1
|
Esmaeilzadeh A, Hadiloo K, Jabbari M, Elahi R. Current progress of chimeric antigen receptor (CAR) T versus CAR NK cell for immunotherapy of solid tumors. Life Sci 2024; 337:122381. [PMID: 38145710 DOI: 10.1016/j.lfs.2023.122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Equipping cancer-fighting immune cells with chimeric antigen receptor (CAR) has gained immense attention for cancer treatment. CAR-engineered T cells (CAR T cells) are the first immune-engineered cells that have achieved brilliant results in anti-cancer therapy. Despite promising anti-cancer features, CAR T cells could also cause fatal side effects and have shown inadequate efficacy in some studies. This has led to the introduction of other candidates for CAR transduction, e.g., Natural killer cells (NK cells). Regarding the better safety profile and anti-cancer properties, CAR-armored NK cells (CAR NK cells) could be a beneficial and suitable alternative to CAR T cells. Since introducing these two cells as anti-cancer structures, several studies have investigated their efficacy and safety, and most of them have focused on hematological malignancies. Solid tumors have unique properties that make them more resistant and less curable cancers than hematological malignancies. In this review article, we conduct a comprehensive review of the structure and properties of CAR NK and CAR T cells, compare the recent experience of immunotherapy with CAR T and CAR NK cells in various solid cancers, and overview current challenges and future solutions to battle solid cancers using CARNK cells.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kaveh Hadiloo
- Student Research Committee, Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marjan Jabbari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Hou D, Wan H, Katz JL, Wang S, Castro BA, Vazquez-Cervantes GI, Arrieta VA, Dhiantravan S, Najem H, Rashidi A, Chia TY, Arjmandi T, Collado J, Billingham L, Lopez-Rosas A, Han Y, Sonabend AM, Heimberger AB, Zhang P, Miska J, Lee-Chang C. Antigen-presenting B cells promote TCF-1 + PD1 - stem-like CD8 + T-cell proliferation in glioblastoma. Front Immunol 2024; 14:1295218. [PMID: 38268923 PMCID: PMC10806106 DOI: 10.3389/fimmu.2023.1295218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Understanding the spatial relationship and functional interaction of immune cells in glioblastoma (GBM) is critical for developing new therapeutics that overcome the highly immunosuppressive tumor microenvironment. Our study showed that B and T cells form clusters within the GBM microenvironment within a 15-μm radius, suggesting that B and T cells could form immune synapses within the GBM. However, GBM-infiltrating B cells suppress the activation of CD8+ T cells. To overcome this immunosuppression, we leveraged B-cell functions by activating them with CD40 agonism, IFNγ, and BAFF to generate a potent antigen-presenting B cells named BVax. BVax had improved antigen cross-presentation potential compared to naïve B cells and were primed to use the IL15-IL15Ra mechanism to enhance T cell activation. Compared to naïve B cells, BVax could improve CD8 T cell activation and proliferation. Compared to dendritic cells (DCs), which are the current gold standard professional antigen-presenting cell, BVax promoted highly proliferative T cells in-vitro that had a stem-like memory T cell phenotype characterized by CD62L+CD44- expression, high TCF-1 expression, and low PD-1 and granzyme B expression. Adoptive transfer of BVax-activated CD8+ T cells into tumor-bearing brains led to T cell reactivation with higher TCF-1 expression and elevated granzyme B production compared to DC-activated CD8+ T cells. Adoptive transfer of BVax into an irradiated immunocompetent tumor-bearing host promoted more CD8+ T cell proliferation than adoptive transfer of DCs. Moreover, highly proliferative CD8+ T cells in the BVax group had less PD-1 expression than those highly proliferative CD8+ T cells in the DC group. The findings of this study suggest that BVax and DC could generate distinctive CD8+ T cells, which potentially serve multiple purposes in cellular vaccine development.
Collapse
Affiliation(s)
- David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiao Wan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joshua L. Katz
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Si Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Brandyn A. Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Neurological Surgery, University of Illinois Chicago, Chicago, IL, United States
| | - Gustavo I. Vazquez-Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Victor A. Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Silpol Dhiantravan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tzu-yi Chia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tarlan Arjmandi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biotechnology, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Jimena Collado
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leah Billingham
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Adam M. Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| |
Collapse
|
3
|
Fazeli P, Talepoor AG, Faghih Z, Gholijani N, Ataollahi MR, Ali‐Hassanzadeh M, Moravej H, Kalantar K. The frequency of CD4+ and CD8+ circulating T stem cell memory in type 1 diabetes. Immun Inflamm Dis 2022; 10:e715. [PMID: 36169248 PMCID: PMC9500591 DOI: 10.1002/iid3.715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION The frequencies and functions of T stem cell memory (TSCM) subsets vary in autoimmune diseases. We evaluated the frequencies of CD4+ and CD8+ TSCM subsets as well as their PD-1 expression levels in patients with T1D. METHODS Blood samples were collected from new case (NC) (n = 15), and long-term (LT) (n = 15) groups and healthy controls (n = 15). Five subsets of T cells including TCM(CD4+ /CD8+ CCR7+ CD45RO+ CD95+ ), TCMhi (CD4+ /CD8+ CCR7+ CD45ROhi CD95+ ), TEM(CD4+ /CD8+ CCR7- CD45RO+ CD95+ ), TSCM(CD4+ /CD8+ CCR7+ CD45RO- CD95+ ), and T naive (CD4+ /CD8+ CCR7+ CD45RO- CD95- ) were detected by flow-cytometry. RESULTS The frequency of CD4+ TSCM was higher in NC patients than LT patients and controls (p < .0001 and p = .0086, respectively). A higher percentage of the CD8+ T naive cells was shown in NC patients as compared with LT and healthy individuals (p = .0003 and p = .0002, respectively). An increased level of PD-1 expression was observed on the CD4+ TCM and TCMhi cells in LT patients as compared with healthy controls (p = .0037 and p = .0145, respectively). Also, the higher PD-1 expression was observed on the CD8+ TCM and TCMhi in NC and LT patients as compared with controls (p = .0068 and p < .0001; p = .0012 and p = .0012, respectively). CONCLUSION Considering TSCMs' capacities to generate all memory and effector T cells, our results may suggest a potential association between the increased frequencies of TSCMs and T1D progression.
Collapse
Affiliation(s)
- Pooriya Fazeli
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Atefe Ghamar Talepoor
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Zahra Faghih
- Shiraz Institute for Cancer ResearchSchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Nasser Gholijani
- Autoimmune Diseases Research CenterShiraz University of Medical SciencesShirazIran
| | | | | | - Hossein Moravej
- Department of PediatricsSchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Kurosh Kalantar
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
- Autoimmune Diseases Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
4
|
Russell S, Lim F, Peters PN, Wardell SE, Whitaker R, Chang CY, Previs RA, McDonnell DP. Development and Characterization of a Luciferase Labeled, Syngeneic Murine Model of Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14174219. [PMID: 36077756 PMCID: PMC9454869 DOI: 10.3390/cancers14174219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Despite advances in surgery and targeted therapies, the prognosis for women with high-grade serous ovarian cancer remains poor. Moreover, unlike other cancers, immunotherapy has minimally impacted outcomes in patients with ovarian cancer. Progress in this regard has been hindered by the lack of relevant syngeneic ovarian cancer models to study tumor immunity and evaluate immunotherapies. To address this problem, we developed a luciferase labeled murine model of high-grade serous ovarian cancer, STOSE.M1 luc. We defined its growth characteristics, immune cell repertoire, and response to anti PD-L1 immunotherapy. As with human ovarian cancer, we demonstrated that this model is poorly sensitive to immune checkpoint modulators. By developing the STOSE.M1 luc model, it will be possible to probe the mechanisms underlying resistance to immunotherapies and evaluate new therapeutic approaches to treat ovarian cancer.
Collapse
Affiliation(s)
- Shonagh Russell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: (S.R.); (D.P.M.); Tel.: +1-919-684-6035 (D.P.M.)
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pamela N. Peters
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Suzanne E. Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca A. Previs
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: (S.R.); (D.P.M.); Tel.: +1-919-684-6035 (D.P.M.)
| |
Collapse
|
5
|
Sakatoku K, Nakashima Y, Nagasaki J, Nishimoto M, Hirose A, Nakamae M, Koh H, Hino M, Nakamae H. Immunomodulatory and Direct Activities of Ropeginterferon Alfa-2b on Cancer Cells in Mouse Models of Leukemia. Cancer Sci 2022; 113:2246-2257. [PMID: 35441749 PMCID: PMC9277408 DOI: 10.1111/cas.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Although ropeginterferon alfa‐2b has recently been clinically applied to myeloproliferative neoplasms with promising results, its antitumor mechanism has not been thoroughly investigated. Using a leukemia model developed in immunocompetent mice, we evaluated the direct cytotoxic effects and indirect effects induced by ropeginterferon alfa‐2b in tumor cells. Ropeginterferon alfa‐2b therapy significantly prolonged the survival of mice bearing leukemia cells and led to long‐term remission in some mice. Alternatively, conventional interferon‐alpha treatment slightly extended the survival and all mice died. When ropeginterferon alfa‐2b was administered to interferon‐alpha receptor 1–knockout mice after the development of leukemia to verify the direct effect on the tumor, the survival of these mice was slightly prolonged; nevertheless, all of them died. In vivo CD4+ or CD8+ T‐cell depletion resulted in a significant loss of therapeutic efficacy in mice. These results indicate that the host adoptive immunostimulatory effect of ropeginterferon alfa‐2b is the dominant mechanism through which tumor cells are suppressed. Moreover, mice in long‐term remission did not develop leukemia, even after tumor rechallenge. Rejection of rechallenge tumors was canceled only when both CD4+ and CD8+ T cells were removed in vivo, which indicates that each T‐cell group functions independently in immunological memory. We show that ropeginterferon alfa‐2b induces excellent antitumor immunomodulation in hosts. Our finding serves in devising therapeutic strategies with ropeginterferon alfa‐2b.
