1
|
Dong Z, Sepulveda H, Arteaga-Vazquez LJ, Blouin C, Fernandez J, Binder M, Chou WC, Tien HF, Patnaik MM, Faulkner GJ, Myers SA, Rao A. A mutant ASXL1-BAP1-EHMT complex contributes to heterochromatin dysfunction in clonal hematopoiesis and chronic monomyelocytic leukemia. Proc Natl Acad Sci U S A 2025; 122:e2413302121. [PMID: 39752521 PMCID: PMC11725933 DOI: 10.1073/pnas.2413302121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/06/2024] [Indexed: 01/15/2025] Open
Abstract
ASXL transcriptional regulator 1 (ASXL1) is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside DNA methyltransferase 3 alpha (DNMT3A) and Tet methylcytosine dioxygenase 2 (TET2). CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin. In contrast, the mechanisms that connect mutant ASXL1 and CH are not yet fully understood. CH/CMML-associated ASXL1 mutations encode C-terminally truncated proteins that enhance the deubiquitinase activity of the ASXL-BAP1 "PR-DUB" deubiquitinase complex, which removes monoubiquitin from H2AK119Ub. Here, we show that ASXL1 mutant proteins interact with the euchromatic histone lysine methyltransferases 1 and 2 (EHMT1-EHMT2) complex, which generates H3K9me1 and me2, the latter a repressive modification in constitutive heterochromatin. Compared to cells from age-matched wild-type mice, we found that expanded myeloid cells from old (≥18-mo-old) Asxl1tm/+ mice, a heterozygous knock-in mouse model of CH, display genome-wide decreases of H3K9me2, H3K9me3, and H2AK119Ub as well as an associated increase in expression of transposable elements (TEs) and satellite repeats. Increased TE expression was also observed in monocytes from ASXL1-mutant CMML patients compared to monocytes from healthy controls. Our data suggest that mutant ASXL1 proteins compromise the integrity of both constitutive and facultative heterochromatin in an age-dependent manner by reducing the levels of H3K9me2/3 and H2AK119Ub. This increase in TE expression correlated with increased expression of nearby genes, including many interferon-inducible (inflammation-associated) genes (ISGs).
Collapse
Affiliation(s)
- Zhen Dong
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Department of Pharmacology, University of California, San Diego, CA92161
- Division of Cancer Biology, Moores Cancer Center, San Diego, CA92037
| | - Hugo Sepulveda
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Department of Pharmacology, University of California, San Diego, CA92161
- Division of Cancer Biology, Moores Cancer Center, San Diego, CA92037
- Laboratory of Transcription and Epigenetics, Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago7591358, Chile
| | - Leo J. Arteaga-Vazquez
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
| | - Chad Blouin
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
| | - Jenna Fernandez
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN55905
| | - Moritz Binder
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN55905
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei10002, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei10002, Taiwan
| | - Mrinal M. Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN55905
| | - Geoffrey J. Faulkner
- Mater Research Institute - University of Queensland, Woolloongabba, QLD4102, Australia
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD4072, Australia
| | - Samuel A. Myers
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
- Department of Pharmacology, University of California, San Diego, CA92161
| | - Anjana Rao
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Department of Pharmacology, University of California, San Diego, CA92161
- Division of Cancer Biology, Moores Cancer Center, San Diego, CA92037
| |
Collapse
|
2
|
Franco S, Godley LA. Genetic and environmental risks for clonal hematopoiesis and cancer. J Exp Med 2025; 222:e20230931. [PMID: 39626264 PMCID: PMC11614460 DOI: 10.1084/jem.20230931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
Somatic variants accumulate in all organs with age, with a positive selection of clonal populations that provide a fitness advantage during times of heightened cellular stress leading to clonal expansion. Easily measured within the hematopoietic compartment, clonal hematopoiesis (CH) is now recognized as a common process in which hematopoietic clones with somatic variants associated with hematopoietic neoplasms exist within the blood or bone marrow of individuals without evidence of malignancy. Most cases of CH involve a limited number of genes, most commonly DNMT3A, TET2, and ASXL1. CH confers risk for solid and hematopoietic malignancies as well as cardiovascular and numerous inflammatory diseases and offers opportunities for cancer prevention. Here, we explore the genetic and environmental factors that predispose individuals to CH with unique variant signatures and discuss how CH drives cancer progression with the goals of improving individual cancer risk stratification, identifying key intervention opportunities, and understanding how CH impacts therapeutic strategies and outcomes.
Collapse
Affiliation(s)
| | - Lucy A. Godley
- Department of Medicine, Northwestern Medicine, Chicago, IL, USA
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Dong Z, Sepulveda H, Arteaga-Vazquez LJ, Blouin C, Fernandez J, Binder M, Chou WC, Tien HF, Patnaik M, Faulkner GJ, Myers SA, Rao A. A mutant ASXL1-EHMT complex contributes to heterochromatin dysfunction in clonal hematopoiesis and chronic monomyelocytic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.30.578015. [PMID: 39803572 PMCID: PMC11722362 DOI: 10.1101/2024.01.30.578015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
ASXL1 is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside DNMT3A and TET2 . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin. In contrast, the mechanisms that connect mutant ASXL1 and CH are not yet fully understood. CH/CMML-associated ASXL1 mutations encode C-terminally truncated proteins that enhance the deubiquitinase activity of the ASXL-BAP1 "PR-DUB" deubiquitinase complex, which removes mono-ubiquitin from H2AK119Ub. Here we show that ASXL1 mutant proteins interact with the EHMT1-EHMT2 methyltransferase complex, which generates H3K9me1 and me2, the latter a repressive modification in constitutive heterochromatin. Compared to cells from age-matched wildtype mice, we found that expanded myeloid cells from old (≥18-month-old) Asxl1tm/+ mice, a heterozygous knock-in mouse model of CH, display genome-wide decreases of H3K9me2, H3K9me3 and H2AK119Ub as well as an associated increase in expression of transposable elements (TEs) and satellite repeats. Increased TE expression was also observed in monocytes from ASXL1 -mutant CMML patients compared to monocytes from healthy controls. Our data suggest that mutant ASXL1 proteins compromise the integrity of both constitutive and facultative heterochromatin in an age-dependent manner, by reducing the levels of H3K9me2/3 and H2AK119Ub. This increase in TE expression correlated with increased expression of nearby genes, including many interferon-inducible (inflammation-associated) genes (ISGs). Significance Statement Age-related clonal hematopoiesis (CH) is a premalignant condition associated with inflammatory cardiovascular disease. ASXL1 mutations are very frequent in CH. We show that ASXL1 interacts with EHMT1 and EHMT2, H3K9 methyltransferases that deposit H3K9me1 and me2. Using a mouse model of mutant ASXL1 to recapitulate CH, we found that old ASXL1-mutant mice showed marked expansion of myeloid cells in bone marrow, with decreased H3K9me2/3 and increased expression of transposable elements (TEs) in heterochromatin. In humans, ASXL1-mutant CH progresses to chronic monomyelocytic leukemia (CMML); CMML patient samples showed striking upregulation of many TE families, suggesting that ASXL1 mutations compromise heterochromatin integrity, hence causing derepression of TEs. Targeting heterochromatin-associated proteins and TEs might counter the progression of CH, CMML and other myeloid malignancies.
