. [PMID: 32679689 PMCID: PMC7402121 DOI: 10.3390/antiox9070617] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria play an essential role in bioenergetics and respiratory functions for cell viability through numerous biochemical processes. To maintain mitochondria quality control and homeostasis, mitochondrial morphologies change rapidly in response to external insults and changes in metabolic status through fusion and fission (so called mitochondrial dynamics). Furthermore, damaged mitochondria are removed via a selective autophagosomal process, referred to as mitophagy. Although mitochondria are one of the sources of reactive oxygen species (ROS), they are themselves vulnerable to oxidative stress. Thus, endogenous antioxidant defense systems play an important role in cell survival under physiological and pathological conditions. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that maintains redox homeostasis by regulating antioxidant-response element (ARE)-dependent transcription and the expression of antioxidant defense enzymes. Although the Nrf2 system is positively associated with mitochondrial biogenesis and mitochondrial quality control, the relationship between Nrf2 signaling and mitochondrial dynamics/mitophagy has not been sufficiently addressed in the literature. This review article describes recent clinical and experimental observations on the relationship between Nrf2 and mitochondrial dynamics/mitophagy in various neurological diseases.
Collapse
Affiliation(s)
- Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; ; Tel.: +82-33-248-2524; Fax: +82-33-248-2525
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
6
|
Lee DS, Kim JE. PDI-Mediated Reduction of Disulfide Bond on PSD95 Increases Spontaneous Seizure Activity by Regulating NR2A-PSD95 Interaction in Epileptic Rats Independent of S-Nitrosylation. Int J Mol Sci 2020; 21:ijms21062094. [PMID: 32197489 PMCID: PMC7139850 DOI: 10.3390/ijms21062094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/17/2023] Open
Abstract
Postsynaptic density-95 (PSD95), a major scaffolding protein, is critical in coupling N-methyl-D-aspartate receptor (NMDAR) to cellular signaling networks in the central nervous system. A couple of cysteine residues in the N-terminus of PSD95 are potential sites for disulfide bonding, S-nitrosylation and/or palmitoylation. Protein disulfide isomerase (PDI) reduces disulfide bonds (S-S) to free thiol (-SH) on various proteins. However, the involvement of PDI in disulfide bond formation/S-nitrosylation of PSD95 and its role in epilepsy are still unknown. In the present study, acute seizure activity significantly increased the bindings of PDI to NR2A, but not to PSD95, while it decreased the NR2A–PSD95 binding. In addition, pilocarpine-induced seizures increased the amount of nitrosylated (SNO-) thiols, not total (free and SNO-) thiols, on PSD95. Unlike acute seizure, spontaneous seizing rats showed the increases in PDI–PSD95 binding, total- and SNO-thiol levels on PSD95, and NR2A–PSD95 interaction. PDI siRNA effectively reduced spontaneous seizure activity with decreases in total thiol level on PSD95 and NR2A–PSD95 association. These findings indicate that PDI-mediated reduction of disulfide-bond formations may facilitate the NR2A–PSD95 binding and contribute to spontaneous seizure generation in epileptic animals.