Collapse
Affiliation(s)
- Kazuki Sakatoku
- Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yasuhiro Nakashima
- Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Joji Nagasaki
- Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Mitsutaka Nishimoto
- Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Asao Hirose
- Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Mika Nakamae
- Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hideo Koh
- Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masayuki Hino
- Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hirohisa Nakamae
- Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
6
|
Hirobe S, Yamasaki T, Ito S, Quan YS, Kamiyama F, Tachibana M, Okada N. Transcutaneous Administration of Imiquimod Promotes T and B Cell Differentiation into Effector Cells or Plasma Cells. Pharmaceutics 2022; 14:pharmaceutics14020385. [PMID: 35214117 PMCID: PMC8878978 DOI: 10.3390/pharmaceutics14020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
We are interested in promoting the development of transcutaneous immunization using microneedle technology and attempting to apply an adjuvant with transcutaneous immunization to improve the efficacy and reduce the amount of antigen and number of administrations needed. In this study, we collected basic information to help elucidate the mechanism responsible for the transcutaneous adjuvant activity of imiquimod (IMQ), which is a ligand of toll-like receptor (TLR) 7. In mouse groups administered ovalbumin (OVA), the OVA-specific IgG antibody titer of the IMQ-adjuvanted group was higher than that of the group administered OVA alone. No immune response bias due to transcutaneous IMQ administration was observed in terms of IgG1 (T helper cell [Th]2-type IgG subclass) and IgG2c (Th1-type IgG subclass) antibody titers. After the initial immunization, the IMQ-adjuvanted group showed increased migration of Langerhans cells to draining lymph nodes (dLNs) and active proliferation of OVA-specific CD4+ T cells. Transcutaneously administered IMQ did not affect the direction of CD4+ T cell differentiation, while promoted B cell activation and germinal center (GC) B cell differentiation. Immune staining revealed greater GC formation in the dLNs with the IMQ-adjuvanted group than in the OVA-alone group. In the secondary immune response, effector T cells increased in the dLNs and spleen, and effector memory T cells also increased in the spleen in the IMQ-adjuvanted group. In addition, our results suggested that the administration of IMQ enhanced B cell differentiation into plasma cells and GC B cells in the dLNs and spleen. In this study, we partially clarified the mechanism underlying the adjuvant activity of transcutaneously administered IMQ, which is required for the practical application of transcutaneous immunization with IMQ.
Collapse
Affiliation(s)
- Sachiko Hirobe
- Laboratory of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan;
- Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
- Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Taki Yamasaki
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan; (T.Y.); (S.I.); (M.T.)
| | - Sayami Ito
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan; (T.Y.); (S.I.); (M.T.)
| | - Ying-Shu Quan
- CosMED Pharmaceutical Co., Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Kyoto, Japan; (Y.-S.Q.); (F.K.)
| | - Fumio Kamiyama
- CosMED Pharmaceutical Co., Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Kyoto, Japan; (Y.-S.Q.); (F.K.)
| | - Masashi Tachibana
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan; (T.Y.); (S.I.); (M.T.)
- Laboratory of Vaccine and Immune Regulation (BIKEN), Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Naoki Okada
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan; (T.Y.); (S.I.); (M.T.)
- Laboratory of Vaccine and Immune Regulation (BIKEN), Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan
- Correspondence: ; Tel.: +81-668-794-412; Fax: +81-661-056-102
| |
Collapse
|
7
|
Xu A, Leary SC, Islam MF, Wu Z, Bhanumathy KK, Ara A, Chibbar R, Fleywald A, Ahmed KA, Xiang J. Prosurvival IL-7-Stimulated Weak Strength of mTORC1-S6K Controls T Cell Memory via Transcriptional FOXO1-TCF1-Id3 and Metabolic AMPKα1-ULK1-ATG7 Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:155-168. [PMID: 34872976 DOI: 10.4049/jimmunol.2100452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
CD8+ memory T (TM) cells play a critical role in immune defense against infection. Two common γ-chain family cytokines, IL-2 and IL-7, although triggering the same mTORC1-S6K pathway, distinctly induce effector T (TE) cells and TM cells, respectively, but the underlying mechanism(s) remains elusive. In this study, we generated IL-7R-/and AMPKα1-knockout (KO)/OTI mice. By using genetic and pharmaceutical tools, we demonstrate that IL-7 deficiency represses expression of FOXO1, TCF1, p-AMPKα1 (T172), and p-ULK1 (S555) and abolishes T cell memory differentiation in IL-7R KO T cells after Listeria monocytogenesis rLmOVA infection. IL-2- and IL-7-stimulated strong and weak S6K (IL-2/S6Kstrong and IL-7/S6Kweak) signals control short-lived IL-7R-CD62L-KLRG1+ TE and long-term IL-7R+CD62L+KLRG1- TM cell formations, respectively. To assess underlying molecular pathway(s), we performed flow cytometry, Western blotting, confocal microscopy, and Seahorse assay analyses by using the IL-7/S6Kweak-stimulated TM (IL-7/TM) and the control IL-2/S6Kstrong-stimulated TE (IL-2/TE) cells. We determine that the IL-7/S6Kweak signal activates transcriptional FOXO1, TCF1, and Id3 and metabolic p-AMPKα1, p-ULK1, and ATG7 molecules in IL-7/TM cells. IL-7/TM cells upregulate IL-7R and CD62L, promote mitochondria biogenesis and fatty acid oxidation metabolism, and show long-term cell survival and functional recall responses. Interestingly, AMPKα1 deficiency abolishes the AMPKα1 but maintains the FOXO1 pathway and induces a metabolic switch from fatty acid oxidation to glycolysis in AMPKα1 KO IL-7/TM cells, leading to loss of cell survival and recall responses. Taken together, our data demonstrate that IL-7-stimulated weak strength of mTORC1-S6K signaling controls T cell memory via activation of transcriptional FOXO1-TCF1-Id3 and metabolic AMPKα1-ULK1-ATG7 pathways. This (to our knowledge) novel finding provides a new mechanism for a distinct IL-2/IL-7 stimulation model in T cell memory and greatly impacts vaccine development.
Collapse
Affiliation(s)
- Aizhang Xu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Md Fahmid Islam
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Zhaojia Wu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kalpana Kalyanasundaram Bhanumathy
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anjuman Ara
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rajni Chibbar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Andrew Fleywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada; .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Xia Y, Liu A, Li W, Liu Y, Zhang G, Ye S, Zhao Z, Shi J, Jia Y, Liu X, Guo Y, Chen H, Yu J. Reference range of naïve T and T memory lymphocyte subsets in peripheral blood of healthy adult. Clin Exp Immunol 2021; 207:208-217. [PMID: 35020890 PMCID: PMC8982966 DOI: 10.1093/cei/uxab038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 02/03/2023] Open
Abstract
Naïve T and T memory cell subsets are closely related to immune response and can provide important information for the diagnosis and treatment of immunological and hematological disorders. Lymphocyte compartment undergoes dramatic changes during adulthood; age-related reference values derived from healthy individuals are crucial. However, extensively detailed reference values of peripheral blood lymphocytes in the whole spectrum of adulthood detected by multi-color flow cytometry on a single platform are rare. Three hundred and nine healthy adult volunteers were recruited from Tianjin in China. The absolute counts and percentages of CD3+CD4+ T cells, CD3+CD8+ T cells, naïve T cells (Tn), T memory stem cells (Tscm), central memory T cells (Tcm), effector memory T cells (Tem), and terminal effector T cells (Tte) were detected by flow cytometry with single platform technologies. Reference range of absolute counts and percentage of T lymphocyte subsets were formulated by different age and gender. The results showed that Tn and Tscm cells, which had stem cell properties, decreased with aging; while, Tcm and Tem increased with aging, which increased from 18 to 64 years old but presented no significant change over the 65 years old. Gender had an influence on the fluctuation of lymphocyte subsets, the absolute count of CD3+CD8+, CD8+Tcm, CD8+Tem in males were higher than those in females. The reference values of percentages and absolute numbers of naïve T and T memory cell subsets can help doctors to understand the immune state of patients and evaluate conditions of prognosis then adjust the treatment for patients. (Chinese Clinic Trial Registry number: ChiCTR-IOR-17014139.).
