1
|
Ozygała A, Rokosz-Mierzwa J, Widz P, Skowera P, Wiliński M, Styka B, Lejman M. Biological Markers of Myeloproliferative Neoplasms in Children, Adolescents and Young Adults. Cancers (Basel) 2024; 16:4114. [PMID: 39682300 DOI: 10.3390/cancers16234114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic cancers characterized by hyperproliferation of the myeloid lineages. These clonal marrow disorders are extremely rare in pediatric patients. MPN is reported to occur 100 times more frequently in adults, and thus research is primarily focused on this patient group. At present, modern diagnostic techniques, primarily genetic, facilitate the identification of the biology of these diseases. The key genes are JAK2, MPL, and CALR, namely, driver mutations, which are present in approximately 90% of patients with suspected MPN. Moreover, there are more than 20 other mutations that affect the development of these hematological malignancies, as evidenced by a review of the literature. The pathogenic mechanism of MPNs is characterized by the dysregulation of the JAK/STAT signaling pathway (JAK2, MPL, CALR), DNA methylation (TET2, DNMT3A, IDH1/2), chromatin structure (ASXL1, EZH2), and splicing (SF3B1, U2AF2, SRSF2). Although rare, myeloproliferative neoplasms can involve young patients and pose unique challenges for clinicians in diagnosis and therapy. The paper aims to review the biological markers of MPNs in pediatric populations-a particular group of patients that has been poorly studied due to the low frequency of MPN diagnosis.
Collapse
Affiliation(s)
- Aleksandra Ozygała
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Rokosz-Mierzwa
- Department of Genetic Diagnostics, University Children's Hospital, 20-093 Lublin, Poland
| | - Paulina Widz
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| | - Paulina Skowera
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Mateusz Wiliński
- Department of Genetic Diagnostics, University Children's Hospital, 20-093 Lublin, Poland
| | - Borys Styka
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Mohamed A, Gao J, Chen YH, Abaza Y, Altman J, Jennings L, Vormittag-Nocito E, Sukhanova M, Lu X, Chen Q. CSF3R mutated myeloid neoplasms: Beyond chronic neutrophilic leukemia. Hum Pathol 2024; 149:66-74. [PMID: 38879086 DOI: 10.1016/j.humpath.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
CSF3R activating mutation is a genetic hallmark of chronic neutrophilic leukemia (CNL), and is also present in a subset of atypical chronic myeloid leukemia (aCML), but infrequent in other myeloid neoplasms. However, the occurrence of CSF3R mutations in various myeloid neoplasms is not well studied. Here we evaluate the spectrum of CSF3R mutations and the clinicopathologic features of CSF3R mutated myeloid neoplasms. We retrospectively identified CSF3R mutations in a variety of myeloid neoplasms: two CNL, three atypical chronic myeloid leukemia (aCML), nine acute myeloid leukemia (AML), one chronic myelomonocytic leukemia, and one myeloproliferative neoplasm. The prototypic T618I mutation was found in 50% of cases: CNL (2/2), aCML (2/3) and AML (4/9). We observed a new recurrent CSF3R mutation Q776* in 25% of cases, and a potential-germline mutation in a 20-year-old patient. Co-occurring mutations were often in epigenetic modifier and spliceosome. IDH/RUNX1 and tumor suppressor mutations were frequent in AML but absent in CNL/aCML. All CNL/aCML patients succumbed within 2-years of diagnosis. We demonstrate that CSF3R mutations are not restricted to CNL. CNL and aCML show similar clinicopathologic and molecular features, suggesting that CNL may be best classified as myelodysplastic/myeloproliferative neoplasm rather than myeloproliferative neoplasm.
Collapse
MESH Headings
- Humans
- Receptors, Colony-Stimulating Factor/genetics
- Male
- Mutation
- Middle Aged
- Female
- Aged
- Leukemia, Neutrophilic, Chronic/genetics
- Leukemia, Neutrophilic, Chronic/pathology
- Retrospective Studies
- Adult
- Young Adult
- Aged, 80 and over
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- DNA Mutational Analysis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/pathology
- Genetic Predisposition to Disease
- Biomarkers, Tumor/genetics
- Phenotype
Collapse
Affiliation(s)
- Ahmed Mohamed
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA.
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Yasmin Abaza
- Hematology Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Jessica Altman
- Hematology Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Lawrence Jennings
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Erica Vormittag-Nocito
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Qing Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| |
Collapse
|
3
|
Szuber N, Orazi A, Tefferi A. Chronic neutrophilic leukemia and atypical chronic myeloid leukemia: 2024 update on diagnosis, genetics, risk stratification, and management. Am J Hematol 2024; 99:1360-1387. [PMID: 38644693 DOI: 10.1002/ajh.27321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Chronic neutrophilic leukemia (CNL) is a rare BCR::ABL1-negative myeloproliferative neoplasm (MPN) defined by persistent mature neutrophilic leukocytosis and bone marrow granulocyte hyperplasia. Atypical chronic myeloid leukemia (aCML) (myelodysplastic "[MDS]/MPN with neutrophilia" per World Health Organization [WHO]) is a MDS/MPN overlap disorder featuring dysplastic neutrophilia and circulating myeloid precursors. Both manifest with frequent hepatosplenomegaly and less commonly, bleeding, with high rates of leukemic transformation and death. The 2022 revised WHO classification conserved CNL diagnostic criteria of leukocytosis ≥25 × 109/L, neutrophils ≥80% with <10% circulating precursors, absence of dysplasia, and presence of an activating CSF3R mutation. ICC criteria are harmonized with those of other myeloid entities, with a key distinction being lower leukocytosis threshold (≥13 × 109/L) for cases CSF3R-mutated. Criteria for aCML include leukocytosis ≥13 × 109/L, dysgranulopoiesis, circulating myeloid precursors ≥10%, and at least one cytopenia for MDS-thresholds (ICC). In both classifications ASXL1 and SETBP1 (ICC), or SETBP1 ± ETNK1 (WHO) mutations can be used to support the diagnosis. Both diseases show hypercellular bone marrow due to a granulocytic proliferation, aCML distinguished by dysplasia in granulocytes ± other lineages. Absence of monocytosis, rare/no basophilia, or eosinophilia, <20% blasts, and exclusion of other MPN, MDS/MPN, and tyrosine kinase fusions, are mandated. Cytogenetic abnormalities are identified in ~1/3 of CNL and ~15-40% of aCML patients. The molecular signature of CNL is a driver mutation in colony-stimulating factor 3 receptor-classically T618I, documented in >80% of cases. Atypical CML harbors a complex genomic backdrop with high rates of recurrent somatic mutations in ASXL1, SETBP1, TET2, SRSF2, EZH2, and less frequently in ETNK1. Leukemic transformation rates are ~10-25% and 30-40% for CNL and aCML, respectively. Overall survival is poor: 15-31 months in CNL and 12-20 months in aCML. The Mayo Clinic CNL risk model for survival stratifies patients according to platelets <160 × 109/L (2 points), leukocytes >60 × 109/L (1 point), and ASXL1 mutation (1 point); distinguishing low- (0-1 points) versus high-risk (2-4 points) categories. The Mayo Clinic aCML risk model attributes 1 point each for: age >67 years, hemoglobin <10 g/dL, and TET2 mutation, delineating low- (0-1 risk factor) and high-risk (≥2 risk factors) subgroups. Management is risk-driven and symptom-directed, with no current standard of care. Most commonly used agents include hydroxyurea, interferon, Janus kinase inhibitors, and hypomethylating agents, though none are disease-modifying. Hematopoietic stem cell transplant is the only potentially curative modality and should be considered in eligible patients. Recent genetic profiling has disclosed CBL, CEBPA, EZH2, NRAS, TET2, and U2AF1 to represent high-risk mutations in both entities. Actionable mutations (NRAS/KRAS, ETNK1) have also been identified, supporting novel agents targeting involved pathways. Preclinical and clinical studies evaluating new drugs (e.g., fedratinib, phase 2) and combinations are detailed.
