1
|
Szymura SJ, Wang L, Zhang T, Cha SC, Song J, Dong Z, Anderson A, Oh E, Lee V, Wang Z, Parshottam S, Rao S, Olsem JB, Crumpton BN, Lee HC, Manasanch EE, Neelapu S, Kwak LW, Thomas SK. Personalized neoantigen vaccines as early intervention in untreated patients with lymphoplasmacytic lymphoma: a non-randomized phase 1 trial. Nat Commun 2024; 15:6874. [PMID: 39128904 PMCID: PMC11317512 DOI: 10.1038/s41467-024-50880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Lymphoplasmacytic lymphoma (LPL) is an incurable low-grade lymphoma with no standard therapy. Nine asymptomatic patients treated with a first-in-human, neoantigen DNA vaccine experienced no dose limiting toxicities (primary endpoint, NCT01209871). All patients achieve stable disease or better, with one minor response, and median time to progression of 72+ months. Post-vaccine single-cell transcriptomics reveal dichotomous antitumor responses, with reduced tumor B-cells (tracked by unique B cell receptor) and their survival pathways, but no change in clonal plasma cells. Downregulation of human leukocyte antigen (HLA) class II molecules and paradoxical upregulation of insulin-like growth factor (IGF) by the latter suggest resistance mechanisms. Vaccine therapy activates and expands bone marrow T-cell clonotypes, and functional neoantigen-specific responses (secondary endpoint), but not co-inhibitory pathways or Treg, and reduces protumoral signaling by myeloid cells, suggesting favorable perturbation of the tumor immune microenvironment. Future strategies may require combinations of vaccines with agents targeting plasma cell subpopulations, or blockade of IGF-1 signaling or myeloid cell checkpoints.
Collapse
Affiliation(s)
- Szymon J Szymura
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Lin Wang
- Department of Computational and Quantitative Medicine, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Tiantian Zhang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Soung-Chul Cha
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Joo Song
- Division of Hematopathology, Department of Pathology, City of Hope, Duarte, CA, USA
| | - Zhenyuan Dong
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron Anderson
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Elizabeth Oh
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Vincent Lee
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Zhe Wang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Sapna Parshottam
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sheetal Rao
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jasper B Olsem
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Brandon N Crumpton
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Elisabet E Manasanch
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Larry W Kwak
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA.
| | - Sheeba K Thomas
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Kwak L, Szymura S, Wang L, Zhang T, Cha SC, Dong Z, Anderson A, Oh E, Lee V, Wang Z, Parshottham S, Rao S, Olsem J, Crumpton B, Lee H, Manasanch E, Neelapu S, Thomas S. First-in-human clinical trial of personalized neoantigen vaccines as early intervention in untreated patients with lymphoplasmacytic lymphoma. RESEARCH SQUARE 2023:rs.3.rs-3315017. [PMID: 37790486 PMCID: PMC10543432 DOI: 10.21203/rs.3.rs-3315017/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Lymphoplasmacytic lymphoma (LPL) is an incurable low-grade B-cell lymphoma of the bone marrow. Despite a cumulative risk of progression, there is no approved therapy for patients in the asymptomatic phase. We conducted a first-in-human clinical trial of a novel therapeutic DNA idiotype neoantigen vaccine in nine patients with asymptomatic LPL. Treatment was well tolerated with no dose limiting toxicities. One patient achieved a minor response, and all remaining patients experienced stable disease, with median time to disease progression of 61+ months. Direct interrogation of the tumor microenvironment by single-cell transcriptome analysis revealed an unexpected dichotomous antitumor response, with significantly reduced numbers of clonal tumor mature B-cells, tracked by their unique BCR, and downregulation of genes involved in signaling pathways critical for B-cell survival post-vaccine, but no change in clonal plasma cell subpopulations. Downregulation of HLA class II molecule expression suggested intrinsic resistance by tumor plasma cell subpopulations and cell-cell interaction analyses predicted paradoxical upregulation of IGF signaling post vaccine by plasma cell, but not mature B-cell subpopulations, suggesting a potential mechanism of acquired resistance. Vaccine therapy induced dynamic changes in bone marrow T-cells, including upregulation of signaling pathways involved in T-cell activation, expansion of T-cell clonotypes, increased T-cell clonal diversity, and functional tumor antigen-specific cytokine production, with little change in co-inhibitory pathways or Treg. Vaccine therapy also globally altered cell-cell communication networks across various bone marrow cell types and was associated with reduction of protumoral signaling by myeloid cells, principally non-classical monocytes. These results suggest that this prototype neoantigen vaccine favorably perturbed the tumor immune microenvironment, resulting in reduction of clonal tumor mature B-cell, but not plasma cell subpopulations. Future strategies to improve clinical efficacy may require combinations of neoantigen vaccines with agents which specifically target LPL plasma cell subpopulations, or enable blockade of IGF-1 signaling or myeloid cell checkpoints.