Collapse
Affiliation(s)
- Ying Xia
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Aqing Liu
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wentao Li
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunhe Liu
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guan Zhang
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Songshan Ye
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhijieruo Zhao
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Juan Shi
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingjie Jia
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Liu
- Clinic Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongtie Guo
- Clinic Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huayu Chen
- Clinic Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianchun Yu
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,Correspondence: Jianchun Yu, Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China. E-mail:
| |
Collapse
|
9
|
Ara A, Xu A, Ahmed KA, Leary SC, Islam MF, Wu Z, Chibbar R, Xiang J. The Energy Sensor AMPKα1 Is Critical in Rapamycin-Inhibition of mTORC1-S6K-Induced T-cell Memory. Int J Mol Sci 2021; 23:37. [PMID: 35008461 PMCID: PMC8744613 DOI: 10.3390/ijms23010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Energy sensors mTORC1 and AMPKα1 regulate T-cell metabolism and differentiation, while rapamycin (Rapa)-inhibition of mTORC1 (RIM) promotes T-cell memory. However, the underlying pathway and the role of AMPKα1 in Rapa-induced T-cell memory remain elusive. Using genetic and pharmaceutical tools, we demonstrate that Rapa promotes T-cell memory in mice in vivo post Listeria monocytogenesis rLmOVA infection and in vitro transition of effector T (TE) to memory T (TM) cells. IL-2- and IL-2+Rapa-stimulated T [IL-2/T and IL-2(Rapa+)/T] cells, when transferred into mice, differentiate into short-term IL-7R-CD62L-KLRG1+ TE and long-lived IL-7R+CD62L+KLRG1- TM cells, respectively. To assess the underlying pathways, we performed Western blotting, confocal microscopy and Seahorse-assay analyses using IL-2/T and IL-2(Rapa+)/T-cells. We determined that IL-2(Rapa+)/T-cells activate transcription FOXO1, TCF1 and Eomes and metabolic pAMPKα1(T172), pULK1(S555) and ATG7 molecules and promote mitochondrial biogenesis and fatty-acid oxidation (FAO). We found that rapamycin-treated AMPKα-deficient AMPKα1-KO IL-2(Rapa+)/TM cells up-regulate transcription factor HIF-1α and induce a metabolic switch from FAO to glycolysis. Interestingly, despite the rapamycin treatment, AMPKα-deficient TM cells lost their cell survival capacity. Taken together, our data indicate that rapamycin promotes T-cell memory via transcriptional FOXO1-TCF1-Eomes programs and AMPKα1-ULK1-ATG7 metabolic axis, and that AMPKα1 plays a critical role in RIM-induced T-cell memory.
Collapse
Affiliation(s)
- Anjuman Ara
- Cancer Research Cluster, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, SK S7N 4H4, Canada; (A.A.); (A.X.); (M.F.I.); (Z.W.)
- Division of Oncology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Aizhang Xu
- Cancer Research Cluster, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, SK S7N 4H4, Canada; (A.A.); (A.X.); (M.F.I.); (Z.W.)
- Division of Oncology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Scot C. Leary
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Md. Fahmid Islam
- Cancer Research Cluster, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, SK S7N 4H4, Canada; (A.A.); (A.X.); (M.F.I.); (Z.W.)
- Division of Oncology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Zhaojia Wu
- Cancer Research Cluster, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, SK S7N 4H4, Canada; (A.A.); (A.X.); (M.F.I.); (Z.W.)
- Division of Oncology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Rajni Chibbar
- Department of Pathology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, SK S7N 4H4, Canada; (A.A.); (A.X.); (M.F.I.); (Z.W.)
- Division of Oncology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
10
|
Adjuvant Activity of CpG-Oligonucleotide Administered Transcutaneously in Combination with Vaccination Using a Self-Dissolving Microneedle Patch in Mice. Vaccines (Basel) 2021; 9:vaccines9121480. [PMID: 34960226 PMCID: PMC8707324 DOI: 10.3390/vaccines9121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated the mechanism of transcutaneous adjuvant activity of the CpG-oligonucleotide (K3) in mice. Transcutaneous immunization (TCI) with an ovalbumin-loaded self-dissolving microneedle patch (OVA-sdMN) and K3-loaded hydrophilic gel patch (HG) increased OVA-specific Th2- and Th1-type IgG subclass antibody titers more rapidly and strongly than those after only OVA-sdMN administration. However, the antigen-specific proliferation of OVA-specific CD4+ T cells was similar between the OVA-only and the OVA+K3 groups. Population analysis of various immune cells in draining lymph nodes (dLNs) in the primary immune response revealed that the OVA+K3 combination doubled the number of dLN cells, with the most significant increase in B cells. Phenotypic analysis by flow cytometry revealed that B-cell activation and maturation were promoted in the OVA+K3 group, suggesting that direct B-cell activation by K3 largely contributed to the rapid increase in antigen-specific antibody titer in TCI. In the secondary immune response, a significant increase in effector T cells and effector memory T cells, and an increase in memory B cells were observed in the OVA+K3 group compared with that in the OVA-only group. Thus, K3, as a transcutaneous adjuvant, can promote the memory differentiation of T and B cells.
Collapse
|
11
|
Li Y, Wu D, Yang X, Zhou S. Immunotherapeutic Potential of T Memory Stem Cells. Front Oncol 2021; 11:723888. [PMID: 34604060 PMCID: PMC8485052 DOI: 10.3389/fonc.2021.723888] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Memory T cells include T memory stem cells (TSCM) and central memory T cells (TCM). Compared with effector memory T cells (TEM) and effector T cells (TEFF), they have better durability and anti-tumor immunity. Recent studies have shown that although TSCM has excellent self-renewal ability and versatility, if it is often exposed to antigens and inflammatory signals, TSCM will behave as a variety of inhibitory receptors such as PD-1, TIM-3 and LAG-3 expression, and metabolic changes from oxidative phosphorylation to glycolysis. These changes can lead to the exhaustion of T cells. Cumulative evidence in animal experiments shows that it is the least differentiated cell in the memory T lymphocyte system and is a central participant in many physiological and pathological processes in humans. It has a good clinical application prospect, so it is more and more important to study the factors affecting the formation of TSCM. This article summarizes and prospects the phenotypic and functional characteristics of TSCM, the regulation mechanism of formation, and its application in treatment of clinical diseases.
Collapse
Affiliation(s)
- Yujie Li
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, China
| | - Dengqiang Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Xuejia Yang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Sufang Zhou
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, China.,National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Wang Q, Su X, He Y, Wang M, Yang D, Zhang R, Wei J, Ma Q, Zhai W, Pang A, Huang Y, Feng S, Ballantyne CM, Wu H, Pei X, Feng X, Han M, Jiang E. CD11c participates in triggering acute graft-versus-host disease during bone marrow transplantation. Immunology 2021; 164:148-160. [PMID: 33934334 PMCID: PMC8358721 DOI: 10.1111/imm.13350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
CD11c is a canonical dendritic cell (DC) marker with poorly defined functions in the immune system. Here, we found that blocking CD11c on human peripheral blood mononuclear cell‐derived DCs (MoDCs) inhibited the proliferation of CD4+ T cells and the differentiation into IFN‐γ‐producing T helper 1 (Th1) cells, which were critical in acute graft‐versus‐host disease (aGVHD) pathogenesis. Using allogeneic bone marrow transplantation (allo‐BMT) murine models, we consistently found that CD11c‐deficient recipient mice had alleviated aGVHD symptoms for the decreased IFN‐γ‐expressing CD4+ Th1 cells and CD8+ T cells. Transcriptional analysis showed that CD11c participated in several immune regulation functions including maintaining antigen presentation of APCs. CD11c‐deficient bone marrow‐derived DCs (BMDCs) impaired the antigen presentation function in coculture assay. Mechanistically, CD11c interacted with MHCII and Hsp90 and participated in the phosphorylation of Akt and Erk1/2 in DCs after multiple inflammatory stimulations. Therefore, CD11c played crucial roles in triggering aGVHD and might serve as a potential target for the prevention and treatment of aGVHD.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiuhua Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yong Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolei Pei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
13
|
Han J, Ma Y, Ma L, Tan D, Niu H, Bai C, Mi Y, Xie T, Lv W, Wang J, Zhu B. Id3 and Bcl6 Promote the Development of Long-Term Immune Memory Induced by Tuberculosis Subunit Vaccine. Vaccines (Basel) 2021; 9:126. [PMID: 33562631 PMCID: PMC7914852 DOI: 10.3390/vaccines9020126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Long-lived memory cell formation and maintenance are usually regulated by cytokines and transcriptional factors. Adjuvant effects of IL-7 have been studied in the vaccines of influenza and other pathogens. However, few studies investigated the adjuvant effects of cytokines and transcriptional factors in prolonging the immune memory induced by a tuberculosis (TB) subunit vaccine. To address this research gap, mice were treated with the Mycobacterium tuberculosis (M. tuberculosis) subunit vaccine Mtb10.4-HspX (MH) plus ESAT6-Ag85B-MPT64<190-198>-Mtb8.4-Rv2626c (LT70), together with adeno-associated virus-mediated IL-7 or lentivirus-mediated transcriptional factor Id3, Bcl6, Bach2, and Blimp1 at 0, 2, and 4 weeks, respectively. Immune responses induced by the vaccine were examined at 25 weeks after last immunization. The results showed that adeno-associated virus-mediated IL-7 allowed the TB subunit vaccine to induce the formation of long-lived memory T cells. Meanwhile, IL-7 increased the expression of Id3, Bcl6, and bach2-the three key transcription factors for the generation of long-lived memory T cells. The adjuvant effects of transcriptional factors, together with TB fusion protein MH/LT70 vaccination, showed that both Bcl6 and Id3 increased the production of antigen-specific antibodies and long-lived memory T cells, characterized by high proliferative potential of antigen-specific CD4+ and CD8+ T cells, and IFN-γ secretion in CD4+ and CD8+ T cells, respectively, after re-exposure to the same antigen. Overall, our study suggests that IL-7 and transcriptional factors Id3 and Bcl6 help the TB subunit vaccine to induce long-term immune memory, which contributes to providing immune protection against M. tuberculosis infection.