Collapse
MESH Headings
- Humans
- Leukemia, Neutrophilic, Chronic/genetics
- Leukemia, Neutrophilic, Chronic/diagnosis
- Leukemia, Neutrophilic, Chronic/therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Mutation
- Risk Assessment
- Receptors, Colony-Stimulating Factor/genetics
- Carrier Proteins
- Nuclear Proteins
Collapse
Affiliation(s)
- Natasha Szuber
- Department of Hematology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Thomopoulos TP, Symeonidis A, Kourakli A, Papageorgiou SG, Pappa V. Chronic Neutrophilic Leukemia: A Comprehensive Review of Clinical Characteristics, Genetic Landscape and Management. Front Oncol 2022; 12:891961. [PMID: 35494007 PMCID: PMC9048254 DOI: 10.3389/fonc.2022.891961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic neutrophilic leukemia (CNL) represents a rare disease, that has been classified among the BCR/ABL-negative myeloproliferative neoplasms. The disease is characterized by marked leukocytosis with absolute neutrophilia and its clinical presentation may vary from asymptomatic to highly symptomatic with massive splenomegaly and constitutional symptoms. CNL prognosis remains relatively poor, as most patients succumb to disease complications or transform to acute myeloid leukemia. Recent studies have demonstrated that CSF3R mutations drive the disease, albeit the presence of other secondary mutations perplex the genetic landscape of the disease. Notably, the presence of CSF3R mutations has been adopted as a criterion for diagnosis of CNL. Despite the vigorous research, the management of the disease remains suboptimal. Allogeneic stem cell transplantation represents the only treatment that could lead to cure; however, it is accompanied by high rates of treatment-related mortality. Recently, ruxolitinib has shown significant responses in patients with CNL; however, emergence of resistance might perturbate long-term management of the disease. The aim of this review is to summarize the clinical course and laboratory findings of CNL, highlight its pathogenesis and complex genetic landscape, and provide the context for the appropriate management of patients with CNL.
Collapse
Affiliation(s)
- Thomas P. Thomopoulos
- Second Department of Internal Medicine, Attikon Hospital, Research Institute, National and Kapodistrian University of Athens, Athens, Greece
| | - Argiris Symeonidis
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Alexandra Kourakli
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Sotirios G. Papageorgiou
- Second Department of Internal Medicine, Attikon Hospital, Research Institute, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine, Attikon Hospital, Research Institute, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Vasiliki Pappa,
| |
Collapse
|
5
|
Szuber N, Elliott M, Tefferi A. Chronic neutrophilic leukemia: 2022 update on diagnosis, genomic landscape, prognosis, and management. Am J Hematol 2022; 97:491-505. [PMID: 35089603 DOI: 10.1002/ajh.26481] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022]
Abstract
DISEASE OVERVIEW Chronic neutrophilic leukemia (CNL) is a rare, often aggressive myeloproliferative neoplasm (MPN) defined by persistent mature neutrophilic leukocytosis, bone marrow granulocyte hyperplasia, and frequent hepatosplenomegaly. The 2013 seminal discovery of oncogenic driver mutations in colony-stimulating factor 3 receptor (CSF3R) in the majority of patients with CNL not only established its molecular pathogenesis but provided a diagnostic biomarker and rationale for pharmacological targeting. DIAGNOSIS In 2016, the World Health Organization (WHO) recognized activating CSF3R mutations as a central diagnostic feature of CNL. Other criteria include leukocytosis of ≥25 × 109 /L comprising >80% neutrophils with <10% circulating precursors and rare blasts, and absence of dysplasia or monocytosis, while not fulfilling criteria for other MPN. MANAGEMENT There is currently no standard of care for management of CNL, due in large part to the rarity of disease and dearth of formal clinical trials. Most commonly used therapeutic agents include conventional oral chemotherapy (e.g., hydroxyurea), interferon, and Janus kinase (JAK) inhibitors, while hematopoietic stem cell transplant remains the only potentially curative modality. DISEASE UPDATES Increasingly comprehensive genetic profiling in CNL, including new data on clonal evolution, has disclosed a complex genomic landscape with additional mutations and combinations thereof driving disease progression and drug resistance. Although accurate prognostic stratification and therapeutic decision-making remain challenging in CNL, emerging data on molecular biomarkers and the addition of newer agents, such as JAK inhibitors, to the therapeutic arsenal, are paving the way toward greater standardization and improvement of patient care.
Collapse
Affiliation(s)
- Natasha Szuber
- Department of Hematology Maisonneuve‐Rosemont Hospital Montreal Quebec Canada
| | - Michelle Elliott
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
6
|
Nann D, Fend F. Synoptic Diagnostics of Myeloproliferative Neoplasms: Morphology and Molecular Genetics. Cancers (Basel) 2021; 13:cancers13143528. [PMID: 34298741 PMCID: PMC8303289 DOI: 10.3390/cancers13143528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary The diagnosis of myeloproliferative neoplasms requires assessment of a combination of clinical, morphological, immunophenotypic and genetic features, and this integrated, multimodal approach forms the basis for precise classification. Evaluation includes cell counts and morphology in the peripheral blood, bone marrow aspiration and trephine biopsy, and may encompass flow cytometry for specific questions. Diagnosis nowadays is completed by targeted molecular analysis for the detection of recurrent driver and, optionally, disease-modifying mutations. According to the current World Health Organization classification, all myeloproliferative disorders require assessment of molecular features to support the diagnosis or confirm a molecularly defined entity. This requires a structured molecular analysis workflow tailored for a rapid and cost-effective diagnosis. The review focuses on the morphological and molecular features of Ph-negative myeloproliferative neoplasms and their differential diagnoses, addresses open questions of classification, and emphasizes the enduring role of histopathological assessment in the molecular era. Abstract The diagnosis of a myeloid neoplasm relies on a combination of clinical, morphological, immunophenotypic and genetic features, and an integrated, multimodality approach is needed for precise classification. The basic diagnostics of myeloid neoplasms still rely on cell counts and morphology of peripheral blood and bone marrow aspirate, flow cytometry, cytogenetics and bone marrow trephine biopsy, but particularly in the setting of Ph− myeloproliferative neoplasms (MPN), the trephine biopsy has a crucial role. Nowadays, molecular studies are of great importance in confirming or refining a diagnosis and providing prognostic information. All myeloid neoplasms of chronic evolution included in this review, nowadays feature the presence or absence of specific genetic markers in their diagnostic criteria according to the current WHO classification, underlining the importance of molecular studies. Crucial differential diagnoses of Ph− MPN are the category of myeloid/lymphoid neoplasms with eosinophilia and gene rearrangement of PDGFRA, PDGFRB or FGFR1, or with PCM1-JAK2, and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). This review focuses on morphological, immunophenotypical and molecular features of BCR-ABL1-negative MPN and their differential diagnoses. Furthermore, areas of difficulties and open questions in their classification are addressed, and the persistent role of morphology in the area of molecular medicine is discussed.
Collapse
Affiliation(s)
- Dominik Nann
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany;
- Comprehensive Cancer Center, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany;
- Comprehensive Cancer Center, University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-7071-2980207
| |
Collapse
|
7
|
Abstract
OPINION STATEMENT Chronic neutrophilic leukemia (CNL) is a rare myeloproliferative neoplasm (MPN) characterized by oncogenic driver mutations in colony-stimulating factor 3 receptor (CSF3R). Due in large part to the rarity of the disease and dearth of clinical trials, there is currently no standard of care for CNL. Available therapies range from conventional oral chemotherapy to targeted JAK inhibitors to hematopoietic stem cell transplant (HSCT), the latter representing the only potentially curative modality. For this reason, coupled with CNL's typically aggressive clinical course, allogeneic HSCT remains the primary recommended therapy for eligible patients. For ineligible patients, a number of nontransplant therapies have been evaluated in limited trials. These agents may additionally be considered "bridging" therapies pre-transplant in order to control myeloproliferation and alleviate symptoms. Historically, the most commonly utilized first-line agent has been hydroxyurea, though most patients ultimately require second (or subsequent)-line therapy; still hydroxyurea remains the conventional frontline option. Dasatinib has demonstrated efficacy in vitro in cases of CSF3R terminal membrane truncation mutations and may cautiously be considered upfront in such instances, though no substantive studies have validated its efficacy in vivo. Numerous other chemotherapy agents, practically re-appropriated from the pharmaceutical arsenal of MPN, have been utilized in CNL and are typically reserved for second/subsequent-line settings; these include interferon-alpha (IFN-a), hypomethylating agents, thalidomide, cladribine, and imatinib, among others. Most recently, ruxolitinib, a JAK1/2 inhibitor targeting JAK-STAT signaling downstream from CSF3R, has emerged as a potentially promising new candidate for the treatment of CNL. Increasingly robust data support the clinical efficacy, with associated variable reductions in allele burden, and tolerability of ruxolitinib in patients with CNL, particularly those carrying the CSF3RT618I mutation. Similar to conventional nontransplant strategies, however, no disease-modifying or survival benefits have been demonstrated. While responses to JAK-STAT inhibition in CNL have not been uniform, data are sufficient to recommend consideration of ruxolitinib in the therapeutic repertory of CNL. There remains a major unmet need for prospective trials with investigational therapies in CNL.
