1
|
Perry LJ, Perez BE, Wahba LR, Nikhil KL, Lenzen WC, Jones JR. A circadian behavioral analysis suite for real-time classification of daily rhythms in complex behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581778. [PMID: 39149294 PMCID: PMC11326128 DOI: 10.1101/2024.02.23.581778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Measuring animal behavior over long timescales has been traditionally limited to behaviors that are easily measurable with real-time sensors. More complex behaviors have been measured over time, but these approaches are considerably more challenging due to the intensive manual effort required for scoring behaviors. Recent advances in machine learning have introduced automated behavior analysis methods, but these often overlook long-term behavioral patterns and struggle with classification in varying environmental conditions. To address this, we developed a pipeline that enables continuous, parallel recording and acquisition of animal behavior for an indefinite duration. As part of this pipeline, we applied a recent breakthrough self-supervised computer vision model to reduce training bias and overfitting and to ensure classification robustness. Our system automatically classifies animal behaviors with a performance approaching that of expert-level human labelers. Critically, classification occurs continuously, across multiple animals, and in real time. As a proof-of-concept, we used our system to record behavior from 97 mice over two weeks to test the hypothesis that sex and estrogen influence circadian rhythms in nine distinct home cage behaviors. We discovered novel sex- and estrogen-dependent differences in circadian properties of several behaviors including digging and nesting rhythms. We present a generalized version of our pipeline and novel classification model, the "circadian behavioral analysis suite," (CBAS) as a user-friendly, open-source software package that allows researchers to automatically acquire and analyze behavioral rhythms with a throughput that rivals sensor-based methods, allowing for the temporal and circadian analysis of behaviors that were previously difficult or impossible to observe.
Collapse
Affiliation(s)
- Logan J Perry
- Department of Biology, Texas A&M University, College Station, TX
| | - Blanca E Perez
- Department of Biology, Texas A&M University, College Station, TX
| | - Larissa Rays Wahba
- Department of Biology, Washington University in St. Louis, St. Louis, MO
| | - K L Nikhil
- Department of Biology, Washington University in St. Louis, St. Louis, MO
| | - William C Lenzen
- Department of Biology, Texas A&M University, College Station, TX
| | - Jeff R Jones
- Department of Biology, Texas A&M University, College Station, TX
- Institute for Neuroscience, Texas A&M University, College Station, TX
- Center for Biological Clocks Research, Texas A&M University, College Station, TX
| |
Collapse
|
2
|
P DN, B F, T DF, Ldm F, B MGF, M BR, M M, S TA, M EA. Iron Supplementation and Exercise During Pregnancy: Effects on Behavior and the Dopaminergic System. Biol Trace Elem Res 2023; 201:1639-1647. [PMID: 35715717 DOI: 10.1007/s12011-022-03306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/28/2022] [Indexed: 11/02/2022]
Abstract
Although it is known that regular physical activity is recommended as part of a healthy lifestyle, the number of data concerning efficacy of exercise and your relationship with a demand for iron during pregnancy is limited. The purpose of this study was to evaluate the relationship between iron supplementation and exercise during pregnancy on the behavior of rats. Molecular variables dopamine transporter (DAT) and dopamine receptor (D2) related to the locomotor behavior in response to the exercise and the iron supplemented diet were investigated. Sixty-day-old female Wistar rats were used. The pregnant rats were distributed into the following groups: standard diet (SD, n = 7), iron supplementation (IS, n = 9), exercise (EX, n = 10), and exercise + iron supplementation (EX + IS, n = 9). All rats in both the pregnant and non-pregnant groups were submitted to open-field tests. The iron supplementation diet was shown to reduce locomotor behaviors, with reduced central and peripheral ambulation, reduced rearing, and increased freezing. On the other hand, physical exercise caused an increase in central and peripheral ambulation, and in rearing. The expression of the D2 receptor protein and the dopamine transporter DAT did not show changes with the interventions over 21 days of pregnancy. In this context, the present study demonstrated that both iron supplementation and exercise exerted an influence during pregnancy on the behavior of rats, however, with different effects.