Collapse
Affiliation(s)
| | - Ji-Eun Kim
- Correspondence: ; Tel.: +82-33-248-2522; Fax: +82-33-248-2525
| |
Collapse
|
7
|
Kim JE, Park H, Choi SH, Kong MJ, Kang TC. CDDO-Me Selectively Attenuates CA1 Neuronal Death Induced by Status Epilepticus via Facilitating Mitochondrial Fission Independent of LONP1. Cells 2019; 8:cells8080833. [PMID: 31387295 PMCID: PMC6721758 DOI: 10.3390/cells8080833] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/12/2022] Open
Abstract
2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) is a triterpenoid analogue of oleanolic acid that exhibits promising anti-cancer, anti-inflammatory, antioxidant and neuroprotective activities. In addition, CDDO-Me affects cellular differentiation and cell cycle arrest, and irreversibly inhibits Lon protease-1 (LONP1). In the present study, we evaluate the effects of CDDO-Me on mitochondrial dynamics and its downstream effectors in order to understand the underlying mechanism of the neuronal death following status epilepticus (SE, a prolonged seizure activity). CDDO-Me increased dynamin-related proteins 1 (DRP1)-serine 616 phosphorylation via activating extracellular-signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), but not protein kinase A (PKA) or protein phosphatases (PPs). In addition, CDDO-Me facilitated DRP1-mediated mitochondrial fissions, which selectively attenuated SE-induced CA1 neuronal death. Unlike CDDO-Me, LONP1 knockdown led to SE-induced massive degeneration of dentate granule cells, CA1 neurons and hilus interneurons without altering the expression and phosphorylation of DRP1, ERK1/2, JNK and PP2B. LONP1 knockdown could not inhibit SE-induced mitochondrial elongation in CA1 neurons. Co-treatment of CDDO-Me with LONP1 siRNA ameliorated only CA1 neuronal death, concomitant with abrogation of mitochondrial elongation induced by SE. Thus, our findings suggest that CDDO-Me may selectively attenuate SE-induced CA1 neuronal death by rescuing the abnormal mitochondrial machinery, independent of LONP1 activity.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Seo-Hyeon Choi
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Min-Jeong Kong
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea.
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea.
| |
Collapse
|
8
|
Jeon AR, Kim JE. PDI Knockdown Inhibits Seizure Activity in Acute Seizure and Chronic Epilepsy Rat Models via S-Nitrosylation-Independent Thiolation on NMDA Receptor. Front Cell Neurosci 2018; 12:438. [PMID: 30524244 PMCID: PMC6261974 DOI: 10.3389/fncel.2018.00438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023] Open
Abstract
Redox modulation and S-nitrosylation of cysteine residues are the post-translational modifications of N-methyl-D-aspartate receptor (NMDAR) to regulate its functionality. Recently, we have reported that protein disulfide isomerase (PDI) reduces disulfide bond (S-S) to free thiol (-SH) on NMDAR. Since PDI is a modulator of S-nitrosylation on various proteins, it is noteworthy whether PDI affects S-nitrosylation of NMDAR in acute seizure and chronic epilepsy models. In the present study, we found that acute seizures in response to pilocarpine and spontaneous seizures in chronic epilepsy rats led to the reduction in S-nitrosylated thiol (SNO-thiol)-to-total thiol ratio on NMDAR, while they elevated nitric oxide (NO) level and S-nitrosylation on NMDAR. N-nitro-L-arginine methyl ester (L-NAME, a non-selective NOS inhibitor) did not affect seizure activities in both models, although it decreased SNO-thiol levels on NMDAR. However, PDI knockdown effectively inhibited pilocarpine-induced acute seizures and spontaneous seizures in chronic epilepsy rats, accompanied by increasing the SNO-thiol-to-total thiol ratio on NMDAR due to diminishing the amounts of total thiols on GluN1 and GluN2A. Therefore, these findings indicate that PDI may not be a NO donor or a denitrosylase for NMDAR, and that PDI knockdown may inhibit seizure activity by the S-nitrosylation-independent thiolation on NMDAR.