Collapse
Affiliation(s)
| | - Szymon Szymura
- City of Hope, Beckman Research Institute, Toni Stephenson Lymphoma Center
| | - Lin Wang
- City of Hope, Beckman Research Institute, Department of Computational and Quantitative Medicine
| | - Tiantian Zhang
- City of Hope, Beckman Research Institute, Toni Stephenson Lymphoma Center
| | - Soung-Chul Cha
- City of Hope, Beckman Research Institute, Toni Stephenson Lymphoma Center
| | | | | | | | | | - Zhe Wang
- City of Hope National Medical Center
| | | | | | | | | | - Hans Lee
- The University of Texas MD Anderson Cancer Center
| | | | | | | |
Collapse
|
3
|
Pokorny R, Stenehjem DD, Gilreath JA. Impact of metformin on tyrosine kinase inhibitor response in chronic myeloid leukemia. J Oncol Pharm Pract 2022; 28:916-923. [PMID: 35132891 PMCID: PMC9047107 DOI: 10.1177/10781552221077254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective Oral tyrosine kinase inhibitors (TKIs) are first line therapy for chronic myeloid leukemia (CML). A complete cytogenetic response (CCyR) correlates with increased overall survival, however only 66%–88% of patients achieve CCyR after one year of TKI treatment. Because TKI therapy alone cannot eliminate CML stem cells, strategies aimed at achieving faster and deeper responses are needed to improve long-term survival. Metformin is a widely prescribed glucose-lowering agent for patients with diabetes and in preclinical studies, has been shown to suppress cell viability, induce apoptosis, and downregulate the mTORC1 signaling pathway in imatinib resistant CML cell lines (K562R). This study aims to investigate the utility of metformin added to TKI therapy in patients with CML. Data Sources An observational study at an academic medical center (Salt Lake City, UT) was performed for adults with newly diagnosed, chronic-phase CML to evaluate attainment of CCyR from TKI therapy with or without concomitant metformin use. Descriptive analyses were used to describe baseline characteristics and attainment of response to TKI therapy. Data Summary Fifty-nine patients were evaluated. One hundred percent (5 of 5) in the metformin group and 73.6% (39 of 54) in the non-metformin group achieved CCyR. Approximately 20% of patients in both groups relapsed (defined by a loss of CCyR during study) after a median 34.5 months of follow-up. Conclusions Future research is warranted to validate these findings and determine the utility of metformin added to TKI therapy.