Collapse
Affiliation(s)
- Jiangyuan Han
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.H.); (Y.M.); (L.M.); (D.T.); (H.N.); (C.B.); (Y.M.); (T.X.); (W.L.); (J.W.)
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yanlin Ma
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.H.); (Y.M.); (L.M.); (D.T.); (H.N.); (C.B.); (Y.M.); (T.X.); (W.L.); (J.W.)
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lan Ma
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.H.); (Y.M.); (L.M.); (D.T.); (H.N.); (C.B.); (Y.M.); (T.X.); (W.L.); (J.W.)
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Daquan Tan
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.H.); (Y.M.); (L.M.); (D.T.); (H.N.); (C.B.); (Y.M.); (T.X.); (W.L.); (J.W.)
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongxia Niu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.H.); (Y.M.); (L.M.); (D.T.); (H.N.); (C.B.); (Y.M.); (T.X.); (W.L.); (J.W.)
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chunxiang Bai
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.H.); (Y.M.); (L.M.); (D.T.); (H.N.); (C.B.); (Y.M.); (T.X.); (W.L.); (J.W.)
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Youjun Mi
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.H.); (Y.M.); (L.M.); (D.T.); (H.N.); (C.B.); (Y.M.); (T.X.); (W.L.); (J.W.)
- Institute of Pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Xie
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.H.); (Y.M.); (L.M.); (D.T.); (H.N.); (C.B.); (Y.M.); (T.X.); (W.L.); (J.W.)
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Lv
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.H.); (Y.M.); (L.M.); (D.T.); (H.N.); (C.B.); (Y.M.); (T.X.); (W.L.); (J.W.)
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.H.); (Y.M.); (L.M.); (D.T.); (H.N.); (C.B.); (Y.M.); (T.X.); (W.L.); (J.W.)
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.H.); (Y.M.); (L.M.); (D.T.); (H.N.); (C.B.); (Y.M.); (T.X.); (W.L.); (J.W.)
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Kasakovski D, Zeng X, Lai J, Yu Z, Yao D, Chen S, Zha X, Li Y, Xu L. Characterization of
KIR
+
NKG2A
+ Eomes−
NK
‐like
CD8
+ T cells and their decline with age in healthy individuals. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:467-475. [PMID: 32830898 DOI: 10.1002/cyto.b.21945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Dimitri Kasakovski
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Jing Lai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Zhi Yu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated HospitalJinan University Guangzhou China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
- The Clinical Medicine Postdoctoral Research StationJinan University Guangzhou China
| |
Collapse
|
15
|
Zhang Y, Wang N, Ding M, Yang Y, Wang Z, Huang L, Zhu W, Mellor AL, Hou X, Zhou C, Yan R, Wang W, Wu S. CD40 Accelerates the Antigen-Specific Stem-Like Memory CD8 + T Cells Formation and Human Papilloma Virus (HPV)-Positive Tumor Eradication. Front Immunol 2020; 11:1012. [PMID: 32536922 PMCID: PMC7267052 DOI: 10.3389/fimmu.2020.01012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Antigen-specific stem-like memory CD8+ T cells (Tscm) have a series of stem cell characteristics, including long-term survival, self-renewal, anti-apoptosis and persistent differentiation into cytotoxic T cells. The effective induction of tumor-specific CD8+ Tscm could persistently eradicate tumor in pro-tumor hostile microenvironment. This study was to investigate the role of CD40 in HPV16-specific CD8+ Tscm induction and its anti-tumor function. We found that CD40 activation accelerated vaccine-induced HPV16 E7-specific CD8+ Tscm formation. Comparing to other HPV-specific CD8+ T cells, CD8+ Tscm were found to be stronger and long-term anti-tumor function, in vivo and in vitro, even in the adoptive cellular transferring model. Furthermore, high frequencies of Tscm might prevent the HPV infection to move on to the development of cancer. And the CD40 effect on Tscm involved Wnt/β-catenin activation. Our study suggest that CD40 activation supports the generation of tumor-specific CD8+ Tscm, thus providing new insight into cancer immunotherapy.
Collapse
Affiliation(s)
- Yanmei Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomics, Guangzhou, China
| | - Nisha Wang
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meilin Ding
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomics, Guangzhou, China
| | - Yang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Obstetrics and Gynecology, The Six Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Zhimin Wang
- Center for Gene and Cellular Immunotherapy, National Center for the International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Huang
- Faculty of Medical Sciences, Framlington Place, Institute of Cellular Medicine, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| | - Wei Zhu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Andrew L Mellor
- Faculty of Medical Sciences, Framlington Place, Institute of Cellular Medicine, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| | - Xiaorui Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomics, Guangzhou, China
| | - Chenfei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiming Yan
- Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomics, Guangzhou, China
| |
Collapse
|
16
|
Antohe I, Dǎscǎlescu A, Dǎnǎilǎ C, Titieanu A, Zlei M, Ivanov I, Sireteanu A, Pavel M, Cianga P. B7-Positive and B7-Negative Acute Myeloid Leukemias Display Distinct T Cell Maturation Profiles, Immune Checkpoint Receptor Expression, and European Leukemia Net Risk Profiles. Front Oncol 2020; 10:264. [PMID: 32231996 PMCID: PMC7082324 DOI: 10.3389/fonc.2020.00264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/14/2020] [Indexed: 01/24/2023] Open
Abstract
Acute myeloid leukemia (AML) is generally considered a poorly immunogenic malignancy, displaying a “non-inflamed” leukemia microenvironment (LME), leading to T cell tolerance. However, the immune landscape of AML is much more heterogeneous. Since B7 expression is regarded as a consequence of an interferon-mediated “inflammatory” phenotype, we have investigated by flow cytometry the B7 checkpoint ligands B7.1, B7.2, programmed death ligand 1 (PD-L1), PD-L2, ICOS-L, B7-H3, and B7-H4 on the AML blasts of 30 newly diagnosed patients and their corresponding receptors [cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed death 1 (PD-1), and inducible T cell costimulator (ICOS)] on bone marrow (BM) T cell maturation populations. We could thus evidence B7-negative and B7-positive leukemias either with an isolated expression or part of eight different checkpoint ligand “signatures” that always included an inhibitory B7 molecule. B7-positive AMLs encompassed intermediate and adverse European Leukemia Net (ELN) risk cases and displayed mainly central memory CD4+ T cells with high ICOS levels and effector CD8+ T cells with high PD-1 expression. B7-negative cases were rather classified as AML with recurrent genetic anomalies and displayed predominantly naive T cells, with the exception of NPM1 mutated AMLs, which expressed B7-H3. These different B7 immune profiles suggest that specific immunotherapies are required to target the distinct immune evasion strategies of this genetically heterogeneous disease.
Collapse
Affiliation(s)
- Ion Antohe
- Hematology Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.,Hematology Department, Regional Oncology Institute, Iaşi, Romania
| | - Angela Dǎscǎlescu
- Hematology Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.,Hematology Department, Regional Oncology Institute, Iaşi, Romania
| | - Cǎtǎlin Dǎnǎilǎ
- Hematology Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.,Hematology Department, Regional Oncology Institute, Iaşi, Romania
| | - Amalia Titieanu
- Hematology Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.,Hematology Department, Regional Oncology Institute, Iaşi, Romania
| | - Mihaela Zlei
- Immunophenotyping Department, Regional Oncology Institute, Iaşi, Romania
| | - Iuliu Ivanov
- Molecular Diagnostic Department, Regional Oncology Institute, Iaşi, Romania
| | - Adriana Sireteanu
- Molecular Diagnostic Department, Regional Oncology Institute, Iaşi, Romania
| | - Mariana Pavel
- Immunology Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Petru Cianga
- Immunology Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
17
|
Li M, Yao D, Zeng X, Kasakovski D, Zhang Y, Chen S, Zha X, Li Y, Xu L. Age related human T cell subset evolution and senescence. IMMUNITY & AGEING 2019; 16:24. [PMID: 31528179 PMCID: PMC6739976 DOI: 10.1186/s12979-019-0165-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/28/2019] [Indexed: 01/10/2023]
Abstract
T cells are fundamental effector cells against viruses and cancers that can be divided into different subsets based on their long-term immune protection and immediate immune response effects. The percentage and absolute number of these subsets change with ageing, which leads to a reduced immune response in older individuals. Stem cell memory T cells (TSCM) represent a small population of memory T cells with enhanced proliferation and differentiation properties that are endowed with high potential for maintaining T cell homeostasis. However, whether these cells change with ageing and gender remains unknown. Here, we assayed the distribution of TSCM and other T cell subsets in peripheral blood from 92 healthy subjects (44 females and 48 males) ranging from 3 to 88 years old by flow cytometry. We found that CD4+ and CD8+ TSCM in the circulation have relatively stable frequencies, and the absolute number of CD8+ TSCM decreased with age; however, the ratio of TSCM to the CD4+ or CD8+ naïve population increased with age. Unlike the obvious changes in other T cell subsets with age and gender, the stable level of TSCM in peripheral blood may support their capacity for sustaining long-term immunological memory, while their importance may increase together with ageing.