Collapse
Affiliation(s)
- A Ran Jeon
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
9
|
Kim JE, Kang TC. Differential Roles of Mitochondrial Translocation of Active Caspase-3 and HMGB1 in Neuronal Death Induced by Status Epilepticus. Front Cell Neurosci 2018; 12:301. [PMID: 30233331 PMCID: PMC6133957 DOI: 10.3389/fncel.2018.00301] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/17/2018] [Indexed: 11/13/2022] Open
Abstract
Under pathophysiological conditions, aberrant mitochondrial dynamics lead to the different types of neuronal death: excessive mitochondrial fission provokes apoptosis and abnormal mitochondrial elongation induces necrosis. However, the underlying mechanisms how the different mitochondrial dynamics result in the distinct neuronal death patterns have been elusive. In the present study, status epilepticus (SE) evoked excessive mitochondrial fission in parvalbumin (PV) cells (one of GABAergic interneurons) and abnormal mitochondrial elongation in CA1 neurons in the rat hippocampus. These impaired mitochondrial dynamics were accompanied by mitochondrial translocations of active caspase-3 and high mobility group box 1 (HMGB1) in PV cells and CA1 neurons, respectively. WY14643 (an activator of mitochondrial fission) aggravated SE-induced PV cell loss by enhancing active caspase-3 induction and its mitochondrial translocation, which were attenuated by Mdivi-1 (an inhibitor of mitochondrial fission). Mitochondrial HMGB1 import was not observed in PV cell. In contrast to PV cells, Mdivi-1 deteriorated SE-induced CA1 neuronal death concomitant with mitochondrial HMGB1 translocation, which was abrogated by WY14643. These findings suggest that SE-induced aberrant mitochondrial dynamics may be involved in translocation of active caspase-3 and HMGB1 into mitochondria, which regulate neuronal apoptosis and necrosis, respectively.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
10
|
Mihaylova B, Vassilev A, Dimitrova G, Rankova-Yotova C, Petkova I, Ivanova S, Oscar A. Prognostic importance of endothelin-1 and endothelin receptor: a plasma levels in the early perimetric stage of primary open-angle glaucoma. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1500147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Bilyana Mihaylova
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Anton Vassilev
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Galina Dimitrova
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Charita Rankova-Yotova
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Iva Petkova
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Stanislava Ivanova
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Alexander Oscar
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
11
|
Lee DS, Kim JE. PDI-mediated S-nitrosylation of DRP1 facilitates DRP1-S616 phosphorylation and mitochondrial fission in CA1 neurons. Cell Death Dis 2018; 9:869. [PMID: 30158524 PMCID: PMC6115394 DOI: 10.1038/s41419-018-0910-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022]
Abstract
Dynamin-related protein 1 (DRP1) is a key molecule to regulate mitochondrial fission. DRP1 activity is modulated by phosphorylation and S-nitrosylation on serine and cysteine residues, respectively. However, it is still unexplored whether S-nitrosylation of DRP1 affects its phosphorylation. In the present study, we found that Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME, a NOS inhibitor) abolished S-nitrosylated (SNO-DRP1) and DRP1-serine (S) 616 phosphorylation levels in CA1 neurons under physiological condition. l-NAME led to mitochondrial elongation. In spite of the sustained NO synthesis, status epilepticus (a prolonged seizure activity, SE) diminished SNO-DRP1 and DRP1-S616 levels in CA1 neurons, accompanied by the reduced protein disulfide isomerase (PDI) expression and mitochondrial elongation. SE did not influence thioredoxin 1 (Trx1, a denitrosylating enzyme) activity, which was unaffected by l-NAME under physiological and post-SE condition. PDI knockdown decreased SNO-DRP1 and DRP1-S616 levels concomitant with mitochondrial elongation in CA1 neurons without altered NO synthesis under physiological condition. These findings indicate that PDI may be a NO donor of DRP1 to regulate DRP1-S616 phosphorylation, independent of Trx1 activity. Therefore, we suggest that PDI-mediated S-nitrosylation of DRP1 may be one of the major regulatory modifications for mitochondrial dynamics.
Collapse
Affiliation(s)
- Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
12
|
Zhang Y, Li A, Shi J, Fang Y, Gu C, Cai J, Lin C, Zhao L, Liu S. Imbalanced LIMK1 and LIMK2 expression leads to human colorectal cancer progression and metastasis via promoting β-catenin nuclear translocation. Cell Death Dis 2018; 9:749. [PMID: 29970879 PMCID: PMC6030168 DOI: 10.1038/s41419-018-0766-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/05/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
Epithelial–mesenchymal transition (EMT)-induced metastasis contributes to human colorectal cancer (CRC) progression, especially in advanced CRC. However, the underlying mechanism of β-catenin in this process is elusive. We identified that LIM domain kinase (LIMK)2 was progressively downregulated with tumor progression from precancerous lesions to advanced cancer. Gain- and loss-of-function assays revealed that LIMK2 inhibits cell proliferation via cell cycle arrest at the G1–S transition and suppresses the ability of cell metastasis by restricting the EMT process. Reduced LIMK2 expression enhanced the nuclear accumulation of β-catenin and activated the Wnt signaling pathway, thus contributing to tumor progression. A homolog of the LIMK family, LIMK1, which was overexpressed throughout tumor progression, served as a competitive inhibitor of LIMK2 via β-catenin nuclear translocation. The imbalanced expression of LIMK1 and LIMK2 is important in CRC progression, and the combined effects provide a new insight into the mechanism of CRC progression. These findings provide a new understanding for LIMK-based anticancer therapy.
