1
|
Lanni I, Chiacchierini G, Papagno C, Santangelo V, Campolongo P. Treating Alzheimer's disease with brain stimulation: From preclinical models to non-invasive stimulation in humans. Neurosci Biobehav Rev 2024; 165:105831. [PMID: 39074672 DOI: 10.1016/j.neubiorev.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) is a severe and progressive neurodegenerative condition that exerts detrimental effects on brain function. As of now, there is no effective treatment for AD patients. This review explores two distinct avenues of research. The first revolves around the use of animal studies and preclinical models to gain insights into AD's underlying mechanisms and potential treatment strategies. Specifically, it delves into the effectiveness of interventions such as Optogenetics and Chemogenetics, shedding light on their implications for understanding pathophysiological mechanisms and potential therapeutic applications. The second avenue focuses on non-invasive brain stimulation (NiBS) techniques in the context of AD. Evidence suggests that NiBS can successfully modulate cognitive functions associated with various neurological and neuropsychiatric disorders, including AD, as demonstrated by promising findings. Here, we critically assessed recent findings in AD research belonging to these lines of research and discuss their potential impact on the clinical horizon of AD treatment. These multifaceted approaches offer hope for advancing our comprehension of AD pathology and developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Ilenia Lanni
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Behavioral Neuropharmacology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulia Chiacchierini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Behavioral Neuropharmacology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Costanza Papagno
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Valerio Santangelo
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Behavioral Neuropharmacology Unit, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
2
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Chemistry Roorkee, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Chemistry Roorkee, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Chemistry Roorkee, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
3
|
Rajendran K, Krishnan UM. Mechanistic insights and emerging therapeutic stratagems for Alzheimer's disease. Ageing Res Rev 2024; 97:102309. [PMID: 38615895 DOI: 10.1016/j.arr.2024.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD), a multi-factorial neurodegenerative disorder has affected over 30 million individuals globally and these numbers are expected to increase in the coming decades. Current therapeutic interventions are largely ineffective as they focus on a single target. Development of an effective drug therapy requires a deep understanding of the various factors influencing the onset and progression of the disease. Aging and genetic factors exert a major influence on the development of AD. Other factors like post-viral infections, iron overload, gut dysbiosis, and vascular dysfunction also exacerbate the onset and progression of AD. Further, post-translational modifications in tau, DRP1, CREB, and p65 proteins increase the disease severity through triggering mitochondrial dysfunction, synaptic loss, and differential interaction of amyloid beta with different receptors leading to impaired intracellular signalling. With advancements in neuroscience tools, new inter-relations that aggravate AD are being discovered including pre-existing diseases and exposure to other pathogens. Simultaneously, new therapeutic strategies involving modulation of gene expression through targeted delivery or modulation with light, harnessing the immune response to promote clearance of amyloid deposits, introduction of stem cells and extracellular vesicles to replace the destroyed neurons, exploring new therapeutic molecules from plant, marine and biological sources delivered in the free state or through nanoparticles and use of non-pharmacological interventions like music, transcranial stimulation and yoga. Polypharmacology approaches involving combination of therapeutic agents are also under active investigation for superior therapeutic outcomes. This review elaborates on various disease-causing factors, their underlying mechanisms, the inter-play between different disease-causing players, and emerging therapeutic options including those under clinical trials, for treatment of AD. The challenges involved in AD therapy and the way forward have also been discussed.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India.
| |
Collapse
|
4
|
Vlasova AD, Bukhalovich SM, Bagaeva DF, Polyakova AP, Ilyinsky NS, Nesterov SV, Tsybrov FM, Bogorodskiy AO, Zinovev EV, Mikhailov AE, Vlasov AV, Kuklin AI, Borshchevskiy VI, Bamberg E, Uversky VN, Gordeliy VI. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling. Chem Soc Rev 2024; 53:3327-3349. [PMID: 38391026 DOI: 10.1039/d3cs00699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.
Collapse
Affiliation(s)
- Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Siarhei M Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Diana F Bagaeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra P Polyakova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor M Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey O Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor V Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anatolii E Mikhailov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Valentin I Gordeliy
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, 38027 Grenoble, France.