Collapse
|
8
|
Qian Y, Chen Y, Li X. CSF3R T618I, SETBP1 G870S, SRSF2 P95H, and ASXL1 Q780* tetramutation co-contribute to myeloblast transformation in a chronic neutrophilic leukemia. Ann Hematol 2021; 100:1459-1461. [PMID: 33822276 PMCID: PMC8116236 DOI: 10.1007/s00277-021-04491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/08/2021] [Indexed: 10/25/2022]
Abstract
Chronic neutrophilic leukemia (CNL) is a rare but serious myeloid malignancy. In a review of reported cases for WHO-defined CNL, CSF3R mutation is found in about 90% cases and confirmed as the molecular basis of CNL. Concurrent mutations are observed in CSF3R-mutated CNL patients, including ASXL1, SETBP1, SRSF2, JAK2, CALR, TET2, NRAS, U2AF1, and CBL. Both ASXL1 and SETBP1 mutations in CNL have been associated with a poor prognosis, whereas, SRSF2 mutation was undetermined. Our patient was a 77-year-old man and had no significant past medical history and symptoms with leukocytosis. Bone marrow (BM) aspirate and biopsy revealed a markedly hypercellular marrow with prominent left-shifted granulopoiesis. Next-generation sequencing (NGS) of DNA from the BM aspirate of a panel of 28 genes, known to be pathogenic in MDS/MPN, detected mutations in CSF3R, SETBP1, and SRSF2, and a diagnosis of CNL was made. The patient did not use a JAK-STAT pathway inhibitor (ruxolitinib) but started on hydroxyurea and alpha-interferon and developed pruritus after 4 months of diagnosis and nasal hemorrhage 1 month later. Then, the patient was diagnosed with CNL with AML transformation and developed intracranial hemorrhage and died. We repeated NGS and found that three additional mutations were detected: ASXL1, PRKDC, MYOM2; variant allele frequency (VAF) of the prior mutations in CSF3R, SETBP1, and SRSF2 increased. The concurrence of CSF3RT618I, ASXL1, SETBP1, and SRSF2 mutation may be a mutationally detrimental combination and contribute to disease progression and AML transformation, as well as the nonspecific treatment of hydroxyurea and alpha-interferon, but the significance and role of PRKDC and MYOM2 mutations were not undetermined.
Collapse
Affiliation(s)
- Yi Qian
- Department of Hematology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yan Chen
- Department of Hematology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xiaoming Li
- Department of Hematology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
9
|
Drexler HG, Nagel S, Quentmeier H. Leukemia Cell Lines: In Vitro Models for the Study of Chronic Neutrophilic Leukemia. ACTA ACUST UNITED AC 2021; 28:1790-1794. [PMID: 34068566 PMCID: PMC8161829 DOI: 10.3390/curroncol28030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
Chronic neutrophilic leukemia (CNL) is a rare myeloproliferative neoplasm that is genetically characterized by the absence of both the Philadelphia chromosome and BCR-ABL1 fusion gene and the high prevalence of mutations in the colony-stimulating factor 3 receptor (CSF3R). Additional disease-modifying mutations have been recognized in CNL samples, portraying a distinct mutational landscape. Despite the growing knowledge base on genomic aberrations, further progress could be gained from the availability of representative models of CNL. To address this gap, we screened a large panel of available leukemia cell lines, followed by a detailed mutational investigation with focus on the CNL-associated candidate driver genes. The sister cell lines CNLBC-1 and MOLM-20 were derived from a patient with CNL and carry CNL-typical molecular hallmarks, namely mutations in several genes, such as CSF3R, ASXL1, EZH2, NRAS, and SETBP1. The use of these validated and comprehensively characterized models will benefit the understanding of the pathobiology of CNL and help inform therapeutic strategies.
Collapse
Affiliation(s)
- Hans G. Drexler
- Faculty of Life Sciences, Technical University of Braunschweig, 38106 Braunschweig, Germany
- Correspondence:
| | - Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.); (H.Q.)
| | - Hilmar Quentmeier
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.); (H.Q.)
| |
Collapse
|
10
|
Li YP, Chen N, Ye XM, Xia YS. Eighty-year-old man with rare chronic neutrophilic leukemia caused by CSF3R T618I mutation: A case report and review of literature. World J Clin Cases 2020; 8:6337-6345. [PMID: 33392315 PMCID: PMC7760438 DOI: 10.12998/wjcc.v8.i24.6337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic neutrophilic leukemia (CNL) is a rare bone marrow proliferative tumor and a heterogeneous disorder. In 2016, the World Health Organization included activating mutations in the CSF3R gene as one of the diagnostic criteria, with CSF3R T618I being the most common mutation. The disease is often accompanied by splenomegaly, but no developmental abnormalities and significant reticular fibrosis, and no Ph chromosome and BCR-ABL fusion gene. So, it is difficult to diagnose at the first presentation in the absence of classical symptoms. Herein we describe a rare CNL patient without splenomegaly whose initial diagnostic clue was neutrophilic hyperactivity.
CASE SUMMARY The patient is an 80-year-old Han Chinese man who presented with one month of fatigue and fatigue aggravation in the last half of the month. He had no splenomegaly, but had persistent hypofibrinogenemia, obvious skin bleeding, and hemoptysis, and required repeated infusion of fibrinogen therapy. After many relevant laboratory examinations, histopathological examination, and sequencing analysis, the patient was finally diagnosed with CNL [CSF3R T618I positive: c.1853C>T (p.T618I) and c.2514T>A (p.C838)].
CONCLUSION The physical examination and blood test for tumor-related genes are insufficient to establish a diagnosis of CNL. Splenomegaly is not that important, but hyperplasia of interstitial neutrophil system and activating mutations in CSF3R are important clues to CNL diagnosis.
Collapse
Affiliation(s)
- Ya-Ping Li
- Department of Hematology, Chang'an Hospital, Xi'an 710000, Shaanxi Province, China
| | - Na Chen
- Department of Hematology, Chang'an Hospital, Xi'an 710000, Shaanxi Province, China
| | - Xian-Mei Ye
- Department of Hematology, Chang'an Hospital, Xi'an 710000, Shaanxi Province, China
| | - Yong-Shou Xia
- Department of Hematology, Chang'an Hospital, Xi'an 710000, Shaanxi Province, China
| |
Collapse
|
11
|
Gao T, Yu C, Xia S, Liang T, Gu X, Liu Z. A rare atypical chronic myeloid leukemia BCR-ABL1 negative with concomitant JAK2 V617F and SETBP1 mutations: a case report and literature review. Ther Adv Hematol 2020; 11:2040620720927105. [PMID: 32782768 PMCID: PMC7388081 DOI: 10.1177/2040620720927105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
Atypical chronic myeloid leukemia (aCML) BCR-ABL1 negative is a rare
myelodysplastic syndromes/myeloproliferative neoplasm (MDS/MPN) for which no
standard treatment currently exists. The advent of next-generation sequencing
has allowed our understanding of the molecular pathogenesis of aCML to be
expanded and has made it possible for clinicians to more accurately
differentiate aCML from similar MDS/MPN overlap syndrome and MPN counterparts,
as MPN-associated driver mutations in JAK2, CALR, or
MPL are typically absent in aCML. A 55-year old male with
main complaints of weight loss and fatigue for more than half a year and night
sweats for more than 2 months was admitted to our hospital. Further examination
revealed increased white blood cells, splenomegaly, and grade 1 bone marrow
fibrosis with JAK2 V617F, which supported a preliminary
diagnosis of pre-primary marrow fibrosis. However, in addition to
JAK2 V617F (51.00%), next-generation sequencing also
detected SETBP1 D868N (46.00%), ASXL1 G645fs
(36.09%), and SRSF2 P95_R102del (33.56%) mutations. According
to the 2016 World Health Organization diagnostic criteria, the patient was
ultimately diagnosed with rare aCML with concomitant JAK2 V617F
and SETBP1 mutations. The patient received targeted therapy of
ruxolitinib for 5 months and subsequently an additional four courses of combined
hypomethylating therapy. The patient exhibited an optimal response, with
decreased spleen volume by approximately 35% after therapy and improved symptom
scores after therapy. In diagnosing primary bone marrow fibrosis, attention
should be paid to the identification of MDS/MPN. In addition to basic cell
morphology, mutational analysis using next-generation sequencing plays an
increasingly important role in the differential diagnosis. aCML with concomitant
JAK2 V617F and SETBP1 mutations has been
rarely reported, and targeted therapy for mutated JAK2 may
benefit patients, especially those not suitable recipients of hematopoietic stem
cell transplants.