Collapse
Affiliation(s)
- Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaolong Shi
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guandong, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuncai Gu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianqun Cai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuang Lin
- Department of pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guandong, China
| | - Liang Zhao
- Department of pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guandong, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Kim JE, Kang TC. Nucleocytoplasmic p27 Kip1 Export Is Required for ERK1/2-Mediated Reactive Astroglial Proliferation Following Status Epilepticus. Front Cell Neurosci 2018; 12:152. [PMID: 29930499 PMCID: PMC5999727 DOI: 10.3389/fncel.2018.00152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Reactive astrogliosis is a prominent and ubiquitous reaction of astrocytes to many types of brain injury. Up-regulation of glial fibrillary acidic protein (GFAP) expression and astroglial proliferation are hallmarks of reactive astrogliosis. However, the mechanisms that regulate reactive astrogliosis remain elusive. In the present study, status epilepticus (SE, a prolonged seizure activity) led to reactive astrogliosis showing the increases in GFAP expression and the number of proliferating astrocytes with prolonged extracellular signal receptor-activated kinases 1/2 (ERK1/2) activation and reduced nuclear p27Kip1 level. U0126, an ERK1/2 inhibitor, showed opposite effects. Leptomycin B (LMB), an inhibitor of chromosomal maintenance 1 (CRM1), attenuated nucleocytoplasmic p27Kip1 export and astroglial proliferation, although it up-regulated ERK1/2 phosphorylation and GFAP expression. Roscovitine ameliorated the reduced nuclear p27Kip1 level and astroglial proliferation without changing GFAP expression and ERK1/2 phosphorylation. U0126 aggravated SE-induced astroglial apoptosis in the molecular layer of the dentate gyrus that was unaffected by LMB and roscovitine. In addition, U0126 exacerbated SE-induced neuronal death, while LMB mitigated it. Roscovitine did not affect SE-induced neuronal death. The present data elucidate for the first time the roles of nucleocytoplasmic p27Kip1 transport in ERK1/2-mediated reactive astrogliosis independent of SE-induced neuronal death and astroglial apoptosis. Therefore, our findings suggest that nucleocytoplasmic p27Kip1 export may be required for ERK1/2-mediated astroglial proliferation during reactive astrogliosis, and that nuclear p27Kip1 entrapment may be a potential therapeutic strategy for anti-proliferation in reactive astrocytes.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
14
|
Park JY, Kang TC. The differential roles of PEA15 phosphorylations in reactive astrogliosis and astroglial apoptosis following status epilepticus. Neurosci Res 2018; 137:11-22. [PMID: 29438777 DOI: 10.1016/j.neures.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 11/17/2022]
Abstract
Up to this day, the roles of PEA15 expression and its phosphorylation in seizure-related events have not been still unclear. In the present study, we found that PEA15 was distinctly phosphorylated in reactive astrocytes and apoptotic astrocytes in the rat hippocampus following LiCl-pilocarpine-induced status epilepticus (SE, a prolonged seizure activity). PEA15-serine (S) 104 phosphorylation was up-regulated in reactive astrocytes following SE, although PEA15 expression and its S116 phosphorylation were unaltered. Bisindolylmaleimide (BIM), a protein kinase C (PKC) inhibitor, attenuated SE-induced reactive astrogliosis, but phorbol 12-myristate 13-acetate (PMA, a PKC activator) aggravated it. Unlike reactive astrocytes, PEA15-S116 phosphorylation was reduced in apoptotic astrocytes. However, PEA15 expression and its S104 phosphorylation were unchanged in apoptotic astrocyte. Neither BIM nor PMA affected SE-induced astroglial apoptosis. PEA15 expression and its phosphorylations were not relevant to SE-induced CA1 neuronal death. These findings indicate that PEA15-S104 and S116 phosphorylations may play a role in reactive astrogliosis and prevention of astroglial apoptosis, respectively. Therefore, we suggest that the selective manipulation of PEA15 phosphorylations may regulate apoptotic and/or proliferative signals in astrocytes.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