Collapse
Affiliation(s)
- Rebecca Pokorny
- Department of Pharmacy, 20270Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David D Stenehjem
- Department of Pharmacy Practice and Pharmaceutical Sciences, 14713University of Minnesota, College of Pharmacy, Duluth, MN, USA
| | - Jeffrey A Gilreath
- Department of Pharmacotherapy, College of Pharmacy and 20270Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Liao F, Chen Y, Wu Q, Wen J, Chen X, Wang W, Xu D, Liu M. Selective elimination of CML stem/progenitor cells by picropodophyllin in vitro and in vivo is associated with p53 activation. Biochem Biophys Res Commun 2021; 579:1-7. [PMID: 34571387 DOI: 10.1016/j.bbrc.2021.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
Chronic myeloid leukemia (CML) is a hematologic malignancy originating from BCR-ABL oncogene-transformed hematopoietic stem cells (HSCs) known as leukemia stem cells (LSCs). Therefore, targeting LSCs is of primary importance to eradicate CML. The present study demonstrates that picropodophyllin (PPP) effectively induces apoptosis and inhibits colony formation in CML stem/progenitor cells as well as quiescent CML progenitors resistant to imatinib therapy, while sparing normal hematopoietic cells in vitro. Administration of PPP in vivo markedly diminishes CML stem/progenitor cells in a transgenic mouse model of CML by inhibition of cell proliferation and enhancement of apoptosis in LSK cells, and significantly improves survival of CML mice. Furthermore, PPP treatment preferentially leads to transcriptional activation of p53 in CML but not normal CD34+ cells, upregulation of p53 protein in LSCs-enriched Sca-1+ cells from CML mice, and increased phosphorylation of p53 and upregulation of Bax protein in Ku812 cells. These results suggest that the inhibitory effects of PPP on CML stem/progenitor cells are associated with selective activation of p53 pathway and propose that PPP is a potent agent that selectively targets CML LSCs, and may be of value in the CML therapy.
Collapse
Affiliation(s)
- Fenfang Liao
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Yongheng Chen
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Qingqing Wu
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Jiaqi Wen
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Xiangjie Chen
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Weizhang Wang
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Manyu Liu
- School of Food Sciences, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Scopim-Ribeiro R, Machado-Neto JA, Eide CA, Coelho-Silva JL, Fenerich BA, Fernandes JC, Scheucher PS, Savage Stevens SL, de Melo Campos P, Olalla Saad ST, de Carvalho Palma L, de Figueiredo-Pontes LL, Simões BP, Rego EM, Tognon CE, Druker BJ, Traina F. NT157, an IGF1R-IRS1/2 inhibitor, exhibits antineoplastic effects in pre-clinical models of chronic myeloid leukemia. Invest New Drugs 2021; 39:736-746. [PMID: 33403501 DOI: 10.1007/s10637-020-01028-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022]
Abstract
Chronic myeloid leukemia (CML) is successfully treated with BCR-ABL1 tyrosine kinase inhibitors, but a significant percentage of patients develop resistance. Insulin receptor substrate 1 (IRS1) has been shown to constitutively associate with BCR-ABL1, and IRS1-specific silencing leads to antineoplastic effects in CML cell lines. Here, we characterized the efficacy of NT157, a pharmacological inhibitor of IGF1R-IRS1/2, in CML cells and observed significantly reduced cell viability and proliferation, accompanied by induction of apoptosis. In human K562 cells and in murine Ba/F3 cells, engineered to express either wild-type BCR-ABL1 or the imatinib-resistant BCR-ABL1T315I mutant, NT157 inhibited BCR-ABL1, IGF1R, IRS1/2, PI3K/AKT/mTOR, and STAT3/5 signaling, increased CDKN1A, FOS and JUN tumor suppressor gene expression, and reduced MYC and BCL2 oncogenes. NT157 significantly reduced colony formation of human primary CML cells with minimal effect on normal hematopoietic cells. Exposure of primary CML cells harboring BCR-ABL1T315I to NT157 resulted in increased apoptosis, reduced cell proliferation and decreased phospho-CRKL levels. In conclusion, NT157 has antineoplastic effects on BCR-ABL1 leukemogenesis, independent of T315I mutational status.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Gene Expression Regulation, Neoplastic
- Humans
- Imatinib Mesylate/pharmacology
- Insulin Receptor Substrate Proteins/antagonists & inhibitors
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Mice
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrogallol/analogs & derivatives
- Pyrogallol/pharmacology
- Pyrogallol/therapeutic use
- Receptor, IGF Type 1/antagonists & inhibitors
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
Collapse
Affiliation(s)
- Renata Scopim-Ribeiro
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - João Agostinho Machado-Neto
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Juan Luiz Coelho-Silva
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Bruna Alves Fenerich
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Jaqueline Cristina Fernandes
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Priscila Santos Scheucher
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | | | - Paula de Melo Campos
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro UNICAMP, Campinas, São Paulo, Brazil
| | - Sara T Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro UNICAMP, Campinas, São Paulo, Brazil
| | - Leonardo de Carvalho Palma
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Lorena Lobo de Figueiredo-Pontes
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Belinda Pinto Simões
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Magalhães Rego