Collapse
Affiliation(s)
- Tianqi Gao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Yu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si Xia
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Liang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuekui Gu
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zenghui Liu
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No 16, Jichang Road, Guangzhou, Guangdong Province 510405, PR China
| |
Collapse
|
12
|
Szuber N, Elliott M, Tefferi A. Chronic neutrophilic leukemia: 2020 update on diagnosis, molecular genetics, prognosis, and management. Am J Hematol 2020; 95:212-224. [PMID: 31769070 DOI: 10.1002/ajh.25688] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022]
Abstract
DISEASE OVERVIEW Chronic neutrophilic leukemia (CNL) is a rare, often aggressive myeloproliferative neoplasm (MPN) defined by persistent mature neutrophilic leukocytosis, bone marrow granulocyte hyperplasia, and frequent hepatosplenomegaly. The seminal discovery of oncogenic driver mutations in colony-stimulating factor 3 receptor (CSF3R) in the majority of patients with CNL in 2013 anchored a new scientific framework, deepening our understanding of its molecular pathogenesis, providing a diagnostic biomarker, and rationalizing the use of pharmacological targeting. DIAGNOSTIC CRITERIA In 2016, the World Health Organization (WHO) included the presence of activating CSF3R mutations as a central diagnostic feature of CNL. Other criteria include leukocytosis of ≥25 × 109 /L comprising >80% neutrophils with <10% circulating precursors and rare blasts, and absence of dysplasia or monocytosis, while not fulfilling criteria for other MPN. DISEASE UPDATES Increasingly comprehensive genetic profiling of CNL has disclosed a complex genomic landscape and additional prognostically relevant mutational combinations. Though prognostic determination and therapeutic decision-making remain challenging, emerging data on prognostic markers and the use of newer therapeutic agents, such as JAK inhibitors, are helping to define state-of-the-art management in CNL.
Collapse
Affiliation(s)
- Natasha Szuber
- Department of HematologyMaisonneuve‐Rosemont Hospital Montreal Quebec Canada
| | - Michelle Elliott
- Department of Internal Medicine, Division of HematologyMayo Clinic Rochester Minnesota
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of HematologyMayo Clinic Rochester Minnesota
| |
Collapse
|
13
|
Tobiasson M, Kittang AO. Treatment of myelodysplastic syndrome in the era of next-generation sequencing. J Intern Med 2019; 286:41-62. [PMID: 30869816 DOI: 10.1111/joim.12893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing (NGS) is rapidly changing the clinical care of patients with myelodysplastic syndrome (MDS). NGS can be used for various applications: (i) in the diagnostic process to discriminate between MDS and other diseases such as aplastic anaemia, myeloproliferative disorders and idiopathic cytopenias; (ii) for classification, for example, where the presence of SF3B1 mutation is one criterion for the ring sideroblast anaemia subgroups in the World Health Organization 2016 classification; (iii) for identification of patients suitable for targeted therapy (e.g. IDH1/2 inhibitors); (iv) for prognostication, for example, where specific mutations (e.g. TP53 and RUNX1) are associated with inferior prognosis, whereas others (e.g. SF3B1) are associated with superior prognosis; and (v) to monitor patients for progression or treatment failure. Most commonly, targeted sequencing for genes (normally 50-100 genes) reported to be recurrently mutated in myeloid disease is used. At present, NGS is rarely incorporated into clinical guidelines although an increasing number of studies have demonstrated the benefit of using NGS in the clinical management of MDS patients.
Collapse
Affiliation(s)
- M Tobiasson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.,Institution of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - A O Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Venugopal S, Mascarenhas J. Chronic Neutrophilic Leukemia: Current and Future Perspectives. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:129-134. [DOI: 10.1016/j.clml.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/02/2018] [Indexed: 02/02/2023]
|
15
|
Hu NB, Fang LW, Qin TJ, Xiao ZJ, Xu ZF. [Ruxolitinib for chronic neutrophilic leukemia: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:1029-1032. [PMID: 30612407 PMCID: PMC7348221 DOI: 10.3760/cma.j.issn.0253-2727.2018.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | - Z F Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
16
|
Allogeneic hematopoietic stem cell transplantation for the treatment of BCR-ABL1-negative atypical chronic myeloid leukemia and chronic neutrophil leukemia: A retrospective nationwide study in Japan. Leuk Res 2018; 75:50-57. [PMID: 30458320 DOI: 10.1016/j.leukres.2018.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022]
Abstract
Atypical chronic myeloid leukemia (aCML) and chronic neutrophilic leukemia (CNL) are rare BCR-ABL1 fusion gene-negative myeloid neoplasms with a predominance of neutrophils. Since no standard therapeutic strategy currently exists for these diseases, we retrospectively evaluated the outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for aCML and CNL. Data from 14 aCML and 5 CNL patients as their diagnoses were collected using a nationwide survey. Allo-HSCT was performed between 2003 and 2014. Preconditioning regimens included myeloablative (n = 15), reduced-intensity (n = 3), and non-myeloablative (n = 1) regimens. Transplanted stem cells were obtained from HLA-matched related donors (n = 5) and alternative donors (n = 14). Neutrophil engraftment was successfully achieved in 17 patients. One-year overall survival rates (OS) were 54.4% (95% confidence interval [CI], 24.8 to 76.7%) and 40.0% (95% CI, 5.2 to 75.3%) in patients with aCML and CNL, respectively. Among aCML patients, 1-year OS were 76.2% (95% CI, 33.2 to 93.5%) and 20.0% (95% CI, 0.8 to 58.2%) in patients with <5% myeloblasts (n = 9) and ≥5% myeloblasts (n = 5) in peripheral blood before allo-HSCT, respectively. These results suggest that allo-HSCT achieves long-term survival in patients with aCML and CNL. Better pre-transplant management is required to improve the outcomes of aCML patients with ≥5% blasts in peripheral blood.
Collapse
|
17
|
Elliott MA, Tefferi A. Chronic neutrophilic leukemia: 2018 update on diagnosis, molecular genetics and management. Am J Hematol 2018; 93:578-587. [PMID: 29512199 DOI: 10.1002/ajh.24983] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
DISEASE OVERVIEW AND DIAGNOSIS Chronic neutrophilic leukemia (CNL) is a potentially aggressive myeloproliferative neoplasm, for which current WHO diagnostic criteria include leukocytosis of ≥ 25 x 109 /L of which ≥ 80% are neutrophils, with < 10% circulating neutrophil precursors with blasts rarely observed. In addition, there is no dysplasia, nor clinical or molecular criteria for other myeloproliferative neoplasms. UPDATE ON DIAGNOSIS Previously the diagnosis of CNL was often as one of exclusion based on no identifiable cause for physiologic neutrophilia in patients fulfilling the aforementioned criteria. The 2016 WHO classification now recognizes somatic activating mutations of CSF3R (most commonly CSF3RT618I) as diagnostic, allowing for an accurate diagnosis for the majority of suspected cases through molecular testing. These mutations are primary driver mutations, accounting for the characteristic clinical phenotype and potential susceptibility to molecularly targeted therapy. RISK STRATIFICATION Concurrent mutations, common to myeloid neoplasms and their precursor states, most frequently in SETBP1 and ASXL1, are frequent and appear to be of prognostic significance. Although data are evolving on the full genomic profile, the rarity of CNL has delayed complete understanding of its full molecular pathogenesis and individual patient prognosis.