Collapse
Affiliation(s)
- Mingde Li
- 1Department of Hematology, First Affiliated Hospital; Institute of Hematology, School of Medicine; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, No.601 West of Huangpu Avenue, Guangzhou, 510632 China
| | - Danlin Yao
- 1Department of Hematology, First Affiliated Hospital; Institute of Hematology, School of Medicine; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, No.601 West of Huangpu Avenue, Guangzhou, 510632 China
| | - Xiangbo Zeng
- 1Department of Hematology, First Affiliated Hospital; Institute of Hematology, School of Medicine; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, No.601 West of Huangpu Avenue, Guangzhou, 510632 China
| | - Dimitri Kasakovski
- 1Department of Hematology, First Affiliated Hospital; Institute of Hematology, School of Medicine; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, No.601 West of Huangpu Avenue, Guangzhou, 510632 China
| | - Yikai Zhang
- 1Department of Hematology, First Affiliated Hospital; Institute of Hematology, School of Medicine; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, No.601 West of Huangpu Avenue, Guangzhou, 510632 China
| | - Shaohua Chen
- 1Department of Hematology, First Affiliated Hospital; Institute of Hematology, School of Medicine; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, No.601 West of Huangpu Avenue, Guangzhou, 510632 China
| | - Xianfeng Zha
- 2Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| | - Yangqiu Li
- 1Department of Hematology, First Affiliated Hospital; Institute of Hematology, School of Medicine; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, No.601 West of Huangpu Avenue, Guangzhou, 510632 China
| | - Ling Xu
- 1Department of Hematology, First Affiliated Hospital; Institute of Hematology, School of Medicine; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, No.601 West of Huangpu Avenue, Guangzhou, 510632 China.,3The Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
18
|
Jimbo K, Konuma T, Watanabe E, Kohara C, Mizukami M, Nagai E, Oiwa-Monna M, Mizusawa M, Isobe M, Kato S, Takahashi S, Tojo A. T memory stem cells after allogeneic haematopoietic cell transplantation: unique long-term kinetics and influence of chronic graft-versus-host disease. Br J Haematol 2019; 186:866-878. [PMID: 31135974 DOI: 10.1111/bjh.15995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022]
Abstract
T memory stem cells (TSCMs) are a subset of primitive T cells capable of both self-renewal and differentiation into all subsets of memory and effector T cells. Therefore, TSCMs may play a role in immune reconstitution and graft-versus-host disease (GVHD) in patients receiving allogeneic haematopoietic cell transplantation (HCT). We conducted a cross-sectional study to evaluate the proportions, absolute counts, phenotypes and functions of TSCMs in 152 adult patients without disease recurrence at least 12 months after undergoing HCT. CD4+ TSCMs were negatively correlated with number of months after transplantation in HCT patients that received cord blood transplantation, but not in patients that received bone marrow transplantation or peripheral blood stem cell transplantation. The proportions and absolute counts of CD4+ TSCMs and expression levels of inducible co-stimulator (ICOS) in CD8+ TSCMs were significantly higher in patients with mild and moderate/severe cGVHD compared to patients without cGVHD. These data suggested that, more than 12 months after allogeneic HCT, the kinetics of CD4+ TSCMs were dependent on the type of donor source, and further that CD4+ TSCMs and ICOS levels in CD8+ TSCMs were associated with cGVHD.
Collapse
Affiliation(s)
- Koji Jimbo
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki Konuma
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eri Watanabe
- Department of IMSUT Clinical Flow Cytometry Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chisato Kohara
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motoko Mizukami
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Etsuko Nagai
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maki Oiwa-Monna
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mai Mizusawa
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masamichi Isobe
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Hernández-Acevedo GN, López-Portales OH, Gutiérrez-Reyna DY, Cuevas-Fernández E, Kempis-Calanis LA, Labastida-Conde RG, Aguilar-Luviano OB, Ramírez-Pliego O, Spicuglia S, Lino-Alfaro B, Chagolla-López A, González-de la Vara LE, Santana MA. Protein complexes associated with β-catenin differentially influence the differentiation profile of neonatal and adult CD8 + T cells. J Cell Physiol 2019; 234:18639-18652. [PMID: 30924167 DOI: 10.1002/jcp.28502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 02/04/2023]
Abstract
The canonical Wnt signaling pathway is a master cell regulator involved in CD8+ T cell proliferation and differentiation. In human CD8+ T cells, this pathway induces differentiation into memory cells or a "stem cell memory like" population, which is preferentially present in cord blood. To better understand the role of canonical Wnt signals in neonatal or adult blood, we compared the proteins associated with β-catenin, in nonstimulated and Wnt3a-stimulated human neonatal and adult naive CD8+ T cells. Differentially recruited proteins established different complexes in adult and neonatal cells. In the former, β-catenin-associated proteins were linked to cell signaling and immunological functions, whereas those of neonates were linked to proliferation and metabolism. Wnt3a stimulation led to the recruitment and overexpression of Wnt11 in adult cells and Wnt5a in neonatal cells, suggesting a differential connexion with planar polarity and Wnt/Ca2+ noncanonical pathways, respectively. The chromatin immunoprecipitation polymerase chain reaction β-catenin was recruited to a higher level on the promoters of cell renewal genes in neonatal cells and of differentiation genes in those of adults. We found a preferential association of β-catenin with CBP in neonatal cells and with p300 in the adult samples, which could be involved in a higher self-renewal capacity of the neonatal cells and memory commitment in those of adults. Altogether, our results show that different proteins associated with β-catenin during Wnt3a activation mediate a differential response of neonatal and adult human CD8+ T cells.
Collapse
Affiliation(s)
- Gerson N Hernández-Acevedo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Oscar H López-Portales
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Darely Y Gutiérrez-Reyna
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Erick Cuevas-Fernández
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Linda A Kempis-Calanis
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Rosario G Labastida-Conde
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Oscar B Aguilar-Luviano
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Oscar Ramírez-Pliego
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Bárbara Lino-Alfaro
- Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Irapuato, Mexico
| | - Alicia Chagolla-López
- Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Irapuato, Mexico
| | | | - María Angélica Santana
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
20
|
Sarkar I, Pati S, Dutta A, Basak U, Sa G. T-memory cells against cancer: Remembering the enemy. Cell Immunol 2019; 338:27-31. [PMID: 30928016 DOI: 10.1016/j.cellimm.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recently various types of immunotherapies have made immense progress in combating cancer. Adoptive cell therapy, being one of the most favorable forms of immunotherapy, is rapidly moving from bench to bed. MAIN BODY Different types of T-memory cells are being used as promising candidates for adoptive cell therapy: T effector memory (TEM) cells which are terminally differentiated memory cells and attain effector function soon after re-stimulation; T central memory (TCM) cells which differentiate into effector T-memory subsets and T-effector cells after antigenic stimulation; and tissue T resident memory (TRM) cells which fight the tumor insult at the peripheral tissues. Recently, a new subtype of T-memory cells, T stem cell memory (TSCM) have been identified as the most favorable candidate for adoptive cell therapy as they exhibit higher persistence, anti-tumor immunity and self-renewal capacity in the tumor-bearing host. CONCLUSION In this review, we briefly describe the concept and types of T-memory cells as well as their role as potential candidates for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Irene Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Abhishek Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
21
|
Good Z, Borges L, Vivanco Gonzalez N, Sahaf B, Samusik N, Tibshirani R, Nolan GP, Bendall SC. Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells. Nat Biotechnol 2019; 37:259-266. [PMID: 30742126 PMCID: PMC6521980 DOI: 10.1038/s41587-019-0033-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/21/2018] [Indexed: 01/12/2023]
Abstract
Selective differentiation of naive T cells into multipotent T cells is of great interest clinically for the generation of cell-based cancer immunotherapies. Cellular differentiation depends crucially on division state and time. Here we adapt a dye dilution assay for tracking cell proliferative history through mass cytometry and uncouple division, time and regulatory protein expression in single naive human T cells during their activation and expansion in a complex ex vivo milieu. Using 23 markers, we defined groups of proteins controlled predominantly by division state or time and found that undivided cells account for the majority of phenotypic diversity. We next built a map of cell state changes during naive T-cell expansion. By examining cell signaling on this map, we rationally selected ibrutinib, a BTK and ITK inhibitor, and administered it before T cell activation to direct differentiation toward a T stem cell memory (TSCM)-like phenotype. This method for tracing cell fate across division states and time can be broadly applied for directing cellular differentiation.
Collapse
Affiliation(s)
- Zinaida Good
- PhD Program in Immunology, Stanford University, Stanford, CA, USA
- Baxter Laboratory in Stem Cell Biology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Luciene Borges
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Nora Vivanco Gonzalez
- PhD Program in Immunology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Bita Sahaf
- Cancer Institute, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nikolay Samusik
- Baxter Laboratory in Stem Cell Biology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Robert Tibshirani
- Department of Statistics, Stanford University, Stanford, CA, USA
- Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Garry P Nolan
- Baxter Laboratory in Stem Cell Biology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
22
|
Xia X, Li H, Satheesan S, Zhou J, Rossi JJ. Humanized NOD/SCID/IL2rγnull (hu-NSG) Mouse Model for HIV Replication and Latency Studies. J Vis Exp 2019. [PMID: 30663638 DOI: 10.3791/58255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ethical regulations and technical challenges for research in human pathology, immunology, and therapeutic development have placed small animal models in high demand. With a close genetic and behavioral resemblance to humans, small animals such as the mouse are good candidates for human disease models, through which human-like symptoms and responses can be recapitulated. Further, the mouse genetic background can be altered to accommodate diverse demands. The NOD/SCID/IL2rγnull (NSG) mouse is one of the most widely used immunocompromised mouse strains; it allows engraftment with human hematopoietic stem cells and/or human tissues and the subsequent development of a functional human immune system. This is a critical milestone in understanding the prognosis and pathophysiology of human-specific diseases such as HIV/AIDS and aiding the search for a cure. Herein, we report a detailed protocol for generating a humanized NSG mouse model (hu-NSG) by hematopoietic stem cell transplantation into a radiation-conditioned neonatal NSG mouse. The hu-NSG mouse model shows multi-lineage development of transplanted human stem cells and susceptibility to HIV-1 viral infection. It also recapitulates key biological characteristics in response to combinatorial antiretroviral therapy (cART).