| |
Collapse
|
5
|
Zhang S, Ai H, Wang J, Liu T, Zheng X, Tian X, Bai W. Reduced Prefrontal-Thalamic Theta Flow During Working Memory Retrieval in APP/PS1 Mice. J Alzheimers Dis 2024; 97:1737-1749. [PMID: 38306044 PMCID: PMC10894573 DOI: 10.3233/jad-231078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 02/03/2024]
Abstract
Background Working memory deficits in Alzheimer's disease (AD) are linked to impairments in the retrieval of stored memory information. However, research on the mechanism of impaired working memory retrieval in Alzheimer's disease is still lacking. Objective The medial prefrontal cortex (mPFC) and mediodorsal thalamus (MD) are involved in memory retrieval. The purpose of this study is to investigate the functional interactions and information transmission between mPFC and MD in the AD model. Methods We recorded local field potentials from mPFC and MD while the mice (APP/PS1 transgenic model and control) performed a T-maze spatial working memory task. The temporal dynamics of oscillatory activity and bidirectional information flow between mPFC and MD were assessed during the task phases. Results We mainly found a significant decrease in theta flow from mPFC to MD in APP/PS1 mice during retrieval. Conclusions Our results indicate an important role of the mPFC-MD input for retrieval and the disrupted information transfer from mPFC to MD may be the underlying mechanism of working memory deficits in APP/PS1 mice.
Collapse
Affiliation(s)
- Shengnan Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Hongrui Ai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Jia Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xin Tian
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Wang HC, Phan TN, Kao CL, Yeh CK, Lin YC. Genetically encoded mediators for sonogenetics and their applications in neuromodulation. Front Cell Neurosci 2023; 17:1326279. [PMID: 38188668 PMCID: PMC10766825 DOI: 10.3389/fncel.2023.1326279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Sonogenetics is an emerging approach that harnesses ultrasound for the manipulation of genetically modified cells. The great penetrability of ultrasound waves enables the non-invasive application of external stimuli to deep tissues, particularly advantageous for brain stimulation. Genetically encoded ultrasound mediators, a set of proteins that respond to ultrasound-induced bio-effects, play a critical role in determining the effectiveness and applications of sonogenetics. In this context, we will provide an overview of these ultrasound-responsive mediators, delve into the molecular mechanisms governing their response to ultrasound stimulation, and summarize their applications in neuromodulation.
Collapse
Affiliation(s)
- Hsien-Chu Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Ling Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
7
|
Du R, Mauki DH, Zuo Z. Bibliometric analysis of hot literature on neural circuit research. IBRAIN 2023; 10:69-82. [PMID: 38682019 PMCID: PMC11045193 DOI: 10.1002/ibra.12144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 05/01/2024]
Abstract
Numerous brain diseases have been attributed to abnormalities in the connections of neural circuits. Exploration of neural circuits may give enlightenment in treating some intractable brain diseases. Here, we screened all publications on neural circuits in the Web of Science database from 2007 to 2022 and analyzed the research trends through VOSviewer, CiteSpace, Microsoft Excel 2019, and Origin. The findings revealed a consistent upward trend in research on neural circuits during this period. The United States emerged as the leading contributor, followed by China and Japan. Among the top 10 institutions with the largest number of publications, both the United States and China have a strong presence. Notably, the Chinese Academy of Sciences demonstrated the highest publication output, closely followed by Stanford University. In terms of influential authors, Karl Deisseroth stood out as one of the most prominent investigators. During this period, the majority of publications and citations on neural circuit research were found in highly influential journals including NEURON, NATURE JOURNAL OF NEUROSCIENCE, and so forth. Keyword clustering analysis highlighted the increasing focus on neural circuits and photogenetics in neuroscience research, and the reconstruction of neural circuits has emerged as a crucial research direction in brain science. In conclusion, over the past 15 years, the increasing high-quality publications have facilitated research development of neural circuits, indicating a promising prospect for investigations on neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Ruo‐Lan Du
- Department of Anatomy, Histology and EmbryologyJinzhou Medical UniversityJinzhouLiaoningChina
| | - David H. Mauki
- National‐Local Joint Engineering Research Center of Translational Medicine, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Microbiology, Parasitology and Biotechnology, College of Biomedical SciencesSokokine University of AgricultureMorogoroTanzania
| | - Zong‐Fu Zuo
- Department of Anatomy, Histology and EmbryologyJinzhou Medical UniversityJinzhouLiaoningChina
| |
Collapse
|
8
|
García-García A, Rojas S, Rodríguez-Diéguez A. Therapy and diagnosis of Alzheimer's disease: from discrete metal complexes to metal-organic frameworks. J Mater Chem B 2023; 11:7024-7040. [PMID: 37435638 DOI: 10.1039/d3tb00427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder affecting 44 million people worldwide. Although many issues (pathogenesis, genetics, clinical features, and pathological aspects) are still unknown, this disease is characterized by noticeable hallmarks such as the formation of β-amyloid plaques, hyperphosphorylation of tau proteins, the overproduction of reactive oxygen species, and the reduction of acetylcholine levels. There is still no cure for AD and the current treatments are aimed at regulating the cholinesterase levels, attenuating symptoms temporarily rather than preventing the AD progression. In this context, coordination compounds are regarded as a promissing tool in AD treatment and/or diagnosis. Coordination compounds (discrete or polymeric) possess several features that make them an interesting option for developing new drugs for AD (good biocompatibility, porosity, synergetic effects of ligand-metal, fluorescence, particle size, homogeneity, monodispersity, etc.). This review discusses the recent progress in the development of novel discrete metal complexes and metal-organic frameworks (MOFs) for the treatment, diagnosis and theragnosis of AD. These advanced therapies for AD treatment are organized according to the target: Aβ peptides, hyperphosphorylated tau proteins, synaptic dysfunction, and mitochondrial failure with subsequent oxidative stress.