Collapse
Affiliation(s)
- Michelle A. Elliott
- Department of Internal Medicine, Division of Hematology; Mayo Clinic College of Medicine, 200 First St. SW; Rochester Minnesota 55905
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of Hematology; Mayo Clinic College of Medicine, 200 First St. SW; Rochester Minnesota 55905
| |
Collapse
|
18
|
Bredeweg A, Burch M, Krause JR. Chronic neutrophilic leukemia. Proc (Bayl Univ Med Cent) 2018; 31:88-89. [PMID: 29686565 DOI: 10.1080/08998280.2017.1400300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Chronic neutrophilic leukemia is a rare myeloproliferative disorder characterized by a sustained peripheral blood neutrophilia, absence of the BCR/ABL oncoprotein, bone marrow hypercellularity with less than 5% myeloblasts and normal neutrophil maturation, and no dysplasia. This leukemia has been associated with mutations in the colony-stimulating factor 3 receptor (CSF3R) that may activate this receptor, leading to the proliferation of neutrophils that are the hallmark of chronic neutrophilic leukemia. We present a case of chronic neutrophilic leukemia and discuss the criteria for diagnosis and the significance of mutations found in this leukemia.
Collapse
Affiliation(s)
- Arthur Bredeweg
- Department of Pathology, Baylor University Medical Center at Dallas and the Charles A. Sammons Cancer Center, Dallas, Texas
| | - Micah Burch
- Department of Pathology, Baylor University Medical Center at Dallas and the Charles A. Sammons Cancer Center, Dallas, Texas
| | - John R Krause
- Department of Pathology, Baylor University Medical Center at Dallas and the Charles A. Sammons Cancer Center, Dallas, Texas
| |
Collapse
|
19
|
Dao KHT, Tyner JW, Gotlib J. Recent Progress in Chronic Neutrophilic Leukemia and Atypical Chronic Myeloid Leukemia. Curr Hematol Malig Rep 2018; 12:432-441. [PMID: 28983816 DOI: 10.1007/s11899-017-0413-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW We reviewed recent diagnostic and therapeutic progress in chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML). We summarized recent genetic data that may guide future efforts towards implementing risk-adapted therapy based on mutational profile and improving disease control and survival of affected patients. RECENT FINDINGS Recent genetic data in CNL and aCML prompted modifications to the World Health Organization (WHO) diagnostic criteria, which have improved our understanding of how CNL and aCML are different diseases despite sharing common findings of peripheral granulocytosis and marrow myeloid hyperplasia. The overlap of recurrently mutated genes between aCML and CMML support considering CSF3R-T618I mutated cases as a distinct entity, either as CNL or CNL with dysplasia. Ongoing preclinical and clinical studies will help to further inform the therapeutic approach to these diseases. Our understanding of CNL and aCML has greatly advanced over the last few years. This will improve clarity for the diagnosis of these diseases, provide a strategy for risk stratification, and guide risk-adapted therapy.
Collapse
Affiliation(s)
- Kim-Hien T Dao
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA.
| | - Jeffrey W Tyner
- Knight Cancer Institute, Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Szuber N, Tefferi A. Chronic neutrophilic leukemia: new science and new diagnostic criteria. Blood Cancer J 2018; 8:19. [PMID: 29440636 PMCID: PMC5811432 DOI: 10.1038/s41408-018-0049-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic neutrophilic leukemia (CNL) is a distinct myeloproliferative neoplasm defined by persistent, predominantly mature neutrophil proliferation, marrow granulocyte hyperplasia, and frequent splenomegaly. The seminal discovery of oncogenic driver mutations in CSF3R in the majority of patients with CNL in 2013 generated a new scientific framework for this disease as it deepened our understanding of its molecular pathogenesis, provided a biomarker for diagnosis, and rationalized management using novel targeted therapies. Consequently, in 2016, the World Health Organization (WHO) revised the diagnostic criteria for CNL to reflect such changes in its genomic landscape, now including the presence of disease-defining activating CSF3R mutations as a key diagnostic component of CNL. In this communication, we provide a background on the history of CNL, its clinical and hemopathologic features, and its molecular anatomy, including relevant additional genetic lesions and their significance. We also outline the recently updated WHO diagnostic criteria for CNL. Further, the natural history of the disease is reviewed as well as potential prognostic variables. Finally, we summarize and discuss current treatment options as well as prospective novel therapeutic targets in hopes that they will yield meaningful improvements in patient management and outcomes.
Collapse
Affiliation(s)
- Natasha Szuber
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
21
|
Ouyang Y, Qiao C, Chen Y, Zhang SJ. Clinical significance of CSF3R, SRSF2 and SETBP1 mutations in chronic neutrophilic leukemia and chronic myelomonocytic leukemia. Oncotarget 2017; 8:20834-20841. [PMID: 28209919 PMCID: PMC5400549 DOI: 10.18632/oncotarget.15355] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/27/2017] [Indexed: 12/22/2022] Open
Abstract
Chronic neutrophilic leukemia (CNL) and chronic myelomonocytic leukemia (CMML) are rare hematologic neoplasms. We performed CSF3R, SRSF2 and SETBP1 mutational analyses in 10 CNL and 56 CMML patients. In this sample cohort, 80% of CNL patients harbored CSF3R mutations, of which the CSF3R T618I mutation was dominant. Mutations in CSF3R and SETBP1 were found in 7.1% and 5.3% CMML patients respectively, while 25% of CMML patients carried SRSF2 mutations. Strikingly, we identified that all of the CSF3R mutations detected in CMML patients were represented by a P733T mutation. The CSF3R P733T mutation represents a novel CSF3R mutation. In addition, none of the four CSF3R P733T mutated patients carried SRSF2 mutations [0/14 (0%) patients with combined CSF3R P733T and SRSF2 mutations vs. 4/42 (9.5%) with CSF3R P733T and wt SRSF2, P < 0.001]. Both mut SRSF2 and mut SETBP1 patients had shorter overall survival (OS) and progression-free survival (PFS) compared to patients with wt SRSF2 (P < 0.001 both) and wt SETBP1 (P < 0.001 and P = 0.02, respectively). While we found no significant differences in OS and PFS as a consequence of CSF3R mutation status, our work suggest that the CSF3R T618I mutation is a diagnostic marker with good specificity and sensitivity for CNL. In conclusion, our study highlights effective diagnostic and prognostic markers of CNL and CMML patients in the Chinese population.
Collapse
Affiliation(s)
- Yuan Ouyang
- Department of Hematology, Ruijin Hospital North Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China.,Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Chun Qiao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Yu Chen
- Department of Hematology, Ruijin Hospital North Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Su-Jiang Zhang
- Department of Hematology, Ruijin Hospital North Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China.,Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
22
|
Langabeer SE, Haslam K, Kelly J, Quinn J, Morrell R, Conneally E. Targeted next-generation sequencing identifies clinically relevant mutations in patients with chronic neutrophilic leukemia at diagnosis and blast crisis. Clin Transl Oncol 2017; 20:420-423. [PMID: 28762112 DOI: 10.1007/s12094-017-1722-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/24/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE Chronic neutrophilic leukemia is a rare form of myeloproliferative neoplasm characterized by mature neutrophil hyperleukocytosis. The majority of patients harbor somatic mutations of CSF3R gene and are potentially amenable to targeted therapy with JAK inhibitors. The incidence and clinical significance of additional mutations requires clarification. MATERIALS AND METHODS A next-generation sequencing approach for myeloid malignancy-associated mutations was applied to diagnostic and matched blast crisis samples from four chronic neutrophilic leukemia patients. RESULTS Next-generation sequencing confirmed the CSF3R T618I in all patients with identification of concurrent SRSF2, SETBP1, NRAS and CBL mutations at diagnosis. At blast crisis, clonal evolution was evidenced by an increased CSF3R T618I allele frequency and by loss or acquisition of CBL and NRAS mutations. CONCLUSION The diagnostic utility of a targeted next-generation sequencing approach was clearly demonstrated with the identification of additional mutations providing the potential for therapeutic stratification of chronic neutrophilic leukemia patients.
Collapse
Affiliation(s)
- S E Langabeer
- Central Pathology Laboratory, Cancer Molecular Diagnostics, St. James's Hospital, Dublin 8, Ireland.
| | - K Haslam
- Central Pathology Laboratory, Cancer Molecular Diagnostics, St. James's Hospital, Dublin 8, Ireland
| | - J Kelly
- Department of Clinical Genetics, Our Lady's Children's Hospital, Dublin, Ireland
| | - J Quinn
- Department of Haematology, Beaumont Hospital, Dublin, Ireland
| | - R Morrell
- Department of Haematology, Letterkenny University Hospital, Letterkenny, Ireland
| | - E Conneally
- Department of Haematology, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
23
|
The relative utilities of genome-wide, gene panel, and individual gene sequencing in clinical practice. Blood 2017; 130:433-439. [PMID: 28600338 DOI: 10.1182/blood-2017-03-734533] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022] Open
Abstract
Advances in technology that have transpired over the past 2 decades have enabled the analysis of cancer samples for genomic alterations to understand their biologic function and to translate that knowledge into clinical practice. With the power to analyze entire genomes in a clinically relevant time frame and with manageable costs comes the question of whether we ought to and when. This review focuses on the relative merits of 3 approaches to molecular diagnostics in hematologic malignancies: indication-specific single gene assays, gene panel assays that test for genes selected for their roles in cancer, and genome-wide assays that broadly analyze the tumor exomes or genomes. After addressing these in general terms, we review specific use cases in myeloid and lymphoid malignancies to highlight the utility of single gene testing and/or larger panels.