15
|
Zhaorigetu S, Bair H, Lu J, Jin D, Olson SD, Harting MT. Perturbations in Endothelial Dysfunction-Associated Pathways in the Nitrofen-Induced Congenital Diaphragmatic Hernia Model. J Vasc Res 2017; 55:26-34. [DOI: 10.1159/000484087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/07/2017] [Indexed: 01/26/2023] Open
|
16
|
Kim JE, Kang TC. p47Phox/CDK5/DRP1-Mediated Mitochondrial Fission Evokes PV Cell Degeneration in the Rat Dentate Gyrus Following Status Epilepticus. Front Cell Neurosci 2017; 11:267. [PMID: 28919853 PMCID: PMC5585136 DOI: 10.3389/fncel.2017.00267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/21/2017] [Indexed: 01/31/2023] Open
Abstract
Parvalbumin (PV) is one of the calcium-binding proteins, which plays an important role in the responsiveness of inhibitory neurons to an adaptation to repetitive spikes. Furthermore, PV neurons are highly vulnerable to status epilepticus (SE, prolonged seizure activity), although the underlining mechanism remains to be clarified. In the present study, we found that p47Phox expression was transiently and selectively increased in PV neurons 6 h after SE. This up-regulated p47Phox expression was accompanied by excessive mitochondrial fission. In this time point, CDK5-tyrosine 15 and dynamin-related protein 1 (DRP1)-serine 616 phosphorylations were also increased in PV cells. Apocynin (a p47Phox inhibitor) effectively mitigated PV cell loss via inhibition of CDK5/DRP1 phosphorylations and mitochondrial fragmentation induced by SE. Roscovitine (a CDK5 inhibitor) and Mdivi-1 (a DRP1 inhibitor) attenuated SE-induced PV cell loss by inhibiting aberrant mitochondrial fission. These findings suggest that p47Phox/CDK5/DRP1 may be one of the important upstream signaling pathways in PV cell degeneration induced by SE via excessive mitochondrial fragmentation.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| |
Collapse
|
17
|
Blanco R, Martínez-Navarrete G, Valiente-Soriano FJ, Avilés-Trigueros M, Pérez-Rico C, Serrano-Puebla A, Boya P, Fernández E, Vidal-Sanz M, de la Villa P. The S1P1 receptor-selective agonist CYM-5442 protects retinal ganglion cells in endothelin-1 induced retinal ganglion cell loss. Exp Eye Res 2017; 164:37-45. [PMID: 28827028 DOI: 10.1016/j.exer.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/09/2017] [Accepted: 08/03/2017] [Indexed: 11/16/2022]
Abstract
We investigated the feasibility and efficacy of using a specific sphingosine 1-phosphate (S1P1) receptor agonist, CYM-5442, to slow or block retinal ganglion cell (RGC) loss in endothelin-1 (ET-1) induced RGC loss. A single intravitreal injection of ET-1 (20pmol/ul), a potent vasoactive peptide that produces retinal vessels vasoconstriction, was used to induce and characterize RGC-specific cell death. CYM-5442 (1 mgr/kg) or vehicle was administered intraperitoneally for five consecutive days after ET-1-induced RGC loss. The functional extent of RGC loss injury was evaluated with pattern visual evoked potentials (VEP) and electroretinography. RGCs and retinal nerve fiber layer (RNFL) thickness were assessed in vivo using optical coherence tomography and ex vivo using Brn3a immunohistochemistry in flat-mounted retinas. ET-1 caused significant RGC loss and function loss one week after intravitreal injection. VEP showed preserved visual function after CYM-5442 administration compared to vehicle-treated animals (11.95 ± 0.86 μV vs 3.47 ± 1.20 μV, n = 12) (p < 0.05). RNFL was significantly thicker in the CYM treated-animals compared to the vehicle (93.62 ± 3.22 μm vs 77.72 ± 0.35 μm, n = 12) (p < 0.05). Furthermore, Brn3a immunohistochemistry validated this observation, showing significantly higher RGCs numbers in CYM treated rats than in the vehicle group (76,540 ± 303 vs 52,426 ± 1,932 cells/retina, n = 9) (p = 0.05). CYM-5442 administration was associated with significant retinal cleaved caspase-3 deactivation, indicating reduced apoptotic levels. The results of the present study further demonstrate the important role of S1P1 receptor agonists to lessen intravitreal ET-1 induced RGC loss.