Collapse
|
4
|
Dunn WG, McLoughlin MA, Vassiliou GS. Clonal hematopoiesis and hematological malignancy. J Clin Invest 2024; 134:e180065. [PMID: 39352393 PMCID: PMC11444162 DOI: 10.1172/jci180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Clonal hematopoiesis (CH), the expansion of hematopoietic stem cells and their progeny driven by somatic mutations in leukemia-associated genes, is a common phenomenon that rises in prevalence with advancing age to affect most people older than 70 years. CH remains subclinical in most carriers, but, in a minority, it progresses to a myeloid neoplasm, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. Over the last decade, advances in our understanding of CH, its molecular landscape, and the risks associated with different driver gene mutations have culminated in recent developments that allow for a more precise estimation of myeloid neoplasia risk in CH carriers. In turn, this is leading to the development of translational and clinical programs to intercept and prevent CH from developing into myeloid neoplasia. Here, we give an overview of the spectrum of CH driver mutations, what is known about their pathophysiology, and how this informs the risk of incident myeloid malignancy.
Collapse
Affiliation(s)
- William G. Dunn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Matthew A. McLoughlin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
5
|
Köhnke T, Nuno KA, Alder CC, Gars EJ, Phan P, Fan AC, Majeti R. Human ASXL1-Mutant Hematopoiesis Is Driven by a Truncated Protein Associated with Aberrant Deubiquitination of H2AK119. Blood Cancer Discov 2024; 5:202-223. [PMID: 38359087 PMCID: PMC11061584 DOI: 10.1158/2643-3230.bcd-23-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in additional sex combs like 1 (ASXL1) confer poor prognosis both in myeloid malignancies and in premalignant clonal hematopoiesis (CH). However, the mechanisms by which these mutations contribute to disease initiation remain unresolved, and mutation-specific targeting has remained elusive. To address this, we developed a human disease model that recapitulates the disease trajectory from ASXL1-mutant CH to lethal myeloid malignancy. We demonstrate that mutations in ASXL1 lead to the expression of a functional, truncated protein and determine that truncated ASXL1 leads to global redistribution of the repressive chromatin mark H2AK119Ub, increased transposase-accessible chromatin, and activation of both myeloid and stem cell gene-expression programs. Finally, we demonstrate that H2AK119Ub levels are tied to truncated ASXL1 expression levels and leverage this observation to demonstrate that inhibition of the PRC1 complex might be an ASXL1-mutant-specific therapeutic vulnerability in both premalignant CH and myeloid malignancy. SIGNIFICANCE Mutant ASXL1 is a common driver of CH and myeloid malignancy. Using primary human HSPCs, we determine that truncated ASXL1 leads to redistribution of H2AK119Ub and may affect therapeutic vulnerability to PRC1 inhibition.
Collapse
Affiliation(s)
- Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Kevin A. Nuno
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | | | - Eric J. Gars
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Paul Phan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Amy C. Fan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| |
Collapse
|
6
|
Collins TB, Laranjeira ABA, Kong T, Fulbright MC, Fisher DAC, Sturgeon CM, Batista LFZ, Oh ST. Altered erythropoiesis via JAK2 and ASXL1 mutations in myeloproliferative neoplasms. Exp Hematol 2024; 132:104178. [PMID: 38340948 PMCID: PMC10978257 DOI: 10.1016/j.exphem.2024.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Myeloproliferative neoplasms (MPNs) are driven by hyperactivation of JAK-STAT signaling but can demonstrate skewed hematopoiesis upon acquisition of additional somatic mutations. Here, using primary MPN samples and engineered embryonic stem cells, we demonstrate that mutations in JAK2 induced a significant increase in erythroid colony formation, whereas mutations in additional sex combs-like 1 (ASXL1) led to an erythroid colony defect. RNA-sequencing revealed upregulation of protein arginine methyltransferase 6 (PRMT6) induced by mutant ASXL1. Furthermore, genetic perturbation of PRMT6 exacerbated the MPN disease burden, including leukemic engraftment and splenomegaly, in patient-derived xenograft models, highlighting a novel tumor-suppressive function of PRMT6. However, augmented erythroid potential and bone marrow human CD71+ cells following PRMT6 knockdown were reserved only for primary MPN samples harboring ASXL1 mutations. Last, treatment of CD34+ hematopoietic/stem progenitor cells with the PRMT6 inhibitor EPZ020411 induced expression of genes involved in heme metabolism, hemoglobin, and erythropoiesis. These findings highlight interactions between JAK2 and ASXL1 mutations and a unique erythroid regulatory network in the context of mutant ASXL1.