Collapse
|
24
|
Makishima H. Somatic SETBP1 mutations in myeloid neoplasms. Int J Hematol 2017; 105:732-742. [PMID: 28447248 DOI: 10.1007/s12185-017-2241-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023]
Abstract
SETBP1 is a SET-binding protein regulating self-renewal potential through HOXA-protein activation. Somatic SETBP1 mutations were identified by whole exome sequencing in several phenotypes of myelodysplastic/myeloproliferative neoplasms (MDS/MPN), including atypical chronic myeloid leukemia, chronic myelomonocytic leukemia, and juvenile myelomonocytic leukemia as well as in secondary acute myeloid leukemia (sAML). Surprisingly, its recurrent somatic activated mutations are located at the identical positions of germline mutations reported in congenital Schinzel-Giedion syndrome. In general, somatic SETBP1 mutations have a significant clinical impact on the outcome as poor prognostic factor, due to downstream HOXA-pathway as well as associated aggressive types of chromosomal defects (-7/del(7q) and i(17q)), which is consistent with wild-type SETBP1 activation in aggressive types of acute myeloid leukemia and leukemic evolution. Biologically, mutant SETBP1 attenuates RUNX1 and activates MYB. The studies of mouse models confirmed biological significance of SETBP1 mutations in myeloid leukemogenesis, particularly associated with ASXL1 mutations. SETBP1 is a major oncogene in myeloid neoplasms, which cooperates with various genetic events and causes distinct phenotypes of MDS/MPN and sAML.
Collapse
MESH Headings
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Chromosome Deletion
- Chromosomes, Human, Pair 7/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/metabolism
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/mortality
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Leukemia, Myelomonocytic, Chronic/mortality
- Leukemia, Myelomonocytic, Chronic/therapy
- Leukemia, Myelomonocytic, Juvenile
- Mice
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins c-myb/genetics
- Proto-Oncogene Proteins c-myb/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
Collapse
Affiliation(s)
- Hideki Makishima
- Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
25
|
Acuna-Hidalgo R, Deriziotis P, Steehouwer M, Gilissen C, Graham SA, van Dam S, Hoover-Fong J, Telegrafi AB, Destree A, Smigiel R, Lambie LA, Kayserili H, Altunoglu U, Lapi E, Uzielli ML, Aracena M, Nur BG, Mihci E, Moreira LMA, Borges Ferreira V, Horovitz DDG, da Rocha KM, Jezela-Stanek A, Brooks AS, Reutter H, Cohen JS, Fatemi A, Smitka M, Grebe TA, Di Donato N, Deshpande C, Vandersteen A, Marques Lourenço C, Dufke A, Rossier E, Andre G, Baumer A, Spencer C, McGaughran J, Franke L, Veltman JA, De Vries BBA, Schinzel A, Fisher SE, Hoischen A, van Bon BW. Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies. PLoS Genet 2017; 13:e1006683. [PMID: 28346496 PMCID: PMC5386295 DOI: 10.1371/journal.pgen.1006683] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/10/2017] [Accepted: 03/10/2017] [Indexed: 11/18/2022] Open
Abstract
Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Abnormalities, Multiple/pathology
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/genetics
- Child
- Child, Preschool
- Craniofacial Abnormalities/genetics
- Craniofacial Abnormalities/metabolism
- Craniofacial Abnormalities/pathology
- Female
- Gene Expression Profiling
- Genetic Association Studies
- Genetic Predisposition to Disease/genetics
- Germ-Line Mutation
- HEK293 Cells
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/metabolism
- Hand Deformities, Congenital/pathology
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/metabolism
- Hematologic Neoplasms/pathology
- Humans
- Infant
- Infant, Newborn
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Intellectual Disability/pathology
- Male
- Mutation
- Nails, Malformed/genetics
- Nails, Malformed/metabolism
- Nails, Malformed/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
Collapse
Affiliation(s)
- Rocio Acuna-Hidalgo
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pelagia Deriziotis
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Marloes Steehouwer
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sarah A. Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sipko van Dam
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Julie Hoover-Fong
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Anne Destree
- Institute of Pathology and Genetics (IPG), Gosselies, Belgium
| | - Robert Smigiel
- Department of Pediatrics and Rare Disorders, Medical University, Wroclaw, Poland
| | - Lindsday A. Lambie
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSOM), İstanbul, Turkey
| | - Umut Altunoglu
- Medical Genetics Department, İstanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - Elisabetta Lapi
- Medical Genetics Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | | | - Mariana Aracena
- División de Pediatría, Pontificia Universidad Católica de Chile and Unidad de Genética, Hospital Dr. Luis Calvo Mackenna, Santiago Chile
| | - Banu G. Nur
- Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Ercan Mihci
- Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Lilia M. A. Moreira
- Laboratory of Human Genetics, Biology Institute, Federal University of Bahia (UFBA), Bahia, Brazil
| | | | - Dafne D. G. Horovitz
- CERES-Genetica Reference Center and Studies in Medical Genetics and Instituto Fernandes Figueira / Fiocruz, Rio de Janeiro, Brazil
| | - Katia M. da Rocha
- Center for Human Genome Studies, Institute of Biosciences, USP, Sao Paulo, Brazil
| | | | - Alice S. Brooks
- Department of Clinical Genetics, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany and Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Julie S. Cohen
- Division of Neurogenetics, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Ali Fatemi
- Division of Neurogenetics, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Martin Smitka
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Theresa A. Grebe
- Division of Genetics & Metabolism, Phoenix Children’s Hospital, Phoenix, Arizona, United States of America
| | | | - Charu Deshpande
- Department of Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Anthony Vandersteen
- North West Thames Regional Genetics Unit, Kennedy Galton Centre, North West London Hospitals NHS Trust, Northwick Park & St Marks Hospital, Harrow, Middlesex, United Kingdom
| | - Charles Marques Lourenço
- Neurogenetics Unit, Department of Medical Genetics School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Eva Rossier
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Gwenaelle Andre
- Unité de foetopathologie, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Careni Spencer
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland and School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Joris A. Veltman
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bert B. A. De Vries
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Albert Schinzel
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail: (BWvB); (AH)
| | - Bregje W. van Bon
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail: (BWvB); (AH)
| |
Collapse
|
26
|
Abstract
Chronic neutrophilic leukemia (CNL) is a distinct myeloproliferative neoplasm with a high prevalence (>80%) of mutations in the colony-stimulating factor 3 receptor (CSF3R). These mutations activate the receptor, leading to the proliferation of neutrophils that are a hallmark of CNL. Recently, the World Health Organization guidelines have been updated to include CSF3R mutations as part of the diagnostic criteria for CNL. Because of the high prevalence of CSF3R mutations in CNL, it is tempting to think of this disease as being solely driven by this genetic lesion. However, recent additional genomic characterization demonstrates that CNL has much in common with other chronic myeloid malignancies at the genetic level, such as the clinically related diagnosis atypical chronic myeloid leukemia. These commonalities include mutations in SETBP1, spliceosome proteins (SRSF2, U2AF1), and epigenetic modifiers (TET2, ASXL1). Some of these same mutations also have been characterized as frequent events in clonal hematopoiesis of indeterminate potential, suggesting a more complex disease evolution than was previously understood and raising the possibility that an age-related clonal process of preleukemic cells could precede the development of CNL. The order of acquisition of CSF3R mutations relative to mutations in SETBP1, epigenetic modifiers, or the spliceosome has been determined only in isolated case reports; thus, further work is needed to understand the impact of mutation chronology on the clonal evolution and progression of CNL. Understanding the complete landscape and chronology of genomic events in CNL will help in the development of improved therapeutic strategies for this patient population.