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
- Hematology Division, LIM31, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Fabiola Traina
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
6
|
Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 2020; 13:64. [PMID: 32493414 PMCID: PMC7268628 DOI: 10.1186/s13045-020-00904-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factors (IGFs) play important roles in mammalian growth, development, aging, and diseases. Aberrant IGFs signaling may lead to malignant transformation and tumor progression, thus providing the rationale for targeting IGF axis in cancer. However, clinical trials of the type I IGF receptor (IGF-IR)-targeted agents have been largely disappointing. Accumulating evidence demonstrates that the IGF axis not only promotes tumorigenesis, but also confers resistance to standard treatments. Furthermore, there are diverse pathways leading to the resistance to IGF-IR-targeted therapy. Recent studies characterizing the complex IGFs signaling in cancer have raised hope to refine the strategies for targeting the IGF axis. This review highlights the biological activities of IGF-IR signaling in cancer and the contribution of IGF-IR to cytotoxic, endocrine, and molecular targeted therapies resistance. Moreover, we update the diverse mechanisms underlying resistance to IGF-IR-targeted agents and discuss the strategies for future development of the IGF axis-targeted agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yin
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Barnes EJ, Leonard J, Medeiros BC, Druker BJ, Tognon CE. Functional characterization of two rare BCR-FGFR1 + leukemias. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004838. [PMID: 31980503 PMCID: PMC7133745 DOI: 10.1101/mcs.a004838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
8p11 myeloproliferative syndrome (EMS) represents a unique World Health Organization (WHO)-classified hematologic malignancy defined by translocations of the FGFR1 receptor. The syndrome is a myeloproliferative neoplasm characterized by eosinophilia and lymphadenopathy, with risk of progression to either acute myeloid leukemia (AML) or T- or B-lymphoblastic lymphoma/leukemia. Within the EMS subtype, translocations between breakpoint cluster region (BCR) and fibroblast growth factor receptor 1 (FGFR1) have been shown to produce a dominant fusion protein that is notoriously resistant to tyrosine kinase inhibitors (TKIs). Here, we report two cases of BCR–FGFR1+ EMS identified via RNA sequencing (RNA-seq) and confirmed by fluorescence in situ hybridization (FISH). Sanger sequencing revealed that both cases harbored the exact same breakpoint. In the first case, the patient presented with AML-like disease, and in the second, the patient progressed to B-cell acute lymphoblastic leukemia (B-ALL). Additionally, we observed that that primary leukemia cells from Case 1 demonstrated sensitivity to the tyrosine kinase inhibitors ponatinib and dovitinib that can target FGFR1 kinase activity, whereas primary cells from Case 2 were resistant to both drugs. Taken together, these results suggest that some but not all BCR–FGFR1 fusion positive leukemias may respond to TKIs that target FGFR1 kinase activity.
Collapse
Affiliation(s)
- Evan J Barnes
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Jessica Leonard
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Bruno C Medeiros
- Department of Medicine-Hematology, Stanford University, Stanford, California 94305, USA
| | - Brian J Druker
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA.,Howard Hughes Medical Institute, Portland, Oregon 97239, USA
| | - Cristina E Tognon
- Department of Medicine-Hematology, Stanford University, Stanford, California 94305, USA.,Howard Hughes Medical Institute, Portland, Oregon 97239, USA
| |
Collapse
|
8
|
Evaluation of Insulin-mediated Regulation of AKT Signaling in Childhood Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2019; 41:96-104. [PMID: 30688831 DOI: 10.1097/mph.0000000000001425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Hyperglycemia increases the risk of early recurrence and high mortality in some adult blood cancers. In response to increased glucose levels, insulin is secreted, and several studies have shown that insulin-induced AKT signaling can regulate tumor cell proliferation and apoptosis. The AKT pathway is aberrantly activated in adult acute lymphoblastic leukemia (ALL), but the mechanisms underlying this activation and its impact in pediatric patients with ALL are unclear. MATERIALS AND METHODS We evaluated the insulin-induced chemoresistance and AKT pathway activation by measuring cell proliferation, apoptosis, and other parameters in ALL cell lines (Jurkat and Reh cells), as well as in primary pediatric leukemic cell samples, after culture with insulin, the chemotherapeutic drugs daunorubicin (DNR), vincristine (VCR), and L-asparaginase (L-Asp), or anti-insulin-like growth factor-1 receptor (IGF-1R) monoclonal antibody. RESULTS DNR, VCR, and L-Asp-induced toxicity in Jurkat and Reh cells was reduced in the presence of insulin. DNR promoted cell proliferation, whereas DNR, VCR, and L-Asp all reduced apoptosis in both cell lines cotreated with insulin compared with that in cell lines treated with chemotherapeutics alone (P<0.05). Furthermore, addition of an anti-IGF-1R monoclonal antibody promoted apoptosis, downregulated IGF-1R expression, and decreased the phosphorylation of AKT, P70S6K, and mTOR intracellular signaling pathway proteins in both cell lines, as well as in primary cultures (P<0.05). CONCLUSIONS Our results suggest that insulin-induced chemoresistance and activation of the AKT signaling pathway in pediatric ALL cells.