Collapse
Affiliation(s)
- Taylor B Collins
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Angelo B A Laranjeira
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Tim Kong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mary C Fulbright
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Daniel A C Fisher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Christopher M Sturgeon
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Luis F Z Batista
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO; Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
7
|
Johnson SM, Haberberger J, Galeotti J, Ramkissoon L, Coombs CC, Richardson DR, Foster MC, Duncan D, Montgomery ND, Ferguson NL, Zeidner JF. Comprehensive genomic profiling reveals molecular subsets of ASXL1-mutated myeloid neoplasms. Leuk Lymphoma 2024; 65:209-218. [PMID: 37921062 DOI: 10.1080/10428194.2023.2277672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
A large-scale genomic analysis of patients with ASXL1-mutated myeloid disease has not been performed to date. We reviewed comprehensive genomic profiling results from 6043 adults to characterize clinicopathologic features and co-mutation patterns by ASXL1 mutation status. ASXL1 mutations occurred in 1414 patients (23%). Mutation co-occurrence testing revealed strong co-occurrence (p < 0.01) between mutations in ASXL1 and nine genes (SRSF2, U2AF1, RUNX1, SETBP1, EZH2, STAG2, CUX1, CSF3R, CBL). Further analysis of patients with these co-mutations yielded several novel findings. Co-mutation patterns supported that ASXL1/SF3B1 co-mutation may be biologically distinct from ASXL1/non-SF3B1 spliceosome co-mutation. In AML, ASXL1/SRSF2 co-mutated patients frequently harbored STAG2 mutations (42%), which were dependent on the presence of both ASXL1 and SRSF2 mutation (p < 0.05). STAG2 and SETBP1 mutations were also exclusive in ASXL1/SRSF2 co-mutated patients and associated with divergent chronic myeloid phenotypes. Our findings support that certain multi-mutant genotypes may be biologically relevant in ASXL1-mutated myeloid disease.
Collapse
Affiliation(s)
- Steven M Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | | | - Jonathan Galeotti
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Catherine C Coombs
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- UC Irvine, Irvine, CA, USA
| | - Daniel R Richardson
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew C Foster
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Novartis Pharmaceuticals, Cambridge, MA, USA
| | - Daniel Duncan
- Foundation Medicine, Inc, Cambridge, MA, USA
- GRAIL, Inc, Durham, NC, USA
| | - Nathan D Montgomery
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- NeoGenomics Laboratories, Aliso Viejo, CA, USA
| | | | - Joshua F Zeidner
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Mangione MC, Wen J, Cao DJ. Mechanistic target of rapamycin in regulating macrophage function in inflammatory cardiovascular diseases. J Mol Cell Cardiol 2024; 186:111-124. [PMID: 38039845 PMCID: PMC10843805 DOI: 10.1016/j.yjmcc.2023.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 12/03/2023]
Abstract
The mechanistic target of rapamycin (mTOR) is evolutionarily conserved from yeast to humans and is one of the most fundamental pathways of living organisms. Since its discovery three decades ago, mTOR has been recognized as the center of nutrient sensing and growth, homeostasis, metabolism, life span, and aging. The role of dysregulated mTOR in common diseases, especially cancer, has been extensively studied and reported. Emerging evidence supports that mTOR critically regulates innate immune responses that govern the pathogenesis of various cardiovascular diseases. This review discusses the regulatory role of mTOR in macrophage functions in acute inflammation triggered by ischemia and in atherosclerotic cardiovascular disease (ASCVD) and heart failure with preserved ejection fraction (HFpEF), in which chronic inflammation plays critical roles. Specifically, we discuss the role of mTOR in trained immunity, immune senescence, and clonal hematopoiesis. In addition, this review includes a discussion on the architecture of mTOR, the function of its regulatory complexes, and the dual-arm signals required for mTOR activation to reflect the current knowledge state. We emphasize future research directions necessary to understand better the powerful pathway to take advantage of the mTOR inhibitors for innovative applications in patients with cardiovascular diseases associated with aging and inflammation.
Collapse
Affiliation(s)
- MariaSanta C Mangione
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinhua Wen
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dian J Cao
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; VA North Texas Health Care System, Dallas TX 75216, USA.
| |
Collapse
|
9
|
Yang FC, Agosto-Peña J. Epigenetic regulation by ASXL1 in myeloid malignancies. Int J Hematol 2023; 117:791-806. [PMID: 37062051 DOI: 10.1007/s12185-023-03586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Myeloid malignancies are clonal hematopoietic disorders that are comprised of a spectrum of genetically heterogeneous disorders, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Myeloid malignancies are characterized by excessive proliferation, abnormal self-renewal, and/or differentiation defects of hematopoietic stem cells (HSCs) and myeloid progenitor cells hematopoietic stem/progenitor cells (HSPCs). Myeloid malignancies can be caused by genetic and epigenetic alterations that provoke key cellular functions, such as self-renewal, proliferation, biased lineage commitment, and differentiation. Advances in next-generation sequencing led to the identification of multiple mutations in myeloid neoplasms, and many new gene mutations were identified as key factors in driving the pathogenesis of myeloid malignancies. The polycomb protein ASXL1 was identified to be frequently mutated in all forms of myeloid malignancies, with mutational frequencies of 20%, 43%, 10%, and 20% in MDS, CMML, MPN, and AML, respectively. Significantly, ASXL1 mutations are associated with a poor prognosis in all forms of myeloid malignancies. The fact that ASXL1 mutations are associated with poor prognosis in patients with CMML, MDS, and AML, points to the possibility that ASXL1 mutation is a key factor in the development of myeloid malignancies. This review summarizes the recent advances in understanding myeloid malignancies with a specific focus on ASXL1 mutations.
Collapse
Affiliation(s)
- Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Joel Agosto-Peña
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
10
|
Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol Rev 2023; 103:649-716. [PMID: 36049115 PMCID: PMC9639777 DOI: 10.1152/physrev.00004.2022] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.