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope;
| | - Haitang Li
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope
| | - Sangeetha Satheesan
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope; Irell and Manela Graduate School of Biological Sciences, Beckman Research Institute of City of Hope
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope
| |
Collapse
|
23
|
Guan L, Li X, Wei J, Liang Z, Yang J, Weng X, Wu X. Antigen-specific CD8+ memory stem T cells generated from human peripheral blood effectively eradicate allogeneic targets in mice. Stem Cell Res Ther 2018; 9:337. [PMID: 30526661 PMCID: PMC6286512 DOI: 10.1186/s13287-018-1080-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND As the implantation and long-term existence of tumor-specific T cells in host are the prerequisite for adoptive immunotherapy, memory stem T cells (TSCM) with self-renewal and differentiation capacity show the greatest potential to implant and long-term exhibit function in vivo, compared with other T cells of differentiation stages. Hence, tumor-specific TSCM have become potential candidate for adoptive T cell therapy of cancer. Here, we reported a protocol to generate allogeneic antigen-specific CD8+ TSCM cells from human PBLs. METHODS To prepare allogeneic antigen-specific CD8+ TSCM, we used an LCL named E007 of defined HLA allotyping as simulator, a co-culture of E007 and allogeneic PBLs was carried out in the presence of differentiation inhibitor TWS119 for 7 days. Sorting of proliferation cells ensured the E007-specificity of the prepared TSCM cells. The sorted lymphocytes underwent further expansion by cytokines IL-7 and IL-15 for further 7 days, making the E007-specific CD8 + TSCM expanded in number. The stem cell and T memory cell properties of the prepared CD8+ TSCM were observed in NOD-SCID mice. RESULTS Our protocol began with 1 × 107 PBLs and resulted in 2 × 107 E007-specific CD8+ TSCM cells in 2 weeks of preparation. The prepared TSCM cells exhibited a proliferative history and rapid differentiation into effector cells upon the E007 re-stimulation. Importantly, the prepared TSCM cells were able to exist long and reconstitute other T cell subsets in vivo, eradicating the E007 cells effectively after transferred into the LCL burden mice. CONCLUSIONS This protocol was able to prepare allogeneic antigen-specific CD8+ TSCM cells from human PBLs. The prepared TSCM showed the properties of stem cells and T memory cells. This study provided a reference method for generation of antigen-specific TSCM for T cell adoptive immunotherapy.
Collapse
Affiliation(s)
- Liping Guan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China
| | - Xiaoyi Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China
| | - Jiali Wei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China
| | - Zhihui Liang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China
| | - Jing Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China.
| | - Xiongwen Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China.
| |
Collapse
|
24
|
Memory T cells skew toward terminal differentiation in the CD8+ T cell population in patients with acute myeloid leukemia. J Hematol Oncol 2018; 11:93. [PMID: 29986734 PMCID: PMC6038290 DOI: 10.1186/s13045-018-0636-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/29/2018] [Indexed: 12/26/2022] Open
Abstract
Stem cell memory T (TSCM) and central memory T (TCM) cells can rapidly differentiate into effector memory (TEM) and terminal effector (TEF) T cells, and have the most potential for immunotherapy. In this study, we found that the frequency of TSCM and TCM cells in the CD8+ population dramatically decreased together with increases in TEM and TEF cells, particularly in younger patients with acute myeloid leukemia (AML) (< 60 years). These alterations persisted in patients who achieved complete remission after chemotherapy. The decrease in TSCM and TCM together with the increase in differentiated TEM and TEF subsets in CD8+ T cells may explain the reduced T cell response and subdued anti-leukemia capacity in AML patients.
Collapse
|
25
|
HIV Replication and Latency in a Humanized NSG Mouse Model during Suppressive Oral Combinational Antiretroviral Therapy. J Virol 2018; 92:JVI.02118-17. [PMID: 29343582 DOI: 10.1128/jvi.02118-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
Although current combinatorial antiretroviral therapy (cART) is therapeutically effective in the majority of HIV patients, interruption of therapy can cause a rapid rebound in viremia, demonstrating the existence of a stable reservoir of latently infected cells. HIV latency is therefore considered a primary barrier to HIV eradication. Identifying, quantifying, and purging the HIV reservoir is crucial to effectively curing patients and relieving them from the lifelong requirement for therapy. Latently infected transformed cell models have been used to investigate HIV latency; however, these models cannot accurately represent the quiescent cellular environment of primary latently infected cells in vivo For this reason, in vivo humanized murine models have been developed for screening antiviral agents, identifying latently infected T cells, and establishing treatment approaches for HIV research. Such models include humanized bone marrow/liver/thymus mice and SCID-hu-thy/liv mice, which are repopulated with human immune cells and implanted human tissues through laborious surgical manipulation. However, no one has utilized the human hematopoietic stem cell-engrafted NOD/SCID/IL2rγnull (NSG) model (hu-NSG) for this purpose. Therefore, in the present study, we used the HIV-infected hu-NSG mouse to recapitulate the key aspects of HIV infection and pathogenesis in vivo Moreover, we evaluated the ability of HIV-infected human cells isolated from HIV-infected hu-NSG mice on suppressive cART to act as a latent HIV reservoir. Our results demonstrate that the hu-NSG model is an effective surgery-free in vivo system in which to efficiently evaluate HIV replication, antiretroviral therapy, latency and persistence, and eradication interventions.IMPORTANCE HIV can establish a stably integrated, nonproductive state of infection at the level of individual cells, known as HIV latency, which is considered a primary barrier to curing HIV. A complete understanding of the establishment and role of HIV latency in vivo would greatly enhance attempts to develop novel HIV purging strategies. An ideal animal model for this purpose should be easy to work with, should have a shortened disease course so that efficacy testing can be completed in a reasonable time, and should have immune correlates that are easily translatable to humans. We therefore describe a novel application of the hematopoietic stem cell-transplanted humanized NSG model for dynamically testing antiretroviral treatment, supporting HIV infection, establishing HIV latency in vivo The hu-NSG model could be a facile alternative to humanized bone marrow/liver/thymus or SCID-hu-thy/liv mice in which laborious surgical manipulation and time-consuming human cell reconstitution is required.
Collapse
|
26
|
Yao D, Xu L, Tan J, Zhang Y, Lu S, Li M, Lu S, Yang L, Chen S, Chen J, Lai J, Lu Y, Wu X, Zha X, Li Y. Re-balance of memory T cell subsets in peripheral blood from patients with CML after TKI treatment. Oncotarget 2017; 8:81852-81859. [PMID: 29137227 PMCID: PMC5669853 DOI: 10.18632/oncotarget.20965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/27/2017] [Indexed: 01/13/2023] Open
Abstract
T cell immune surveillance is considered an important host protection process for inhibiting carcinogenesis. The full capacity of T cell immune surveillance is dependent on T cell homeostasis, particularly for central memory T (TCM) cells and stem cell memory T (TSCM) cells. In this study, distribution of T cell subsets in peripheral blood from 12 patients with chronic myeloid leukemia (CML) and 12 cases with CML in complete remission (CR) was analyzed using a multicolor flow cytometer, and 16 samples from healthy individuals (HIs) served as control. The proportion of CD8+ TSCM and CD4+ and CD8+ TCM cells were lower, while CD4+ effector memory T (TEM) cells and CD4+ and CD8+ terminal effector T (TEF) cells were higher in CML patients compared with HIs. Moreover, the proportion of CD8+CD28- T cells, which were found to have the immune suppressive function, increased in the naive T (TN) cell and TCM subsets in CML patients compared with HIs. Our study reveals that elimination of leukemia cells by treating with tyrosine kinase inhibitors (TKIs) restores the memory T cell distribution from a skewed pattern in CML patients who are under leukemia burden, indicating that leukemia-specific immune responses mediated by T cells might be induced and maintained in CML patients, however, these responsive T cells might gradually become exhausted due to the continued existence of leukemia cells and their environment; therefore, T cell activation using a different approach remains a key point for enhancing global T cell immunity in CML patients, even for those with CR status.