Collapse
Affiliation(s)
- Román Blanco
- Department of Surgery, Medical and Social Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain.
| | - Gema Martínez-Navarrete
- Institute of Bioengineering, Miguel Hernandez University, Elche, Alicante, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Francisco J Valiente-Soriano
- Department of Ophthalmology, University of Murcia and Murcia Institute of Biosanitary Research Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Department of Ophthalmology, University of Murcia and Murcia Institute of Biosanitary Research Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Consuelo Pérez-Rico
- Department of Surgery, Medical and Social Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain; Department of Ophthalmology, Principe de Asturias University Hospital, Alcalá de Henares, Madrid, Spain
| | - Ana Serrano-Puebla
- Department of Cellular and Molecular Biology, Biological Research Center, CSIC, Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Biological Research Center, CSIC, Madrid, Spain
| | - Eduardo Fernández
- Institute of Bioengineering, Miguel Hernandez University, Elche, Alicante, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, University of Murcia and Murcia Institute of Biosanitary Research Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Pedro de la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
18
|
Min SJ, Hyun HW, Kang TC. Leptomycin B attenuates neuronal death via PKA- and PP2B-mediated ERK1/2 activation in the rat hippocampus following status epilepticus. Brain Res 2017; 1670:14-23. [PMID: 28601633 DOI: 10.1016/j.brainres.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/04/2017] [Accepted: 06/02/2017] [Indexed: 01/04/2023]
Abstract
Leptomycin B (LMB), originally developed as an anti-fungal agent, has potent neuroprotective properties against status epilepticus (SE, a prolonged seizure activity). However, the pharmacological profiles and mechanisms of LMB for neuroprotection remain elusive. In the present study, we found that LMB increased phosphorylation levels of protein kinase A (PKA) catalytic subunits, protein phosphatase 2B (PP2B, calcineurin) and extracellular signal-regulated kinase 1/2 (ERK1/2) under normal condition, and abolished SE-induced neuronal death. Co-treatment of H-89 (a PKA inhibitor) with LMB could not affect the seizure latency and its severity in response to pilocarpine. However, H-89 co-treatment abrogated the protective effect of LMB on SE-induced neuronal damage. Cyclosporin A (CsA, a PP2B inhibitor) co-treatment effectively prevented SE-induced neuronal death without altered seizure susceptibility in response to pilocarpine more than LMB alone. H-89 co-treatment inhibited LMB-mediated ERK1/2 phosphorylation, but CsA enhanced it. U0126 (an ERK1/2 inhibitor) co-treatment abolished the protective effect of LMB on SE-induced neuronal death without alterations in PKA and PP2B phosphorylations. To the best of our knowledge, the present data demonstrate a previously unreported potential neuroprotective role of LMB against SE via PKA- and PP2B-mediated ERK1/2 activation.