Collapse
|
27
|
Wang SA, Tam W, Tsai AG, Arber DA, Hasserjian RP, Geyer JT, George TI, Czuchlewski DR, Foucar K, Rogers HJ, Hsi ED, Bryan Rea B, Bagg A, Dal Cin P, Zhao C, Kelley TW, Verstovsek S, Bueso-Ramos C, Orazi A. Targeted next-generation sequencing identifies a subset of idiopathic hypereosinophilic syndrome with features similar to chronic eosinophilic leukemia, not otherwise specified. Mod Pathol 2016; 29:854-64. [PMID: 27174585 DOI: 10.1038/modpathol.2016.75] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/07/2023]
Abstract
The distinction between chronic eosinophilic leukemia, not otherwise specified and idiopathic hypereosinophilic syndrome largely relies on clonality assessment. Prior to the advent of next-generation sequencing, clonality was usually determined by cytogenetic analysis. We applied targeted next-generation sequencing panels designed for myeloid neoplasms to bone marrow specimens from a cohort of idiopathic hypereosinophilic syndrome patients (n=51), and assessed the significance of mutations in conjunction with clinicopathological features. The findings were further compared with those of 17 chronic eosinophilic leukemia, not otherwise specified patients defined by their abnormal cytogenetics and/or increased blasts. Mutations were detected in 14/51 idiopathic hypereosinophilic syndrome patients (idiopathic hypereosinophilic syndrome/next-generation sequencing-positive) (28%), involving single gene in 7 and ≥2 in 7 patients. The more frequently mutated genes included ASXL1 (43%), TET2 (36%), EZH2 (29%), SETBP1 (22%), CBL (14%), and NOTCH1 (14%). Idiopathic hypereosinophilic syndrome/next-generation sequencing-positive patients showed a number of clinical features and bone marrow findings resembling chronic eosinophilic leukemia, not otherwise specified. Chronic eosinophilic leukemia, not otherwise specified patients showed a disease-specific survival of 14.4 months, markedly inferior to idiopathic hypereosinophilic syndrome/next-generation sequencing-negative (P<0.001), but not significantly different from idiopathic hypereosinophilic syndrome/next-generation sequencing-positive (P=0.117). These data suggest that targeted next-generation sequencing helps to establish clonality in a subset of patients with hypereosinophilia that would otherwise be classified as idiopathic hypereosinophilic syndrome. In conjunction with other diagnostic features, mutation data can be used to establish a diagnosis of chronic eosinophilic leukemia, not otherwise specified in patients presenting with hypereosinophilia.
Collapse
Affiliation(s)
- Sa A Wang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Wayne Tam
- Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| | - Albert G Tsai
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Daniel A Arber
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Julia T Geyer
- Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| | - Tracy I George
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | | | - Kathryn Foucar
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Heesun J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Eric D Hsi
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - B Bryan Rea
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women Hospital, Boston, MA, USA
| | - Chong Zhao
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Todd W Kelley
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Attilio Orazi
- Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
28
|
Agarwal A, Morrone K, Bartenstein M, Zhao ZJ, Verma A, Goel S. Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem Cell Investig 2016; 3:5. [PMID: 27358897 DOI: 10.3978/j.issn.2306-9759.2016.02.03] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Primary myelofibrosis (PMF) is a Philadelphia chromosome negative myeloproliferative neoplasm (MPN) with adverse prognosis and is associated with bone marrow fibrosis and extramedullary hematopoiesis. Even though the discovery of the Janus kinase 2 (JAK2), thrombopoietin receptor (MPL) and calreticulin (CALR) mutations have brought new insights into the complex pathogenesis of MPNs, the etiology of fibrosis is not well understood. Furthermore, since JAK2 inhibitors do not lead to reversal of fibrosis further understanding of the biology of fibrotic process is needed for future therapeutic discovery. Transforming growth factor beta (TGF-β) is implicated as an important cytokine in pathogenesis of bone marrow fibrosis. Various mouse models have been developed and have established the role of TGF-β in the pathogenesis of fibrosis. Understanding the molecular alterations that lead to TGF-β mediated effects on bone marrow microenvironment can uncover newer therapeutic targets against myelofibrosis. Inhibition of the TGF-β pathway in conjunction with other therapies might prove useful in the reversal of bone marrow fibrosis in PMF.
Collapse
Affiliation(s)
- Archana Agarwal
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kerry Morrone
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matthias Bartenstein
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zhizhuang Joe Zhao
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amit Verma
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Swati Goel
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Chronic neutrophilic leukemia (CNL) is a rare BCR-ABL1-negative myeloid malignancy that is characterized by mature granulocytosis without dysgranulopoiesis. Differential diagnosis of CNL includes reactive or secondary granulocytosis and other myeloid neoplasms, such as atypical chronic myeloid leukemia (aCML) and chronic myelomonocytic leukemia (CMML). Herein, we focus on recently described mutations in CNL and their impact on diagnosis, prognosis and treatment. RECENT FINDINGS In 2013, membrane-proximal CSF3R mutations, most frequently CSF3RT618I, were described in CNL and aCML. Subsequent studies confirmed the presence of such mutations in nearly all patients with CNL but not in aCML. Furthermore, the majority of the patients with CSF3R-mutated CNL also expressed other mutations, such as SETBP1 and ASXL1, which might be prognostically detrimental. Laboratory studies revealed that CSF3RT618I induced JAK inhibitor-sensitive activation of JAK-STAT and CNL-like disease in mice. Case reports have indicated palliative but not disease-modifying activity of JAK inhibitor therapy in CSF3R-mutated CNL. SUMMARY CNL is now a morphologically and molecularly defined myeloid malignancy, and no longer a diagnosis of exclusion. The identification of CNL-specific molecular markers provides a much needed pathogenetic insight and also offers the opportunity to revise current diagnostic criteria and identify prognostic biomarkers and potential drug targets.
Collapse
|
30
|
Wang J, Hao J, He N, Ji C, Ma D. The Mutation Profile of Calreticulin in Patients with Myeloproliferative Neoplasms and Acute Leukemia. Turk J Haematol 2015; 33:180-6. [PMID: 26377485 PMCID: PMC5111462 DOI: 10.4274/tjh.2015.0220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE Calreticulin (CALR) plays important roles in cell proliferation, apoptosis, and immune responses. CALR mutations were described recently in Janus kinase 2 gene (JAK2)-negative or MPL-negative primary myelofibrosis (PMF) and essential thrombocythemia (ET) patients. CALR trails JAK2 as the second most mutated gene in myeloproliferative neoplasms (MPNs). However, little is known about CALR mutation in Chinese patients with leukemia. In the present study, a cohort of 305 Chinese patients with hematopoietic neoplasms was screened for CALR mutations, with the aim of uncovering the frequency of CALR mutations in leukemia and MPNs. MATERIALS AND METHODS Polymerase chain reaction and direct sequencing were performed to analyze mutations of CALR in 305 patients with hematopoietic malignancies, including 135 acute myeloid leukemia patients, 57 acute lymphoblastic leukemia patients, and 113 MPN patients. RESULTS CALR mutations were found in 10.6% (12 of 113) of samples from patients with MPNs. CALR mutations were determined in 11.3% (6 of 53), 21.7% (5 of 23), and 9.1% (1/11) of patients with ET, PMF, and unclassifiable MPN, respectively. CONCLUSION We showed that MPN patients carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels compared to those with mutated JAK2. However, all of the leukemia patients had negative results for CALR mutations.
Collapse
Affiliation(s)
| | | | | | | | - Daoxin Ma
- Qilu Hospital of Shandong University, Department of Hematology, Shandong, China, Phone: +86 531 82169887, E-mail:
| |
Collapse
|
31
|
Bain BJ, Ahmad S. Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions. Br J Haematol 2015. [PMID: 26218186 DOI: 10.1111/bjh.13600] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many cases reported as 'chronic neutrophilic leukaemia' have had an associated plasma cell neoplasm. Recent evidence suggests that the great majority of such cases represent a neutrophilic leukaemoid reaction to the underlying multiple myeloma or monoclonal gammopathy of undetermined significance. We have analysed all accessible reported cases to clarify the likely diagnosis and to ascertain whether toxic granulation, Döhle bodies and an increased neutrophil alkaline phosphatase score were useful in making a distinction between chronic neutrophilic leukaemia and a neutrophilic leukaemoid reaction. We established that all these changes occur in both conditions. Toxic granulation and Döhle bodies are more consistently present in leukaemoid reactions but also occur quite frequently in chronic neutrophilic leukaemia. The neutrophil alkaline phosphatase score is increased in both conditions and is of no value in making a distinction.