Collapse
|
9
|
Chen J, Li C, Zhan R, Yin Y. SPG6 supports development of acute myeloid leukemia by regulating BMPR2-Smad-Bcl-2/Bcl-xl signaling. Biochem Biophys Res Commun 2018; 501:220-225. [DOI: 10.1016/j.bbrc.2018.04.220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 01/28/2023]
|
10
|
Kang X, Cui C, Wang C, Wu G, Chen H, Lu Z, Chen X, Wang L, Huang J, Geng H, Zhao M, Chen Z, Müschen M, Wang HY, Zhang CC. CAMKs support development of acute myeloid leukemia. J Hematol Oncol 2018; 11:30. [PMID: 29482582 PMCID: PMC5828341 DOI: 10.1186/s13045-018-0574-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/12/2018] [Indexed: 01/19/2023] Open
Abstract
Background We recently identified the human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse ortholog-paired Ig-like receptor (PirB) as receptors for several angiopoietin-like proteins (Angptls). We also demonstrated that PirB is important for the development of acute myeloid leukemia (AML), but exactly how an inhibitory receptor such as PirB can support cancer development is intriguing. Results Here, we showed that the activation of Ca (2+)/calmodulin-dependent protein kinases (CAMKs) is coupled with PirB signaling in AML cells. High expression of CAMKs is associated with a poor overall survival probability in patients with AML. Knockdown of CAMKI or CAMKIV decreased human acute leukemia development in vitro and in vivo. Mouse AML cells that are defective in PirB signaling had decreased activation of CAMKs, and the forced expression of CAMK partially rescued the PirB-defective phenotype in the MLL-AF9 AML mouse model. The inhibition of CAMK kinase activity or deletion of CAMKIV significantly slowed AML development and decreased the AML stem cell activity. We also found that CAMKIV acts through the phosphorylation of one of its well-known target (CREB) in AML cells. Conclusion CAMKs are essential for the growth of human and mouse AML. The inhibition of CAMK signaling may become an effective strategy for treating leukemia. Electronic supplementary material The online version of this article (10.1186/s13045-018-0574-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xunlei Kang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA. .,Center for Precision Medicine, Department of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, 65212, USA.