Collapse
Affiliation(s)
- Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shuai Lu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, School of Medicine, Jinan University, Guangzhou, China
| | - Mingde Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Sichun Lu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lijian Yang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, School of Medicine, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, School of Medicine, Jinan University, Guangzhou, China
| | - Jie Chen
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuhong Lu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiuli Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Zhu L, Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, Palmisiano ND, Wang M, Jia B, Bayerl M, Schell TD, Hohl RJ, Zeng H, Zheng H. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia. J Hematol Oncol 2017. [PMID: 28629373 PMCID: PMC5477125 DOI: 10.1186/s13045-017-0486-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) and programmed cell death protein 1 (PD-1) are important inhibitory receptors that associate with T cell exhaustion in acute myeloid leukemia (AML). In this study, we aimed to determine the underlying transcriptional mechanisms regulating these inhibitory pathways. Specifically, we investigated the role of transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) in T cell response and transcriptional regulation of TIGIT and PD-1 in AML. Methods Peripheral blood samples collected from patients with AML were used in this study. Blimp-1 expression was examined by flow cytometry. The correlation of Blimp-1 expression to clinical characteristics of AML patients was analyzed. Phenotypic and functional studies of Blimp-1-expressing T cells were performed using flow cytometry-based assays. Luciferase reporter assays and ChIP assays were applied to assess direct binding and transcription activity of Blimp-1. Using siRNA to silence Blimp-1, we further elucidated the regulatory role of Blimp-1 in the TIGIT and PD-1 expression and T cell immune response. Results Blimp-1 expression is elevated in T cells from AML patients. Consistent with exhaustion, Blimp-1+ T cells upregulate multiple inhibitory receptors including PD-1 and TIGIT. In addition, they are functionally impaired manifested by low cytokine production and decreased cytotoxicity capacity. Importantly, the functional defect is reversed by inhibition of Blimp-1 via siRNA knockdown. Furthermore, Blimp-1 binds to the promoters of PD-1 and TIGIT and positively regulates their expression. Conclusions Our study demonstrates an important inhibitory effect of Blimp-1 on T cell response in AML; thus, targeting Blimp-1 and its regulated molecules to improve the immune response may provide effective leukemia therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0486-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liuluan Zhu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, Beijing, China.,Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Yaxian Kong
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, Beijing, China.,Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Jianhong Zhang
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - David F Claxton
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - W Christopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Witold B Rybka
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Neil D Palmisiano
- Depatment of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ming Wang
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Michael Bayerl
- Department of Pathology, Penn State Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, 17033, United States
| | - Todd D Schell
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA.,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| | - Raymond J Hohl
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, Beijing, China.
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA. .,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
28
|
Farge D, Arruda LCM, Brigant F, Clave E, Douay C, Marjanovic Z, Deligny C, Maki G, Gluckman E, Toubert A, Moins-Teisserenc H. Long-term immune reconstitution and T cell repertoire analysis after autologous hematopoietic stem cell transplantation in systemic sclerosis patients. J Hematol Oncol 2017; 10:21. [PMID: 28103947 PMCID: PMC5244700 DOI: 10.1186/s13045-016-0388-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/30/2016] [Indexed: 02/08/2023] Open
Abstract
The determinants of clinical responses after autologous hematopoietic stem cell transplantation (aHSCT) in systemic sclerosis (SSc) are still unraveled. We analyzed long-term immune reconstitution (IR) and T cell receptor (TCR) repertoire diversity in 10 SSc patients, with at least 6 years simultaneous clinical and immunological follow-up after aHSCT. Patients were retrospectively classified as long-term responders (A, n = 5) or non-responders (B, n = 5), using modified Rodnan’s skin score (mRSS) and forced vital capacity (FVC%). All patients had similar severe SSc before aHSCT. Number of reinjected CD34+ cells was higher in group B versus A (P = 0.02). Long-term mRSS fall >25% was more pronounced in group A (P = 0.004), the only to improve long-term FVC% >10% (P = 0.026). There was an overall trend toward increased of T cell reconstitution in group B versus A. B cells had a positive linear regression slope in group A (LRS = 11.1) and negative in group B (LRS = −11.6). TCR repertoire was disturbed before aHSCT and the percentage of polyclonal families significantly increased at long-term (P = 0.046), with no difference between groups. Despite improved skin score after aHSCT in all SSc patients, pretransplant B cell clonal expansion and faster post-transplant T cell IR in long-term non-responder/relapsing patients call for new therapeutic protocols guided by IR analysis to improve their outcome.
Collapse
Affiliation(s)
- Dominique Farge
- Unité de Médecine Interne, Maladies Autoimmunes et Pathologie Vasculaire, UF 04, Assistance Publique Hopitaux de Paris AP-HP, Hôpital Saint-Louis, Paris, France. .,INSERM UMR-1160, Institut Universitaire d'Hématologie, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Lucas C M Arruda
- INSERM UMR-1160, Institut Universitaire d'Hématologie, Paris, France.,Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fanny Brigant
- INSERM UMR-1160, Institut Universitaire d'Hématologie, Paris, France
| | - Emmanuel Clave
- INSERM UMR-1160, Institut Universitaire d'Hématologie, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Corinne Douay
- INSERM UMR-1160, Institut Universitaire d'Hématologie, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Zora Marjanovic
- Département d'Hématologie, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Christophe Deligny
- Service de Médecine Interne, Hôpital Pierre Zobda Quitman, Fort-de France, Martinique, France
| | - Guitta Maki
- Laboratoire d'Immunologie-Histocompatibilité, AP-HP, Hôpital Saint Louis, Paris, France
| | - Eliane Gluckman
- Eurocord-Monacord, AP-HP, Hôpital Saint-Louis, Paris, France.,Centre Scientifique de Monaco, Monaco, France
| | - Antoine Toubert
- INSERM UMR-1160, Institut Universitaire d'Hématologie, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratoire d'Immunologie-Histocompatibilité, AP-HP, Hôpital Saint Louis, Paris, France
| | - Helene Moins-Teisserenc
- INSERM UMR-1160, Institut Universitaire d'Hématologie, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratoire d'Immunologie-Histocompatibilité, AP-HP, Hôpital Saint Louis, Paris, France
| |
Collapse
|
29
|
Jin Z, Luo Q, Lu S, Wang X, He Z, Lai J, Chen S, Yang L, Wu X, Li Y. Oligoclonal expansion of TCR Vδ T cells may be a potential immune biomarker for clinical outcome of acute myeloid leukemia. J Hematol Oncol 2016; 9:126. [PMID: 27863523 PMCID: PMC5116135 DOI: 10.1186/s13045-016-0353-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
Background Recent data have shown that γδ T cells can act as mediators for immune defense against tumors. Our previous study has demonstrated that persisting clonally expanded TRDV4 T cells might be relatively beneficial for the outcome of patients with T cell acute lymphoblastic leukemia after hematopoietic stem cell transplantation (HSCT). However, little is known about the distribution and clonality of the TRDV repertoire in T cell receptor (TCR) of γδ T cells and their effects on the clinical outcome of patients with acute myeloid leukemia (AML). The aim of this study was to assess whether the oligoclonal expansion of TCR Vδ T cells could be used as an immune biomarker for AML outcome. Findings γδ T cells were sorted from the peripheral blood of 30 patients with untreated AML and 12 healthy donors. The complementarity-determining region 3 (CDR3) sizes of eight TCR Vδ subfamily genes (TRDV1 to TRDV8) were analyzed in sorted γδ T cells using RT-PCR and GeneScan. The most frequently expressed TRDV subfamilies in the AML patients were TRDV8 (86.67 %) and TRDV2 (83.33 %), and the frequencies for TRDV1, TRDV3, TRDV4, and TRDV6 were significantly lower than those in healthy individuals. The most frequent clonally expanded TRDV subfamilies in the AML patients included TRDV8 (56.67 %) and TRDV4 (40 %). The clonal expansion frequencies of the TRDV2 and TRDV4 T cells were significantly higher than those in healthy individuals, whereas a significantly lower TRDV1 clonal expansion frequency was observed in those with AML. Moreover, the oligoclones of TRDV4 and TRDV8 were independent protective factors for complete remission. Furthermore, the oligoclonal expansion frequencies of TRDV5 and TRDV6 in patients with relapse were significantly higher than those in non-recurrent cases. Conclusions To the best of our knowledge, we characterized for the first time a significant alteration in the distribution and clonality of the TRDV subfamily members in γδ T cells sorted from AML patients. Clonally expanded TRDV4 and TRDV8 T cells might contribute to the immune response directed against AML, while oligoclonal TRDV5 and TRDV6 might occur in patients who undergo relapse. While the function of such γδ T cell clones requires further investigation, TRDV γδ T cell clones might be potential immune biomarkers for AML outcome. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0353-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenyi Jin
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Qiang Luo
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Shuai Lu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Xinyu Wang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Zifan He
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Jing Lai
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Shaohua Chen
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Lijian Yang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Xiuli Wu
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China.
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China. .,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
30
|
Notch pathway plays a novel and critical role in regulating responses of T and antigen-presenting cells in aGVHD. Cell Biol Toxicol 2016; 33:169-181. [PMID: 27770236 DOI: 10.1007/s10565-016-9364-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Abstract
Graft-versus-host disease (GVHD) induced by host antigen-presenting cells (APCs) and donor-derived T cells remains the major limitation of allogeneic bone marrow transplantation (allo-BMT). Notch signaling pathway is a highly conserved cell-cell communication that is important in T cell development. Recently, Notch signaling pathway is reported to be involved in regulating GVHD. To investigate the role of Notch inhibition in modulating GVHD, we established MHC-mismatched murine allo-BMT model. We found that inhibition of Notch signaling pathway by γ-secretase inhibitor in vivo could reduce aGVHD, which was shown by the onset time of aGVHD, body weight, clinical aGVHD scores, pathology aGVHD scores, and survival. Inhibition of Notch signaling pathway by DAPT ex vivo only reduced pathology aGVHD scores in the liver and intestine and had no impact on the onset time and clinical aGVHD scores. We investigated the possible mechanism by analyzing the phenotype of host APCs and donor-derived T cells. Notch signaling pathway had a broad effect on both host APCs and donor-derived T cells. The expressions of CD11c, CD40, and CD86 as the markers of activated dendritic cells (DCs) were decreased. The proliferative response of CD8+ T cell decreased, while CD4+ Notch-deprived T cells had preserved expansion with increased expressions of CD25 and Foxp3 as markers of regulatory T cells (Tregs). In conclusion, Notch inhibition may minimize aGVHD by decreasing proliferation and activation of DCs and CD8+ T cells while preserving Tregs expansion.