Collapse
Affiliation(s)
- Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
11
|
Zhang Z, Sun J. The Origin of Clonal Hematopoiesis and Its Implication in Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:65-83. [PMID: 38228959 DOI: 10.1007/978-981-99-7471-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Clonal expansion of hematopoietic cells is first observed in hematological malignancies where all the leukemic cells can be traced back to a single cell carrying oncogenic alterations. Interestingly, expansion of hematopoietic clones with defined genomic alterations, including single nucleotide variants (SNVs), small insertions and deletions (indels), and large structural chromosomal alterations (CAs), is also found in the healthy population. These genomic changes often affect leukemia driver genes. As a result, healthy individuals bearing such clonal hematopoiesis (CH) are at a higher risk of hematological malignancies. In addition to blood cancers, SNV/indel-related CH has been found associated with elevated cardiovascular and all-cause mortality, indicating adverse impacts of abnormalities in the blood on the normal functions of non-hematological tissues. In the past decade, much effort has been invested in understanding the origins of CH and its causal relationship with diseases in hematological and non-hematological tissues. Here, we review recent progress in these areas and discuss future directions that can be pursued to translate the acquired knowledge into better management of CH-related diseases.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jianlong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
12
|
Nannya Y. Factors associated with clonal hematopoiesis and interaction with marrow environment. J Bone Miner Metab 2022; 41:380-387. [PMID: 36346484 DOI: 10.1007/s00774-022-01380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Clonal hematopoiesis (CH) is an expansion of clones in individuals without any hematologic abnormalities, often carrying the driver mutations implicated in myeloid tumors, such as DNMT3A, TET2, and ASXL1. Most notably, CH is an age-related event, accounting for ~ 10% of cases in people over 60 years old. CH may also be correlated with a previous history of cancer treatment with chemotherapeutic drugs/radiation and infection episodes. The link between aging and CH acquisition is best explained by the enhanced inflammatory level in the bone marrow environment, which in turn expands hematopoietic cell clones with mutations in myeloid drivers. This positive feedback accounts for not only increased incidence of subsequent myeloid tumors in CH carriers but also for increased all-cause mortality and cardiovascular diseases (CVD). Recent evidence from large-scale epidemiological studies with genetic profiles, and mice models that recapitulate hematopoietic clones harboring driver gene mutations has revealed the detailed pathophysiology of CH clones represented by specific driver mutations, especially regarding expansion mechanisms under environmental factors and how they alter the environment. This review introduces the current knowledge of CH with a special focus on its interaction with the marrow environment.
Collapse
Affiliation(s)
- Yasuhito Nannya
- Division of Hematopoietic Disease Control, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
13
|
Di Fede E, Grazioli P, Lettieri A, Parodi C, Castiglioni S, Taci E, Colombo EA, Ancona S, Priori A, Gervasini C, Massa V. Epigenetic disorders: Lessons from the animals–animal models in chromatinopathies. Front Cell Dev Biol 2022; 10:979512. [PMID: 36225316 PMCID: PMC9548571 DOI: 10.3389/fcell.2022.979512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatinopathies are defined as genetic disorders caused by mutations in genes coding for protein involved in the chromatin state balance. So far 82 human conditions have been described belonging to this group of congenital disorders, sharing some molecular features and clinical signs. For almost all of these conditions, no specific treatment is available. For better understanding the molecular cascade caused by chromatin imbalance and for envisaging possible therapeutic strategies it is fundamental to combine clinical and basic research studies. To this end, animal modelling systems represent an invaluable tool to study chromatinopathies. In this review, we focused on available data in the literature of animal models mimicking the human genetic conditions. Importantly, affected organs and abnormalities are shared in the different animal models and most of these abnormalities are reported as clinical manifestation, underlying the parallelism between clinics and translational research.
Collapse
Affiliation(s)
- Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Esi Taci
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Alberto Priori
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
- *Correspondence: Valentina Massa,
| |
Collapse
|
14
|
Min K, Polizio AH, Kour A, Thel MC, Walsh K. Experimental ASXL1-Mediated Clonal Hematopoiesis Promotes Inflammation and Accelerates Heart Failure. J Am Heart Assoc 2022; 11:e026154. [PMID: 36129058 PMCID: PMC9673733 DOI: 10.1161/jaha.122.026154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kyung‐Duk Min
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVA
| | - Ariel H. Polizio
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVA
| | - Anupreet Kour
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVA
| | - Mark C. Thel
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVA
| |
Collapse
|
15
|
Medina EA, Delma CR, Yang FC. ASXL1/2 mutations and myeloid malignancies. J Hematol Oncol 2022; 15:127. [PMID: 36068610 PMCID: PMC9450349 DOI: 10.1186/s13045-022-01336-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Myeloid malignancies develop through the accumulation of genetic and epigenetic alterations that dysregulate hematopoietic stem cell (HSC) self-renewal, stimulate HSC proliferation and result in differentiation defects. The polycomb group (PcG) and trithorax group (TrxG) of epigenetic regulators act antagonistically to regulate the expression of genes key to stem cell functions. The genes encoding these proteins, and the proteins that interact with them or affect their occupancy at chromatin, are frequently mutated in myeloid malignancies. PcG and TrxG proteins are regulated by Enhancers of Trithorax and Polycomb (ETP) proteins. ASXL1 and ASXL2 are ETP proteins that assemble chromatin modification complexes and transcription factors. ASXL1 mutations frequently occur in myeloid malignancies and are associated with a poor prognosis, whereas ASXL2 mutations frequently occur in AML with t(8;21)/RUNX1-RUNX1T1 and less frequently in other subtypes of myeloid malignancies. Herein, we review the role of ASXL1 and ASXL2 in normal and malignant hematopoiesis by summarizing the findings of mouse model systems and discussing their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Edward A Medina
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Caroline R Delma
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Feng-Chun Yang
- Department of Cell Systems and Anatomy, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
16
|
Ye B, Sheng Y, Zhang M, Hu Y, Huang H. Early detection and intervention of clonal hematopoiesis for preventing hematological malignancies. Cancer Lett 2022; 538:215691. [DOI: 10.1016/j.canlet.2022.215691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022]
|
17
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
18
|
Doucette K, Karp J, Lai C. Advances in therapeutic options for newly diagnosed, high-risk AML patients. Ther Adv Hematol 2021; 12:20406207211001138. [PMID: 33995985 PMCID: PMC8111550 DOI: 10.1177/20406207211001138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by clonal proliferation of neoplastic immature precursor cells. AML impacts older adults and has a poor prognosis. Despite recent advances in treatment, AML is complex, with both genetic and epigenetic aberrations in the malignant clone and elaborate interactions with its microenvironment. We are now able to stratify patients on the basis of specific clinical and molecular features in order to optimize individual treatment strategies. However, our understanding of the complex nature of these molecular abnormalities continues to expand the defining characteristics of high-risk mutations. In this review, we focus on genetic and microenvironmental factors in adverse risk AML that play critical roles in leukemogenesis, including those not described in an European LeukemiaNet adverse risk group, and describe therapies that are currently in the clinical arena, either approved or under development.