Collapse
Affiliation(s)
- Barbara J Bain
- Department of Haematology, Imperial College Healthcare NHS Trust and Centre for Haematology, St Mary's Hospital campus of Imperial College London, St Mary's Hospital, London, UK
| | - Shahzaib Ahmad
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, St Batholomew's Hospital, London, UK
| |
Collapse
|
32
|
Pandey R, Kapur R. Targeting phosphatidylinositol-3-kinase pathway for the treatment of Philadelphia-negative myeloproliferative neoplasms. Mol Cancer 2015; 14:118. [PMID: 26062813 PMCID: PMC4464249 DOI: 10.1186/s12943-015-0388-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/18/2015] [Indexed: 12/24/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are a diverse group of chronic hematological disorders that involve unregulated clonal proliferation of white blood cells. Sevearl of them are associated with mutations in receptor tyrosine kinases or cytokine receptor associated tyrosine kinases rendering them independent of cytokine-mediated regulation. Classically they have been broadly divided into BCR-ABL1 fusion + ve (Ph + ve) or -ve (Ph-ve) MPNs. Identification of BCR-ABL1 tyrosine kinase as a driver of chronic myeloid leukemia (CML) and successful application of small molecule inhibitors of the tyrosine kinases in the clinic have triggered the search for kinase dependent pathways in other Ph-ve MPNs. In the past few years, identification of mutations in JAK2 associated with a majority of MPNs raised the hopes for similar success with specific targeting of JAK2. However, targeting JAK2 kinase activity has met with limited success. Subsequently, mutations in genes other than JAK2 have been identified. These mutations specifically associate with certain MPNs and can drive cytokine independent growth. Therefore, targeting alternate molecules and pathways may be more successful in management of MPNs. Among other pathways, phosphatidylinositol -3 kinase (PI3K) has emerged as a promising target as different cell surface receptor induced signaling pathways converge on the PI3K signaling axis to regulate cell metabolism, growth, proliferation, and survival. Herein, we will review the clinically relevant inhibitors of the PI3K pathway that have been evaluated or hold promise for the treatment of Ph-ve MPNs.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
33
|
Cui Y, Tong H, Du X, Li B, Gale RP, Qin T, Liu J, Xu Z, Zhang Y, Huang G, Jin J, Fang L, Zhang H, Pan L, Hu N, Qu S, Xiao Z. Impact of TET2, SRSF2, ASXL1 and SETBP1 mutations on survival of patients with chronic myelomonocytic leukemia. Exp Hematol Oncol 2015; 4:14. [PMID: 26019984 PMCID: PMC4445804 DOI: 10.1186/s40164-015-0009-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic myelomonocytic leukemia (CMML) is a myeloid neoplasm classified in the myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) category. Molecular abnormalities are reported in about 90 % of patients with CMML. ASXL1 and SETBP1 mutations, but not TET2 or SFRS2 mutations are reported to be associated with prognosis. METHODS We studied frequency of TET2, SRSF2, ASXL1 and SETBP1 mutations in 145 patients with CMML using Sanger sequencing, and determined the prognostic factors for OS. We also identified the predictive value of ASXL1 mutations (frameshift and nonsense mutations) through comparing the Mayo Prognostic Model with the Mayo Molecular Model. RESULTS Forty-seven (32 %) had a mutation in TET2, 42 (29 %), a mutation in SRSF2, 65 (45 %), a mutation (nonsense and frame-shift) in ASXL1 and 26 (18 %), a mutation in SETBP1. Significant variables in multivariable analysis of survival included ASXL1 (HR = 1.99 [1.20-3.28]; P = 0.007), hemoglobin <100 g/L (HR = 2.42 [1.40-4.19]; P = 0.002) and blood immature myeloid cells (IMCs) (HR = 2.08 [1.25-3.46]; P = 0.005). When our patients were analyzed using the Mayo Prognostic Model median OS were not reached, 26 months and 15 months (P = 0.014). An analysis using the Mayo Molecular Model identified 4 cohorts with median OS of not reached, 70 months, 26 months and 11 months (P < 0.001). Data fitting using our patients suggest the Molecular Mayo Model has significantly higher survival predictive power compared with Mayo Prognostic Model (P < 0.001, -2 log-likelihood ratios of 538.070 and 552.260). CONCLUSIONS There were high frequencies of mutations in TET2, SRSF2, ASXL1 and SETBP1 in patients with CMML. With the addition of ASXL1 frameshift and nonsense mutations, the Mayo Molecular Model fitted better than Mayo Prognostic Model of our patients.
Collapse
Affiliation(s)
- Yajuan Cui
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, ZheJiang University College of Medicine, Zhejiang, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangzhou, China
| | - Bing Li
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Robert Peter Gale
- Hematology Research Center, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, UK
| | - Tiejun Qin
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China
| | - Jinqin Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Zefeng Xu
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Yue Zhang
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Gang Huang
- Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, ZheJiang University College of Medicine, Zhejiang, China
| | - Liwei Fang
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China
| | - Hongli Zhang
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China
| | - Lijuan Pan
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China
| | - Naibo Hu
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China
| | - Shiqiang Qu
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China
| | - Zhijian Xiao
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| |
Collapse
|
34
|
Dao KHT, Tyner JW. What's different about atypical CML and chronic neutrophilic leukemia? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2015; 2015:264-71. [PMID: 26637732 PMCID: PMC5266507 DOI: 10.1182/asheducation-2015.1.264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Atypical chronic myeloid leukemia (aCML) and chronic neutrophilic leukemia (CNL) are rare myeloid neoplasms defined largely by morphologic criteria. The discovery of CSF3R mutations in aCML and CNL have prompted a more comprehensive genetic profiling of these disorders. These studies have revealed aCML to be a genetically more heterogeneous disease than CNL, however, several groups have reported that SETBP1 and ASXL1 mutations occur at a high frequency and carry prognostic value in both diseases. We also report a novel finding-our study reveals a high frequency of U2AF1 mutations at codon Q157 associated with CSF3R mutant myeloid neoplasms. Collectively, these findings will refine the WHO diagnostic criteria of aCML and CNL and help us understand the genetic lesions and dysregulated signaling pathways contributing to disease development. Novel therapies that emerge from these genetic findings will need to be investigated in the setting of a clinical trial to determine the safety and efficacy of targeting various oncogenic drivers, such as JAK1/2 inhibition in CSF3R-T618I-positive aCML and CNL. In summary, recent advances in the genetic characterization of CNL and aCML are instrumental toward the development of new lines of therapy for these rare leukemias that lack an established standard of care and are historically associated with a poor prognosis.
Collapse
MESH Headings
- Carrier Proteins/genetics
- Codon
- Hematology/methods
- Hematology/standards
- Humans
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Neutrophilic, Chronic/diagnosis
- Leukemia, Neutrophilic, Chronic/genetics
- Medical Oncology/methods
- Medical Oncology/standards
- Mutation
- Nuclear Proteins/genetics
- Prognosis
- Receptors, Colony-Stimulating Factor/genetics
- Repressor Proteins/genetics
- Ribonucleoproteins/genetics
- Signal Transduction
- Splicing Factor U2AF
Collapse
Affiliation(s)
- Kim-Hien T Dao
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR; and
| | - Jeffrey W Tyner
- Knight Cancer Institute, Department of Cell, Development and Cancer Biology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
35
|
Li B, Gale RP, Xiao Z. Molecular genetics of chronic neutrophilic leukemia, chronic myelomonocytic leukemia and atypical chronic myeloid leukemia. J Hematol Oncol 2014; 7:93. [PMID: 25498990 PMCID: PMC4266232 DOI: 10.1186/s13045-014-0093-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
According to the 2008 World Health Organization classification, chronic neutrophilic leukemia, chronic myelomonocytic leukemia and atypical chronic myeloid leukemia are rare diseases. The remarkable progress in our understanding of the molecular genetics of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms has made it clear that there are some specific genetic abnormalities in these 3 rare diseases. At the same time, there is considerable overlap among these disorders at the molecular level. The various combinations of genetic abnormalities indicate a multi-step pathogenesis, which likely contributes to the marked clinical heterogeneity of these disorders. This review focuses on the current knowledge and challenges related to the molecular pathogenesis of chronic neutrophilic leukemia, chronic myelomonocytic leukemia and atypical chronic myeloid leukemia and relationships between molecular findings, clinical features and prognosis.
Collapse
Affiliation(s)
| | | | - Zhijian Xiao
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China.
| |
Collapse
|