Collapse
Affiliation(s)
- Amalia García-García
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur & Av. San Claudio, Col. San Manuel, 72570 Puebla, Mexico
| | - Sara Rojas
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| |
Collapse
|
9
|
Meftah S, Gan J. Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Front Synaptic Neurosci 2023; 15:1129036. [PMID: 36970154 PMCID: PMC10033629 DOI: 10.3389/fnsyn.2023.1129036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.
Collapse
Affiliation(s)
- Soraya Meftah
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jian Gan
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Weiss E, Kann M, Wang Q. Neuromodulation of Neural Oscillations in Health and Disease. BIOLOGY 2023; 12:371. [PMID: 36979063 PMCID: PMC10045166 DOI: 10.3390/biology12030371] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Using EEG and local field potentials (LFPs) as an index of large-scale neural activities, research has been able to associate neural oscillations in different frequency bands with markers of cognitive functions, goal-directed behavior, and various neurological disorders. While this gives us a glimpse into how neurons communicate throughout the brain, the causality of these synchronized network activities remains poorly understood. Moreover, the effect of the major neuromodulatory systems (e.g., noradrenergic, cholinergic, and dopaminergic) on brain oscillations has drawn much attention. More recent studies have suggested that cross-frequency coupling (CFC) is heavily responsible for mediating network-wide communication across subcortical and cortical brain structures, implicating the importance of neurotransmitters in shaping coordinated actions. By bringing to light the role each neuromodulatory system plays in regulating brain-wide neural oscillations, we hope to paint a clearer picture of the pivotal role neural oscillations play in a variety of cognitive functions and neurological disorders, and how neuromodulation techniques can be optimized as a means of controlling neural network dynamics. The aim of this review is to showcase the important role that neuromodulatory systems play in large-scale neural network dynamics, informing future studies to pay close attention to their involvement in specific features of neural oscillations and associated behaviors.
Collapse
Affiliation(s)
| | | | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA
| |
Collapse
|
11
|
Brown AC. Optogenetics Sheds Light on Brown and Beige Adipocytes. JOURNAL OF CELLULAR SIGNALING 2023; 4:178-186. [PMID: 37946877 PMCID: PMC10635576 DOI: 10.33696/signaling.4.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Excessive food intake leads to lipid accumulation in white adipose tissue, triggering inflammation, cellular stress, insulin resistance, and metabolic syndrome. In contrast, the dynamic energy expenditure and heat generation of brown and beige adipose tissue, driven by specialized mitochondria, render it an appealing candidate for therapeutic strategies aimed at addressing metabolic disorders. This review examines the therapeutic potential of brown and beige adipocytes for obesity and metabolic disorders, focusing on recent studies that employ optogenetics for thermogenesis control in these cells. The findings delve into the mechanisms underlying UCP1-dependent and UCP1-independent thermogenesis and how optogenetic approaches can be used to precisely modulate energy expenditure and induce thermogenesis. The convergence of adipocyte biology and optogenetics presents an exciting frontier in combating metabolic disorders and advancing our understanding of cellular regulation and energy balance.
Collapse
Affiliation(s)
- Aaron Clifford Brown
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469, USA
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
12
|
Shing N, Walker MC, Chang P. The Role of Aberrant Neural Oscillations in the Hippocampal-Medial Prefrontal Cortex Circuit in Neurodevelopmental and Neurological Disorders. Neurobiol Learn Mem 2022; 195:107683. [PMID: 36174886 DOI: 10.1016/j.nlm.2022.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in cognition, emotion, and sensory processing. In recent years, interests have shifted towards developing a deeper understanding of the mechanisms underlying interactions between the HPC and mPFC in achieving these functions. Considerable research supports the idea that synchronized activity between the HPC and the mPFC is a general mechanism by which brain functions are regulated. In this review, we summarize current knowledge on the hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a focus on oscillations and highlight several neurodevelopmental and neurological disorders associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, gene therapy and pharmacotherapy are explored as promising therapies for disorders with aberrant HPC-mPFC circuit dynamics.