Collapse
Affiliation(s)
- Kimberley Doucette
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Judith Karp
- Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Catherine Lai
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA
| |
Collapse
|
19
|
Benlabiod C, Dagher T, Marty C, Villeval JL. Lessons from mouse models of MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:125-185. [PMID: 35153003 DOI: 10.1016/bs.ircmb.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past decades, a variety of MPN mouse models have been developed to express in HSC the main mutations identified in patients: JAK2V617F, CALRdel52 or ins5 and MPLW515L. These models mimic quite faithfully human PV or ET with their natural evolutions into MF and their hemostasis complications, demonstrating the driver function of these mutations in MPN. Here, we review these models and show how they have improved our general understanding of MPN regarding (1) the mechanisms of fibrosis, thrombosis/hemorrhages and disease initiation, (2) the roles of additional mutations and signaling pathways in disease progression and (3) the preclinical development of novel therapies. We also address controversial results between these models and remind how these models may differ from human MPN onset and also how basically mice are not humans, encouraging caution when one draw lessons from mice to humans. Furthermore, the contribution of germline genetic predisposition, HSC and niche aging, metabolic, oxidative, replicative or genotoxic stress, inflammation, immune escape and additional mutations need to be considered in further investigations to encompass the full complexity of human MPN in mice.
Collapse
Affiliation(s)
- Camelia Benlabiod
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Tracy Dagher
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Caroline Marty
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| | - Jean-Luc Villeval
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| |
Collapse
|
20
|
D'Altri T, Wilhelmson AS, Schuster MB, Wenzel A, Kalvisa A, Pundhir S, Meldgaard Hansen A, Porse BT. The ASXL1-G643W variant accelerates the development of CEBPA mutant acute myeloid leukemia. Haematologica 2021; 106:1000-1007. [PMID: 32381577 PMCID: PMC8017816 DOI: 10.3324/haematol.2019.235150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
ASXL1 is one of the most commonly mutated genes in myeloid malignancies, including myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In order to further our understanding of the role of ASXL1 lesions in malignant hematopoiesis, we generated a novel knockin mouse model carrying the most frequent ASXL1 mutation identified in MDS patients, ASXL1 p.G643WfsX12. Mutant mice neither displayed any major hematopoietic defects nor developed any apparent hematological disease. In AML patients, ASXL1 mutations co-occur with mutations in CEBPA and we therefore generated compound Cebpa and Asxl1 mutated mice. Using a transplantation model, we found that the mutated Asxl1 allele significantly accelerated disease development in a CEBPA mutant context. Importantly, we demonstrated that, similar to the human setting, Asxl1 mutated mice responded poorly to chemotherapy. This model therefore constitutes an excellent experimental system for further studies into the clinically important question of chemotherapy resistance mediated by mutant ASXL1.
Collapse
Affiliation(s)
- Teresa D'Altri
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anna S Wilhelmson
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Mikkel B Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anne Wenzel
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Adrija Kalvisa
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anne Meldgaard Hansen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
21
|
Abstract
This article reviews the genetic data on epigenetic modifying mutations in myeloproliferative neoplasms and their clinical implications, preclinical studies exploring our current understanding of how mutations in epigenetic modifying proteins cooperate with myeloproliferative neoplasms drivers to promote disease progression, and recent advances in novel therapeutics supporting the role of targeting epigenetic pathways to treat fibrotic progression.
Collapse
Affiliation(s)
- Andrew Dunbar
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Young Park
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Ross Levine
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA.
| |
Collapse
|
22
|
Fujino T, Goyama S, Sugiura Y, Inoue D, Asada S, Yamasaki S, Matsumoto A, Yamaguchi K, Isobe Y, Tsuchiya A, Shikata S, Sato N, Morinaga H, Fukuyama T, Tanaka Y, Fukushima T, Takeda R, Yamamoto K, Honda H, Nishimura EK, Furukawa Y, Shibata T, Abdel-Wahab O, Suematsu M, Kitamura T. Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nat Commun 2021; 12:1826. [PMID: 33758188 PMCID: PMC7988019 DOI: 10.1038/s41467-021-22053-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Somatic mutations of ASXL1 are frequently detected in age-related clonal hematopoiesis (CH). However, how ASXL1 mutations drive CH remains elusive. Using knockin (KI) mice expressing a C-terminally truncated form of ASXL1-mutant (ASXL1-MT), we examined the influence of ASXL1-MT on physiological aging in hematopoietic stem cells (HSCs). HSCs expressing ASXL1-MT display competitive disadvantage after transplantation. Nevertheless, in genetic mosaic mouse model, they acquire clonal advantage during aging, recapitulating CH in humans. Mechanistically, ASXL1-MT cooperates with BAP1 to deubiquitinate and activate AKT. Overactive Akt/mTOR signaling induced by ASXL1-MT results in aberrant proliferation and dysfunction of HSCs associated with age-related accumulation of DNA damage. Treatment with an mTOR inhibitor rapamycin ameliorates aberrant expansion of the HSC compartment as well as dysregulated hematopoiesis in aged ASXL1-MT KI mice. Our findings suggest that ASXL1-MT provokes dysfunction of HSCs, whereas it confers clonal advantage on HSCs over time, leading to the development of CH.