| | - Changhao Cui
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.,School of Life Science and Medicine, Dalian University of Technology, Liaoning, 124221, China
| | - Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, 65212, USA.,Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guojin Wu
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Heyu Chen
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Zhigang Lu
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Xiaoli Chen
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Li Wang
- School of Life Science and Medicine, Dalian University of Technology, Liaoning, 124221, China
| | - Jie Huang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Meng Zhao
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhengshan Chen
- Department of Systems Biology, Beckman Research Institute, Monrovia, CA, 91016, USA
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute, Monrovia, CA, 91016, USA
| | - Huan-You Wang
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cheng Cheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
11
|
Werner H, Meisel-Sharon S, Bruchim I. Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway. Mol Cancer 2018; 17:28. [PMID: 29455671 PMCID: PMC5817802 DOI: 10.1186/s12943-018-0807-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/05/2018] [Indexed: 02/08/2023] Open
Abstract
The insulin-like growth factor-1 receptor (IGF1R) has been identified as a potent anti-apoptotic, pro-survival tyrosine kinase-containing receptor. Overexpression of the IGF1R gene constitutes a typical feature of most human cancers. Consistent with these biological roles, cells expressing high levels of IGF1R are expected not to die, a quintessential feature of cancer cells. Tumor specific chromosomal translocations that disrupt the architecture of transcription factors are a common theme in carcinogenesis. Increasing evidence gathered over the past fifteen years demonstrate that this type of genomic rearrangements is common not only among pediatric and hematological malignancies, as classically thought, but may also provide a molecular and cytogenetic foundation for an ever-increasing portion of adult epithelial tumors. In this review article we provide evidence that the mechanism of action of oncogenic fusion proteins associated with both pediatric and adult malignancies involves transactivation of the IGF1R gene, with ensuing increases in IGF1R levels and ligand-mediated receptor phosphorylation. Disrupted transcription factors adopt the IGF1R signaling pathway and elicit their oncogenic activities via activation of this critical regulatory network. Combined targeting of oncogenic fusion proteins along with the IGF1R may constitute a promising therapeutic approach.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel. .,Yoran Institute for Human Genome Research, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Shilhav Meisel-Sharon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ilan Bruchim
- Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera 38100, affiliated with the Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Xie Y, Koch ML, Zhang X, Hamblen MJ, Godinho FJ, Fujiwara Y, Xie H, Klusmann JH, Orkin SH, Li Z. Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells. Stem Cells 2017; 35:1773-1785. [PMID: 28436588 DOI: 10.1002/stem.2627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 11/10/2022]
Abstract
ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Ergkd ) in which Erg expression can be conditionally restored by Cre recombinase. Ergkd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Ergkd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin- Sca-1+ c-Kit+ (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Ergkd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785.
Collapse
Affiliation(s)
- Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Boston, Massachusetts, USA
| | - Mia Lee Koch
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Xin Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Melanie J Hamblen
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Frank J Godinho
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Yuko Fujiwara
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Huafeng Xie
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jan-Henning Klusmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Stuart H Orkin
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Zhou X, Fang X, Jiang Y, Geng L, Li X, Li Y, Lu K, Li P, Lv X, Wang X. Klotho, an anti-aging gene, acts as a tumor suppressor and inhibitor of IGF-1R signaling in diffuse large B cell lymphoma. J Hematol Oncol 2017; 10:37. [PMID: 28153033 PMCID: PMC5288890 DOI: 10.1186/s13045-017-0391-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Background Klotho, is a transmembrane protein, performs as a circulating hormone and upstream modulator of the insulin-like growth factor-1 receptor (IGF-1R), fibroblast growth factor (FGF), and Wnt signaling pathways. These pathways are involved in the development and progression of B cell lymphoma. We aimed to explore the expression pattern and functional mechanism of Klotho in diffuse large B cell lymphoma (DLBCL). Methods Immunohistochemistry (IHC) and western blotting were performed to detect the expression level of Klotho in DLBCL patients and cell lines. Tumor suppressive effect of Klotho was determined by both in vitro and in vivo studies. Signaling pathway activity was assessed by western blotting. Results Remarkable lower expression levels of Klotho were observed in DLBCL patients and cell lines. Enforced expression of Klotho could significantly induce cell apoptosis and inhibit tumor growth in DLBCL. Upregulation of Klotho resulted in declined activation of IGF-1R signaling, accompanied with decreased phosphorylation of its downstream targets, including AKT and ERK1/2. Moreover, xenograft model treated with either Klotho overexpression vector or recombinant human Klotho administration presented restrained tumor growth and lower Ki67 staining. Conclusions Our findings establish that Klotho performs as a tumor suppressor and modulator of IGF-1R signaling in DLBCL. Targeting Klotho may provide novel strategies for future therapeutic intervention.