Collapse
Affiliation(s)
- Daubian-Nosé P
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Jardim Santa Luiza, Rua Pedro Zaccaria, Limeira, São Paulo, 1300CEP 13484350, Brazil
| | - Franco B
- Faculdade de Educação Física, Universidade Estadual de Campinas, Limeira, Brazil
| | - De Fante T
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Jardim Santa Luiza, Rua Pedro Zaccaria, Limeira, São Paulo, 1300CEP 13484350, Brazil
| | - Forte Ldm
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Jardim Santa Luiza, Rua Pedro Zaccaria, Limeira, São Paulo, 1300CEP 13484350, Brazil
| | - Manchado-Gobatto F B
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Jardim Santa Luiza, Rua Pedro Zaccaria, Limeira, São Paulo, 1300CEP 13484350, Brazil
| | - Bezerra R M
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Jardim Santa Luiza, Rua Pedro Zaccaria, Limeira, São Paulo, 1300CEP 13484350, Brazil
| | - Manconi M
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Lugano, Switzerland
| | - Torsoni A S
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Jardim Santa Luiza, Rua Pedro Zaccaria, Limeira, São Paulo, 1300CEP 13484350, Brazil
| | - Esteves A M
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Jardim Santa Luiza, Rua Pedro Zaccaria, Limeira, São Paulo, 1300CEP 13484350, Brazil.
| |
Collapse
|
3
|
Kashiwagi M, Kanuka M, Tanaka K, Fujita M, Nakai A, Tatsuzawa C, Kobayashi K, Ikeda K, Hayashi Y. Impaired wakefulness and rapid eye movement sleep in dopamine-deficient mice. Mol Brain 2021; 14:170. [PMID: 34794460 PMCID: PMC8600805 DOI: 10.1186/s13041-021-00879-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Despite the established roles of the dopaminergic system in promoting arousal, the effects of loss of dopamine on the patterns of sleep and wakefulness remain elusive. Here, we examined the sleep architecture of dopamine-deficient (DD) mice, which were previously developed by global knockout of tyrosine hydroxylase and its specific rescue in noradrenergic and adrenergic neurons. We found that DD mice have reduced time spent in wakefulness. Unexpectedly, DD mice also exhibited a marked reduction in the time spent in rapid eye movement (REM) sleep. The electroencephalogram power spectrum of all vigilance states in DD mice were also affected. These results support the current understanding of the critical roles of the dopaminergic system in maintaining wakefulness and also implicate its previously unknown effects on REM sleep.
Collapse
Affiliation(s)
- Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Masayo Fujita
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Ayaka Nakai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan.,Doctoral Programs in Neuroscience, Degree Programs in Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Chika Tatsuzawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan. .,Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
4
|
Fujita M, Ochiai Y, Takeda TC, Hagino Y, Kobayashi K, Ikeda K. Increase in excitability of hippocampal neurons during novelty-induced hyperlocomotion in dopamine-deficient mice. Mol Brain 2020; 13:126. [PMID: 32948232 PMCID: PMC7501682 DOI: 10.1186/s13041-020-00664-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023] Open
Abstract
Dopamine is involved in many important brain functions, including voluntary motor movement. Dysfunction of the dopaminergic system can induce motor impairments, including Parkinson’s disease. We previously found that dopamine-deficient (DD) mice became hyperactive in a novel environment 72 h after the last injection of L-3,4-dihydroxyphenylalanine (L-DOPA) when dopamine was almost completely depleted. In the present study, we investigated neuronal activity in hippocampal subregions during hyperactivity by measuring Fos expression levels using immunohistochemistry. Dopamine-deficient mice were maintained on daily intraperitoneal injections of 50 mg/kg L-DOPA. Seventy-two hours after the last L-DOPA injection, DD mice were exposed to a novel environment for 1, 2, or 4 h, and then brains were collected. In wildtype mice, the number of Fos-immunopositive neurons significantly increased in the hippocampal CA1 region after 1 h of exposure to the novel environment and then decreased. In DD mice, the number of Fos-immunopositive neurons gradually increased and then significantly increased after 4 h of exposure to the novel environment. The number of Fos-immunopositive neurons also significantly increased in the CA3 region and dentate gyrus in DD mice after 4 h of exposure to the novel environment. These results indicate that the delayed and prolonged excitation of hippocampal neurons in the CA1, CA3, and dentate gyrus that is caused by dopamine depletion might be involved in hyperactivity in DD mice.