Collapse
Affiliation(s)
- Takeshi Fujino
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Susumu Goyama
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, and Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Shinjuku-ku, Tokyo Japan
| | - Daichi Inoue
- grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan−Kettering Cancer Center and Weill Cornell Medical College, New York, USA ,grid.417982.10000 0004 0623 246XDepartment of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe City, Hyogo Japan
| | - Shuhei Asada
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan ,grid.410818.40000 0001 0720 6587Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo Japan
| | - Satoshi Yamasaki
- grid.26999.3d0000 0001 2151 536XLaboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Akiko Matsumoto
- grid.26999.3d0000 0001 2151 536XLaboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Kiyoshi Yamaguchi
- grid.26999.3d0000 0001 2151 536XDivision of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Yumiko Isobe
- grid.26999.3d0000 0001 2151 536XDivision of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Akiho Tsuchiya
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Shiori Shikata
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Naru Sato
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Hironobu Morinaga
- grid.265073.50000 0001 1014 9130Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo Japan
| | - Tomofusa Fukuyama
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Yosuke Tanaka
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Tsuyoshi Fukushima
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Reina Takeda
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Keita Yamamoto
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Hiroaki Honda
- grid.410818.40000 0001 0720 6587Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo Japan
| | - Emi K. Nishimura
- grid.265073.50000 0001 1014 9130Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo Japan
| | - Yoichi Furukawa
- grid.26999.3d0000 0001 2151 536XDivision of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Tatsuhiro Shibata
- grid.26999.3d0000 0001 2151 536XLaboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Omar Abdel-Wahab
- grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan−Kettering Cancer Center and Weill Cornell Medical College, New York, USA
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, and Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Shinjuku-ku, Tokyo Japan
| | - Toshio Kitamura
- grid.26999.3d0000 0001 2151 536XDivision of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| |
Collapse
|
23
|
Asxl1 C-terminal mutation perturbs neutrophil differentiation in zebrafish. Leukemia 2021; 35:2299-2310. [PMID: 33483612 PMCID: PMC8324474 DOI: 10.1038/s41375-021-01121-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
Abstract
ASXL1 is one of the most frequently mutated genes in malignant myeloid diseases. In patients with myeloid malignancies, ASXL1 mutations are usually heterozygous frameshift or nonsense mutations leading to C-terminal truncation. Current disease models have predominantly total loss of ASXL1 or overexpressed C-terminal truncations. These models cannot fully recapitulate leukemogenesis and disease progression. We generated an endogenous C-terminal-truncated Asxl1 mutant in zebrafish that mimics human myeloid malignancies. At the embryonic stage, neutrophil differentiation was explicitly blocked. At 6 months, mutants initially exhibited a myelodysplastic syndrome-like phenotype with neutrophilic dysplasia. At 1 year, about 13% of mutants further acquired the phenotype of monocytosis, which mimics chronic myelomonocytic leukemia, or increased progenitors, which mimics acute myeloid leukemia. These features are comparable to myeloid malignancy progression in humans. Furthermore, transcriptome analysis, inhibitor treatment, and rescue assays indicated that asxl1-induced neutrophilic dysplasia was associated with reduced expression of bmi1a, a subunit of polycomb repressive complex 1 and a reported myeloid leukemia-associated gene. Our model demonstrated that neutrophilic dysplasia caused by asxl1 mutation is a foundation for the progression of myeloid malignancies, and illustrated a possible effect of the Asxl1-Bmi1a axis on regulating neutrophil development.
Collapse
|
24
|
Kurosawa S, Iwama A. Aging and leukemic evolution of hematopoietic stem cells under various stress conditions. Inflamm Regen 2020; 40:29. [PMID: 33292805 PMCID: PMC7643313 DOI: 10.1186/s41232-020-00138-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have self-renewal capacity and differentiation potential into all lineages of blood cells throughout the lifetime of an organism. The function of HSCs gradually changes during aging. To date, various stress factors influencing HSC aging have been identified. The increased production of reactive oxygen species and DNA damage responses are causatively attributed to HSC aging. The increased apolarity is a prominent feature of aged HSCs, whereas it is less obvious in young HSCs. The bone marrow (BM) microenvironment niche is a crucial factor for HSC aging. Mesenchymal stem cells show skewed differentiation during aging, which leads to decreased bone formation and increased adipogenesis. The accumulation of adipocytes confers negative effects on hematopoiesis. Loss of sympathetic nerve fibers or adrenoreceptor β3 signaling induces premature HSC and niche aging. Epigenetic regulators such as polycomb group proteins and the sirtuin family of proteins act to prevent premature aging. Targeting these factors, several rejuvenation strategies for aged HSCs have been employed in mice. However, we still do not know whether these strategies can be extrapolated to human HSCs. Aging is frequently accompanied by the development of clonal hematopoiesis, which is called age-related clonal hematopoiesis (ARCH) or clonal hematopoiesis of indeterminate potential (CHIP). Most ARCH/CHIP mutations occur in genes encoding epigenetic regulators including DNMT3A, TET2, and ASXL1, which suggests the relevance of epigenetic drift during the aging process. ARCH/CHIP is a strong risk factor for subsequent hematologic cancer. Notably, it also has an impact on the development of non-malignant disorders such as coronary heart disease. Further studies are warranted to decipher the complete picture of molecular crosstalk that regulates HSC aging.