Collapse
|
31
|
Molecular alterations in the TCR signaling pathway in patients with aplastic anemia. J Hematol Oncol 2016; 9:32. [PMID: 27036622 PMCID: PMC4818392 DOI: 10.1186/s13045-016-0261-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background A previous study has demonstrated a significantly increased CD3ζ gene expression level in aplastic anemia (AA). However, the mechanism underlying the upregulated CD3ζ mRNA expression level and that of T cell activation signaling molecules in AA patients remains unclear. Thus, we investigated the expression levels of the CD3ζ, CD28, CTLA-4, and Cbl-b genes, the SNP rs231775 in the CTLA-4 gene, and the distribution of the CD3ζ 3′-UTR splice variant in AA patients. Methods CD3ζ 3′-UTR splice variants were identified in peripheral blood mononuclear cells (PBMCs) from 48 healthy individuals and 67 patients with AA [37 cases of severe aplastic anemia (SAA) and 30 cases of non-sever aplastic anemia (NSAA)] by RT-PCR. CD3ζ, CD28, CTLA-4, and Cbl-b gene expression was analyzed by real-time quantitative PCR. The SNP rs231775 in CTLA-4 gene was analyzed by PCR-RFLP. Results CD3ζ and CD28 expression was significantly higher, while CTLA-4 and Cbl-b expression was significantly lower in AA patients compared with healthy individuals. Significantly higher CD3ζ expression was found in the NSAA subgroup compared with the SAA subgroup. 64 % of the AA samples had the same genotype (WT+AS+CD3ζ 3′-UTR); 22 % of the AA patients had a WT+AS−CD3ζ 3′-UTR genotype, and 14 % of the AA patients had a WT−AS+CD3ζ 3′-UTR genotype. The CD3ζ expression level of WT−AS+ subgroup was the highest in the SAA patients. A significantly higher frequency of the GG genotype (mutant type, homozygous) of SNP rs231775 in CTLA-4 gene was found in the AA patients. Positive correlation between the CTLA-4 and Cbl-b gene expression levels was found in healthy individuals with the AA and AG genotypes, but not in the AA patients. Conclusions This is the first study analyzing the expression characteristics of the CD28, CTLA-4, and Cbl-b genes in AA. Our results suggest that aberrant T cell activation may be related to the first and second signals of T cell activation in AA. The GG genotype of SNP rs231775 in CTLA-4 gene might be associated with AA risk in the Chinese population. The characteristics of CD3ζ 3′-UTR alternative splicing may be an index for evaluating the T cell activation status in AA patients, particularly in SAA patients.
Collapse
|
32
|
Zhong J, Chen S, Xu L, Lai J, Liao Z, Zhang T, Yu Z, Lu Y, Yang L, Wu X, Li B, Li Y. Lower expression of PD-1 and PD-L1 in peripheral blood from patients with chronic ITP. ACTA ACUST UNITED AC 2016; 21:552-7. [PMID: 27077771 DOI: 10.1080/10245332.2016.1155347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND T-cell dysregulation is a major event involved in immune thrombocytopenic purpura (ITP). Increasing data have indicated that abnormal expression of T-cell immunosuppressive receptors, such as programmed death (PD) 1 and cytotoxic T lymphocyte antigen-4 (CTLA-4), may be related to autoimmune disease pathogenesis. METHODS We analyzed the expression levels of PD-1, its ligand PD-L1, and CTLA-4 in peripheral blood mononuclear cells from 18 patients with chronic ITP by real-time polymerase chain reaction, and samples from 20 healthy individuals served as control. RESULTS The results demonstrated significantly lower expression of PD-1 (median: 0.0015) and PD-L1 (median: 0.0572) in chronic ITP patients compared with healthy individuals (PD-1: median: 0.0117, P < 0.0001; PD-L1: median: 0.5428, P < 0.0001), while there was no significant difference in the CTLA-4 expression level between the chronic ITP patients (median: 0.0818) and healthy individuals (median: 0.1667) (P = 0.219). Moreover, a positive correlation between the expression levels of PD-1 and PD-L1 (rs = 0.486, P = 0.041) and CTLA-4 and PD-1 (rs = 0.643, P = 0.004) in the chronic ITP patients was found. CONCLUSION Consistently lower expression of T-cell immunosuppressive receptors is a common characteristic of chronic ITP, which may be associated with its pathogenesis.
Collapse
Affiliation(s)
- Jun Zhong
- a Department of Hematology , First Affiliated Hospital, Jinan University , Guangzhou 510632 , China
| | - Shaohua Chen
- b Institute of Hematology, Medical College, Jinan University , Guangzhou 510632 , China
| | - Ling Xu
- b Institute of Hematology, Medical College, Jinan University , Guangzhou 510632 , China
| | - Jing Lai
- a Department of Hematology , First Affiliated Hospital, Jinan University , Guangzhou 510632 , China
| | - Ziwei Liao
- b Institute of Hematology, Medical College, Jinan University , Guangzhou 510632 , China
| | - Tao Zhang
- a Department of Hematology , First Affiliated Hospital, Jinan University , Guangzhou 510632 , China
| | - Zhi Yu
- a Department of Hematology , First Affiliated Hospital, Jinan University , Guangzhou 510632 , China
| | - Yuhong Lu
- a Department of Hematology , First Affiliated Hospital, Jinan University , Guangzhou 510632 , China
| | - Lijian Yang
- b Institute of Hematology, Medical College, Jinan University , Guangzhou 510632 , China
| | - Xiuli Wu
- b Institute of Hematology, Medical College, Jinan University , Guangzhou 510632 , China
| | - Bo Li
- b Institute of Hematology, Medical College, Jinan University , Guangzhou 510632 , China
| | - Yangqiu Li
- a Department of Hematology , First Affiliated Hospital, Jinan University , Guangzhou 510632 , China.,b Institute of Hematology, Medical College, Jinan University , Guangzhou 510632 , China.,c Key Laboratory for Regenerative Medicine of Ministry of Education , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
33
|
Jiang X, Xu L, Zhang Y, Huang F, Liu D, Sun J, Song C, Liang X, Fan Z, Zhou H, Dai M, Liu C, Jiang Q, Xu N, Xuan L, Wu M, Huang X, Liu Q. Rituximab-based treatments followed by adoptive cellular immunotherapy for biopsy-proven EBV-associated post-transplant lymphoproliferative disease in recipients of allogeneic hematopoietic stem cell transplantation. Oncoimmunology 2016; 5:e1139274. [PMID: 27467959 DOI: 10.1080/2162402x.2016.1139274] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/27/2015] [Accepted: 01/03/2016] [Indexed: 12/29/2022] Open
Abstract
To improve prognosis of post-transplant lymphoproliferative disease (PTLD), a sequential therapeutic strategy that rituximab-based treatments followed by donor lymphocyte infusion (DLI) or autologous EBV-specific cytotoxic T lymphocytes (EBV-CTL) for biopsy-proven EBV-associated PTLD in recipients of allogeneic hematopoietic stem cell transplantation was designed. 84 patients with EBV-PTLD were enrolled in this prospective study. After two cycles of the rituximab-based treatments, 68 of 84 patients (81% [95% CI 71-88]) responded and 52 (62% [51-72]) had CRs. This increased to 73 of 77 patients (95% [87-98]) with completion of sequential cell infusions, and 70 of 77 (91% [82-96]) achieved CRs after DLI or autologous EBV-CTL infusion. 22 patients experienced acute GVHD (aGVHD) (grade I in 5 and grade II in 13, grade III in 4) and 13 chronic GVHD (limited cGVHD in 7 and extensive cGVHD in 6) in 62 patients undergoing a median of three doses of DLI. The incidences of GVHD were similar between DLI and EBV-CTL group (aGVHD 35% vs. 33%, p = 0.876; cGVHD 21% vs. 13%; p = 0.503). EBV-CTL activity after the rituximab-based treatments did not change, while increased after cell infusions and reached its maximum in the 3rd or 6th month after EBV-CTL or DLI treatment, respectively. The 5-y cumulative incidence of PTLD relapse was 4.5% ± 3.3%. The 5-y overall survival (OS) and progression-free survival (PFS) after PTLD were 70.7% ± 5.2% and 68.9% ± 5.3%, respectively. Rituximab-based treatments combined with adoptive cellular immunotherapy might elevate CR rates and reduce relapse of PTLD after allo-HSCT.
Collapse
Affiliation(s)
- Xinmiao Jiang
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Lanping Xu
- Institution of Hematology, People's Hospital, Peking University , Beijing, China
| | - Yu Zhang
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Fen Huang
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Daihong Liu
- Institution of Hematology, People's Hospital, Peking University , Beijing, China
| | - Jin Sun
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Chaoyang Song
- Institution of Hematology, Zhujiang Hospital, Southern Medical University , Guangzhou, China
| | - Xinquan Liang
- The First People's Hospital of Chenzhou , Chenzhou, China
| | - Zhiping Fan
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Hongsheng Zhou
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Min Dai
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Can Liu
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Qianli Jiang
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Na Xu
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Li Xuan
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Meiqing Wu
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Xiaojun Huang
- Institution of Hematology, People's Hospital, Peking University , Beijing, China
| | - Qifa Liu
- Institution of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|