Collapse
Affiliation(s)
- Su-Ji Min
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 24252, South Korea; Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 24252, South Korea
| | - Hye-Won Hyun
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 24252, South Korea; Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 24252, South Korea; Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 24252, South Korea.
| |
Collapse
|
19
|
TRPC6-mediated ERK1/2 phosphorylation prevents dentate granule cell degeneration via inhibiting mitochondrial elongation. Neuropharmacology 2017; 121:120-129. [PMID: 28479396 DOI: 10.1016/j.neuropharm.2017.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/14/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Transient receptor potential canonical channel-6 (TRPC6) is one of Ca2+-permeable non-selective cation channels. In the rat hippocampus, TRPC6 expression is predominantly observed in dentate granule cells (DGC) rather than other hippocampal components. Interestingly, TRPC6 knockdown results in the massive DGC degeneration following status epilepticus (SE), although DGC is one of the resistant neuronal populations to various harmful stresses. However, the molecular events underlying the DGC degeneration induced by TRPC6 knockdown are still unclear. In the present study, TRPC6 knockdown resulted in mitochondrial elongation accompanied by reduction in dynamin-related proteins 1 (DRP1)-S616 phosphorylation. Furthermore, TRPC6 knockdown selectively decreased extracellular-signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Similar to TRPC6 knockdown, ERK1/2 inhibition by U0126 evoked mitochondrial elongation with diminished DRP1-S616 phosphorylation, and facilitated SE-induced DGC degeneration independent of seizure severity. These findings indicate that TRPC6 may regulate mitochondrial dynamics via ERK1/2-mediaed DRP1 activation, which would be involved in DGC invulnerability to SE. Therefore, TRPC6 will be an interesting and important therapeutic target for neurological diseases related to impaired mitochondrial dynamics.
Collapse
|
20
|
Kim DS, Min SJ, Kim MJ, Kim JE, Kang TC. Leptomycin B ameliorates vasogenic edema formation induced by status epilepticus via inhibiting p38 MAPK/VEGF pathway. Brain Res 2016; 1651:27-35. [DOI: 10.1016/j.brainres.2016.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 12/21/2022]
|
21
|
Hyun HW, Ko AR, Kang TC. Mitochondrial Translocation of High Mobility Group Box 1 Facilitates LIM Kinase 2-Mediated Programmed Necrotic Neuronal Death. Front Cell Neurosci 2016; 10:99. [PMID: 27147971 PMCID: PMC4829584 DOI: 10.3389/fncel.2016.00099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/31/2016] [Indexed: 12/22/2022] Open
Abstract
High mobility group box 1 (HMGB1) acts a signaling molecule regulating a wide range of inflammatory responses in extracellular space. HMGB1 also stabilizes nucleosomal structure and facilitates gene transcription. Under pathophysiological conditions, nuclear HMGB1 is immediately transported to the cytoplasm through chromosome region maintenance 1 (CRM1). Recently, we have reported that up-regulation of LIM kinase 2 (LIMK2) expression induces HMGB1 export from neuronal nuclei during status epilepticus (SE)-induced programmed neuronal necrosis in the rat hippocampus. Thus, we investigated whether HMGB1 involves LIMK2-mediated programmed neuronal necrosis, but such role is not reported. In the present study, SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline, control siRNA, LIMK2 siRNA or leptomycin B (LMB, a CRM1 inhibitor) prior to SE induction. Thereafter, we performed Fluoro-Jade B staining, western blots and immunohistochemical studies. LIMK2 knockdown effectively attenuated SE-induced neuronal death and HMGB1 import into mitochondria accompanied by inhibiting nuclear HMGB1 release and abnormal mitochondrial elongation. LMB alleviated SE-induced neuronal death and nuclear HMGB1 release. However, LMB did not prevent mitochondrial elongation induced by SE, but inhibited the HMGB1 import into mitochondria. The efficacy of LMB was less effective to attenuate SE-induced neuronal death than that of LIMK2 siRNA. These findings indicate that nuclear HMGB1 release and the subsequent mitochondrial import may facilitate and deteriorate programmed necrotic neuronal deaths. The present data suggest that the nuclear HMGB1 release via CRM1 may be a potential therapeutic target for the programmed necrotic neuronal death induced by SE.
Collapse
Affiliation(s)
- Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, Kangwon-Do, South Korea
| | - Ah-Reum Ko
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, Kangwon-Do, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, Kangwon-Do, South Korea
| |
Collapse
|