Collapse
Affiliation(s)
- Shuhei Kurosawa
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
25
|
Xia YK, Zeng YR, Zhang ML, Liu P, Liu F, Zhang H, He CX, Sun YP, Zhang JY, Zhang C, Song L, Ding C, Tang YJ, Yang Z, Yang C, Wang P, Guan KL, Xiong Y, Ye D. Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein Cell 2020; 12:557-577. [PMID: 32683582 PMCID: PMC8225741 DOI: 10.1007/s13238-020-00754-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
Additional sex combs-like 1 (ASXL1) interacts with BRCA1-associated protein 1 (BAP1) deubiquitinase to oppose the polycomb repressive complex 1 (PRC1)-mediated histone H2A ubiquitylation. Germline BAP1 mutations are found in a spectrum of human malignancies, while ASXL1 mutations recurrently occur in myeloid neoplasm and are associated with poor prognosis. Nearly all ASXL1 mutations are heterozygous frameshift or nonsense mutations in the middle or to a less extent the C-terminal region, resulting in the production of C-terminally truncated mutant ASXL1 proteins. How ASXL1 regulates specific target genes and how the C-terminal truncation of ASXL1 promotes leukemogenesis are unclear. Here, we report that ASXL1 interacts with forkhead transcription factors FOXK1 and FOXK2 to regulate a subset of FOXK1/K2 target genes. We show that the C-terminally truncated mutant ASXL1 proteins are expressed at much higher levels than the wild-type protein in ASXL1 heterozygous leukemia cells, and lose the ability to interact with FOXK1/K2. Specific deletion of the mutant allele eliminates the expression of C-terminally truncated ASXL1 and increases the association of wild-type ASXL1 with BAP1, thereby restoring the expression of BAP1-ASXL1-FOXK1/K2 target genes, particularly those involved in glucose metabolism, oxygen sensing, and JAK-STAT3 signaling pathways. In addition to FOXK1/K2, we also identify other DNA-binding transcription regulators including transcription factors (TFs) which interact with wild-type ASXL1, but not C-terminally truncated mutant. Our results suggest that ASXL1 mutations result in neomorphic alleles that contribute to leukemogenesis at least in part through dominantly inhibiting the wild-type ASXL1 from interacting with BAP1 and thereby impairing the function of ASXL1-BAP1-TF in regulating target genes and leukemia cell growth.
Collapse
Affiliation(s)
- Yu-Kun Xia
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Yi-Rong Zeng
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Meng-Li Zhang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Peng Liu
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Fang Liu
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai, 200032, China.,Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chen-Xi He
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China
| | - Yi-Ping Sun
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Jin-Ye Zhang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Cheng Zhang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.,National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yu-Jie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhen Yang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China
| | - Chen Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai, 200032, China.,Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pu Wang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Dan Ye
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China. .,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China. .,Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Panuzzo C, Signorino E, Calabrese C, Ali MS, Petiti J, Bracco E, Cilloni D. Landscape of Tumor Suppressor Mutations in Acute Myeloid Leukemia. J Clin Med 2020; 9:jcm9030802. [PMID: 32188030 PMCID: PMC7141302 DOI: 10.3390/jcm9030802] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia is mainly characterized by a complex and dynamic genomic instability. Next-generation sequencing has significantly improved the ability of diagnostic research to molecularly characterize and stratify patients. This detailed outcome allowed the discovery of new therapeutic targets and predictive biomarkers, which led to develop novel compounds (e.g., IDH 1 and 2 inhibitors), nowadays commonly used for the treatment of adult relapsed or refractory AML. In this review we summarize the most relevant mutations affecting tumor suppressor genes that contribute to the onset and progression of AML pathology. Epigenetic modifications (TET2, IDH1 and IDH2, DNMT3A, ASXL1, WT1, EZH2), DNA repair dysregulation (TP53, NPM1), cell cycle inhibition and deficiency in differentiation (NPM1, CEBPA, TP53 and GATA2) as a consequence of somatic mutations come out as key elements in acute myeloid leukemia and may contribute to relapse and resistance to therapies. Moreover, spliceosomal machinery mutations identified in the last years, even if in a small cohort of acute myeloid leukemia patients, suggested a new opportunity to exploit therapeutically. Targeting these cellular markers will be the main challenge in the near future in an attempt to eradicate leukemia stem cells.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Elisabetta Signorino
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Chiara Calabrese
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Muhammad Shahzad Ali
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10124 Turin, Italy;
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
- Correspondence: ; Tel.: +39-011-9026610; Fax: +39-011-9038636
| |
Collapse
|
27
|
Luo BQ, Dong F, Ema MXF. [Clonal evolution of myelodysplastic syndrome]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 40:1060-1064. [PMID: 32023745 PMCID: PMC7342683 DOI: 10.3760/cma.j.issn.0253-2727.2019.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- B Q Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - F Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - M X F Ema
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
28
|
Marneth AE, Mullally A. The Molecular Genetics of Myeloproliferative Neoplasms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034876. [PMID: 31548225 DOI: 10.1101/cshperspect.a034876] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activated JAK-STAT signaling is central to the pathogenesis of BCR-ABL-negative myeloproliferative neoplasms (MPNs) and occurs as a result of MPN phenotypic driver mutations in JAK2, CALR, or MPL The spectrum of concomitant somatic mutations in other genes has now largely been defined in MPNs. With the integration of targeted next-generation sequencing (NGS) panels into clinical practice, the clinical significance of concomitant mutations in MPNs has become clearer. In this review, we describe the consequences of concomitant mutations in the most frequently mutated classes of genes in MPNs: (1) DNA methylation pathways, (2) chromatin modification, (3) RNA splicing, (4) signaling pathways, (5) transcription factors, and (6) DNA damage response/stress signaling. The increased use of molecular genetics for early risk stratification of patients brings the possibility of earlier intervention to prevent disease progression in MPNs. However, additional studies are required to decipher underlying molecular mechanisms and effectively target them.