Collapse
Affiliation(s)
- Nathanael Shing
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Medicine, University of Central Lancashire, Preston, PR17BH, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT.
| |
Collapse
|
13
|
Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain. Neurosci Bull 2022; 39:368-378. [PMID: 35976535 PMCID: PMC10043090 DOI: 10.1007/s12264-022-00937-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 10/15/2022] Open
Abstract
Chronic pain relief remains an unmet medical need. Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis. Particularly, microglia play a crucial role in the development of chronic pain. To better understand the microglial contribution to chronic pain, specific regional and temporal manipulations of microglia are necessary. Recently, two new approaches have emerged that meet these demands. Chemogenetic tools allow the expression of designer receptors exclusively activated by designer drugs (DREADDs) specifically in microglia. Similarly, optogenetic tools allow for microglial manipulation via the activation of artificially expressed, light-sensitive proteins. Chemo- and optogenetic manipulations of microglia in vivo are powerful in interrogating microglial function in chronic pain. This review summarizes these emerging tools in studying the role of microglia in chronic pain and highlights their potential applications in microglia-related neurological disorders.
Collapse
|
14
|
Buchanan GF. Not All Paths are Equal: Stimulating Specific Cerebellar Outputs Inhibits Hippocampal Seizures. Epilepsy Curr 2022; 22:318-320. [PMID: 36285206 PMCID: PMC9549229 DOI: 10.1177/15357597221113706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Distinct Fastigial Output Channels and Their Impact on Temporal Lobe
Seizures Streng ML, Tetzlaff MR, Krook-Magnuson E. 2021. J. Neurosci.
41(49):10091-10107. doi:10.1523/JNEUROSCI.0683-21.2021. Despite being canonically considered a motor control structure, the cerebellum is
increasingly recognized for important roles in processes beyond this traditional
framework, including seizure suppression. Excitatory fastigial neurons project to a
large number of downstream targets, and it is unclear whether this broad targeting
underlies seizure suppression, or whether a specific output may be sufficient. To
address this question, we used the intrahippocampal kainic acid mouse model of
temporal lobe epilepsy, male and female animals, and a dual-virus approach to
selectively label and manipulate fastigial outputs. We examined fastigial neurons
projecting to the superior colliculus, medullary reticular formation, and central
lateral nucleus of the thalamus, and found that these comprise largely nonoverlapping
populations of neurons that send collaterals to unique sets of additional, somewhat
overlapping, thalamic and brainstem regions. We found that neither optogenetic
stimulation of superior colliculus nor reticular formation output channels attenuated
hippocampal seizures. In contrast, on-demand stimulation of fastigial neurons
targeting the central lateral nucleus robustly inhibited seizures. Our results
indicate that fastigial control of hippocampal seizures does not require simultaneous
modulation of many fastigial output channels. Rather, selective modulation of the
fastigial output channel to the central lateral thalamus, specifically, is sufficient
for seizure control. More broadly, our data highlight the concept of specific
cerebellar output channels, whereby discrete cerebellar nucleus neurons project to
specific aggregates of downstream targets, with important consequences for therapeutic
interventions.
Collapse
|
15
|
Feasibility of Canine Adenovirus Type 2 (CAV2) Based Vector for the Locus Coeruleus Optogenetic Activation in Non-Transgenic Rats: Implications for Functional Studies. Brain Sci 2022; 12:brainsci12070904. [PMID: 35884711 PMCID: PMC9319986 DOI: 10.3390/brainsci12070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
The locus coeruleus norepinephrine (LC-NE) system modulates many visceral and cognitive functions, while LC-NE dysfunction leads to neurological and neurodegenerative conditions such as sleep disorders, depression, ADHD, or Alzheimer's disease. Innovative viral-vector and gene-engineering technology combined with the availability of cell-specific promoters enabled regional targeting and selective control over phenotypically specific populations of neurons. We transduced the LC-NE neurons in adult male rats by delivering the canine adenovirus type 2-based vector carrying the NE-specific promoter PRSx8 and a light-sensitive channelrhodopsin-2 receptor (ChR2) directly in the LC or retrogradely from the LC targets. The highest ChR2 expression level was achieved when the virus was delivered medially to the trigeminal pathway and ~100 μm lateral to the LC. The injections close or directly in the LC compromised the tissue integrity and NE cell phenotype. Retrograde labeling was more optimal given the transduction of projection-selective subpopulations. Our results highlight a limited inference of ChR2 expression from representative cases to the entire population of targeted cells. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. Thus, besides the cell-type specificity and the transduction efficiency, the between-subject variability in the proportion of the remaining viral-transduced targeted cell population must be considered in any functional connectivity study.
Collapse
|