Collapse
Affiliation(s)
- Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Lingyun Geng
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xinyu Li
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Kang Lu
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Peipei Li
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xiao Lv
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China. .,Shandong University School of Medicine, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
14
|
Yucel D, Kocabas F. Developments in Hematopoietic Stem Cell Expansion and Gene Editing Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1079:103-125. [DOI: 10.1007/5584_2017_114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Chen C, Yin Y, Li C, Chen J, Xie J, Lu Z, Li M, Wang Y, Zhang CC. ACER3 supports development of acute myeloid leukemia. Biochem Biophys Res Commun 2016; 478:33-38. [DOI: 10.1016/j.bbrc.2016.07.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 12/31/2022]
|
16
|
Xu N, Li YL, Li X, Zhou X, Cao R, Li H, Li L, Lu ZY, Huang JX, Fan ZP, Huang F, Zhou HS, Zhang S, Liu Z, Zhu HQ, Liu QF, Liu XL. Correlation between deletion of the CDKN2 gene and tyrosine kinase inhibitor resistance in adult Philadelphia chromosome-positive acute lymphoblastic leukemia. J Hematol Oncol 2016; 9:40. [PMID: 27090891 PMCID: PMC4836197 DOI: 10.1186/s13045-016-0270-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frequency relapses are common in Philadelphia chromosome-positive (Ph-positive) acute lymphoblastic leukemia (ALL) following tyrosine kinase inhibitors (TKIs). CDKN2A/B is believed to contribute to this chemotherapy resistance. METHODS To further investigate the association between CDKN2 status and TKI resistance, the prevalence of CDKN2 deletions and its correlation with a variety of clinical features was assessed in 135 Ph-positive ALL patients using interphase fluorescence in situ hybridization (I-FISH). RESULTS Results showed that no difference occurred between patients with CDKN2 deletion (44/135) and wild-type patients in sex, age, and complete remission (CR) rate following induction chemotherapy combined with tyrosine kinase inhibitors (TKIs). However, CDKN2 deletion carriers demonstrated higher white blood cell (WBC) count, enhanced rates of hepatosplenomegaly (P = 0.006), and upregulation of CD20 expression (P = 0.001). Moreover, deletions of CDKN2 resulted in lower rates of complete molecular response (undetectable BCR/ABL), increased cumulative incidence of relapse, short overall survival (OS), and disease-free survival (DFS) time (P < 0.05) even though these patients received chemotherapy plus TKIs followed by allogenic hematopoietic stem cell transplantation (Allo-HSCT). In the case of 44 patients who presented with CDKN2 deletion, 18 patients were treated with dasatinib treatment, and another 26 patients were treated with imatinib therapy, and our study found that there were no differences associated with OS (P = 0.508) and DFS (P = 0.555) between the two groups. CONCLUSIONS CDKN2 deletion is frequently acquired during Ph-positive ALL progression and serves as a poor prognostic marker of long-term outcome in Ph-positive ALL patients with CDKN2 deletion even after the second-generation tyrosine kinase inhibitor treatment.
Collapse
Affiliation(s)
- Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu-ling Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Rui Cao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huan Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lin Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zi-yuan Lu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ji-xian Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-ping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hong-sheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Song Zhang
- Guangzhou Air Force Headquarters Hospital, No. 475, Huanshi East Road, Yuexiu District, Guangzhou, 510071, China
| | - Zhi Liu
- Department of Hematology, The Second People's Hospital of Guangdong Province, Guangzhou, 510317, China
| | - Hong-qian Zhu
- Department of Hematology, Hospital of Guizhou Province, Guizhou, 550002, China
| | - Qi-fa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-li Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Abstract
Acute myeloid leukemia (AML) is the most common adult acute leukemia. Despite treatment, the majority of the AML patients relapse within 5 years. In silico analysis of several available databases of AML patients showed that the expression of adenylate cyclase 7 (ADCY7) significantly inversely correlates with the overall survival of AML patients. To determine whether ADCY7 supports AML development, we employed an shRNA-encoding lentivirus system to inhibit adcy7 expression in human AML cells including U937, MV4-11, and THP-1 cells. The ADCY7 deficiency resulted in decreased cell growth, elevated apoptosis, and lower c-Myc expression of these leukemia cells. This indicates that G protein-coupled receptor signaling contributes to AML pathogenesis. Our study suggests that inhibition of ADCY7 may be novel strategy for treating leukemia.
Collapse
|