Collapse
Affiliation(s)
- Masayo Fujita
- Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yukiko Ochiai
- Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.,Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu-shi, Tokyo, 183-0042, Japan
| | - Taishi-Clark Takeda
- Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yoko Hagino
- Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, 1 Hikariga-oka, Fukushima-shi, Fukushima, 960-1295, Japan
| | - Kazutaka Ikeda
- Department of Psychiatry and Behavioral Sciences, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
5
|
Pérez-Neri I, Parra D, Aquino-Miranda G, Coffeen U, Ríos C. Dehydroepiandrosterone increases tonic and phasic dopamine release in the striatum. Neurosci Lett 2020; 734:135095. [PMID: 32473195 DOI: 10.1016/j.neulet.2020.135095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 11/25/2022]
Abstract
Dehydroepiandrosterone (DHEA) modulates dopaminergic neurotransmission. It takes part in neurologic and psychiatric diseases involving monoamine neurotransmitters. Earlier results show that DHEA (120-min treatment) reduced striatal dopamine (DA) turnover in rats, suggesting a reduced DA release. Some investigations report that DHEA increases DA release but inhibits motor activity, which seems contradictory. This research examines the effect of DHEA on striatal DA release, its metabolism and motor activity. Male Wistar rats were implanted in the striatum with a cannula for in vivo microdialysis. DHEA was administered (120 mg/kg) and dialysates were collected for 280 min. A depolarizing stimulus was applied at 120 min. Samples were analyzed by HPLC-ED to determine the concentration of DA and its metabolites. The effect of DHEA on motor activity was also evaluated during 120 min. Extracellular DA concentration was greater in treated animals both before and after depolarization. In contrast, DHEA reduced the areas below the curves for DA metabolites and DA/metabolite ratios. DHEA also reduced motor activity, remarkably in the first 20 min after treatment. In summary, DHEA yielded a stimulatory effect on striatal DA release that was not reflected in neither DA metabolism nor motor activity. Thus, DHEA resembles the effect of typical antipsychotics, increasing DA release but reducing behavioral activation.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes sur 3877, La Fama, Tlalpan, 14269 Mexico City, Mexico.
| | - Doris Parra
- National Polytechnic Institute, Salvador Díaz Mirón esq, Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, 11340 Mexico City, Mexico.
| | - Guillermo Aquino-Miranda
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes sur 3877, La Fama, Tlalpan, 14269 Mexico City, Mexico.
| | - Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco 101, Huipulco, 14370 Mexico City, Mexico.
| | - Camilo Ríos
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes sur 3877, La Fama, Tlalpan, 14269 Mexico City, Mexico.
| |
Collapse
|
6
|
Zhang L, Yin JB, Hu W, Zhao WJ, Fan QR, Qiu ZC, He MJ, Ding T, Sun Y, Kaye AD, Wang ER. Analgesic Effects of Duloxetine on Formalin-Induced Hyperalgesia and Its Underlying Mechanisms in the CeA. Front Pharmacol 2018; 9:317. [PMID: 29692727 PMCID: PMC5902556 DOI: 10.3389/fphar.2018.00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
In rodents, the amygdala has been proposed to serve as a key center for the nociceptive perception. Previous studies have shown that extracellular signal-regulated kinase (ERK) signaling cascade in the central nucleus of amygdala (CeA) played a functional role in inflammation-induced peripheral hypersensitivity. Duloxetine (DUL), a serotonin and noradrenaline reuptake inhibitor, produced analgesia on formalin-induced spontaneous pain behaviors. However, it is still unclear whether single DUL pretreatment influences formalin-induced hypersensitivity and what is the underlying mechanism. In the current study, we revealed that systemic pretreatment with DUL not only dose-dependently suppressed the spontaneous pain behaviors, but also relieved mechanical and thermal hypersensitivity induced by formalin hindpaw injection. Consistent with the analgesic effects of DUL on the pain behaviors, the expressions of Fos and pERK that were used to check the neuronal activities in the spinal cord and CeA were also dose-dependently reduced following DUL pretreatment. Meanwhile, no emotional aversive behaviors were observed at 24 h after formalin injection. The concentration of 5-HT in the CeA was correlated with the dose of DUL in a positive manner at 24 h after formalin injection. Direct injecting 5-HT into the CeA suppressed both the spontaneous pain behaviors and hyperalgesia induced by formalin injection. However, DUL did not have protective effects on the formalin-induced edema of hindpaw. In sum, the activation of CeA neurons may account for the transition from acute pain to long-term hyperalgesia after formalin injection. DUL may produce potent analgesic effects on the hyperalgesia and decrease the expressions of p-ERK through increasing the concentration of serotonin in the CeA.
Collapse
Affiliation(s)
- Lie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun-Bin Yin
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,Department of Neurology, The 456th Hospital of PLA, Jinan, China.,Department of Human Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,Department of Human Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Zhao
- Department of Human Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Qing-Rong Fan
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhi-Chun Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ming-Jie He
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Sun
- Cadet Bridge, The Fourth Military Medical University, Xi'an, China
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - En-Ren Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|