Collapse
Affiliation(s)
- Anna E Marneth
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute, Cambridge, Massachusetts 02142, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Fujino T, Kitamura T. ASXL1 mutation in clonal hematopoiesis. Exp Hematol 2020; 83:74-84. [PMID: 31945396 DOI: 10.1016/j.exphem.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
Recent advances in DNA sequencing technologies have enhanced our knowledge about several diseases. Coupled with easy accessibility to blood samples, hematology plays a leading role in understanding the process of carcinogenesis. Clonal hematopoiesis (CH) with somatic mutations is observed in at least 10% of people over 65 years of age, without apparent hematologic disorders. CH is associated with increased risk of hematologic malignancies, which is indicative of a pre-malignant condition. Therefore, a better understanding of CH will help elucidate the mechanism of multi-step tumorigenesis in the hematopoietic system. Somatic mutations of ASXL1 are frequently detected in CH and myeloid malignancies. Although ASXL1 does not have any catalytic activity, it is involved in multiple histone modifications including H3K4me3, H3K27me3, and H2AK119Ub, suggesting its function as a scaffolding protein. Most ASXL1 mutations detected in CH and myeloid malignancies are frameshift or nonsense mutations of the last exon, generating a C-terminally truncated protein. Deletion of Asxl1 or expression of mutant ASXL1 in mice alters histone modifications and facilitates aberrant gene expression, resulting in myeloid transformation. On the contrary, these mice exhibit impaired functioning of hematopoietic stem cells (HSCs), suggesting the negative effects of ASXL1 mutations on stem cell function. Thus, how ASXL1 mutations induce a clonal advantage of hematopoietic cells and subsequent CH development has not been elucidated. Here, we have reviewed the current literature that enhances our understanding of ASXL1, including its mutational landscape, function, and involvement of its mutation in pathogenesis of CH and myeloid malignancies. Finally, we discuss the potential causes of CH harboring ASXL1 mutations with our latest knowledge.
Collapse
Affiliation(s)
- Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
30
|
Zhang X, Jin J, Yu W. ASXL2 mutation is recurrent in non-de novo AML1-ETO-negative acute myeloid leukemia. Ann Hematol 2019; 98:2621-2623. [PMID: 31637484 DOI: 10.1007/s00277-019-03804-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China.,Institute of Hematology, Zhejiang University, Zhejiang, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Zhejiang, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Zhejiang, Hangzhou, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Zhejiang, Hangzhou, China.
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Zhejiang, Hangzhou, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Zhejiang, Hangzhou, China.
| |
Collapse
|
31
|
Nagata Y, Maciejewski JP. The functional mechanisms of mutations in myelodysplastic syndrome. Leukemia 2019; 33:2779-2794. [PMID: 31673113 DOI: 10.1038/s41375-019-0617-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Overlapping spectrum of mutated genes affected in myelodysplastic syndrome (MDS) and primary acute myeloid leukemia suggest common pathogenic mechanisms. However, the frequencies of specific mutations are significantly different between them, which implies they might determine specific disease phenotype. For instance, there are overrepresentations of mutations in RNA splicing factors or epigenetic regulators in MDS. We provide an overview of recent advances in our understanding of the biology of MDS and related disorders. Our focus is how mutations of in splicing factors or epigenetic regulators identified in MDS patients demonstrate phenotypes in knockin/knockout mouse models. For instance, mutant Srsf2 mice could alter Srsf2's normal sequence-specific RNA binding activity. It exhibited changing in the recognition of specific exonic splicing enhancer motifs to drive recurrent missplicing of Ezh2, which reduces Ezh2 expression by promoting nonsense-mediated decay. Consistent with this, SRSF2 mutations are mutually exclusive with EZH2 loss-of-function mutations in MDS patients. We also review how gene editing technology identified unique associations between pathogenic mechanisms and targeted therapy using lenalidomide, including: (i) how haploinsufficiency of the genes located in the commonly deleted region in del(5q) MDS patients promotes MDS; (ii) how lenalidomide causes selective elimination of del(5q) MDS cells; and (iii) why del(5q) MDS patients become resistant to lenalidomide. Thus, this review describes our current understanding of the mechanistic and biological effects of mutations in spliceosome and epigenetic regulators by comparing wild-type normal to mutant function as well as a brief overview of the recent progresses in MDS biology.
Collapse
Affiliation(s)
- Yasunobu Nagata
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH, USA.
| |
Collapse
|
32
|
Asada S, Fujino T, Goyama S, Kitamura T. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci 2019; 76:2511-2523. [PMID: 30927018 PMCID: PMC11105736 DOI: 10.1007/s00018-019-03084-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
Abstract
Recent high-throughput genome-wide sequencing studies have identified recurrent somatic mutations in myeloid neoplasms. An epigenetic regulator, Additional sex combs-like 1 (ASXL1), is one of the most frequently mutated genes in all subtypes of myeloid malignancies. ASXL1 mutations are also frequently detected in clonal hematopoiesis, which is associated with an increased risk of mortality. Therefore, it is important to understand how ASXL1 mutations contribute to clonal expansion and myeloid transformation in hematopoietic cells. Studies using ASXL1-depleted human hematopoietic cells and Asxl1 knockout mice have shown that deletion of wild-type ASXL1 protein leads to impaired hematopoiesis and accelerates myeloid malignancies via loss of interaction with polycomb repressive complex 2 proteins. On the other hand, ASXL1 mutations in myeloid neoplasms typically occur near the last exon and result in the expression of C-terminally truncated mutant ASXL1 protein. Biological studies and biochemical analyses of this variant have shed light on its dominant-negative and gain-of-function features in myeloid transformation via a variety of epigenetic changes. Based on these results, it would be possible to establish novel promising therapeutic strategies for myeloid malignancies harboring ASXL1 mutations by blocking interactions between ASXL1 and associating epigenetic regulators. Here, we summarize the clinical implications of ASXL1 mutations, the role of wild-type ASXL1 in normal hematopoiesis, and oncogenic functions of mutant ASXL1 in myeloid neoplasms.
Collapse
Affiliation(s)
- Shuhei Asada
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan.
| |
Collapse
|
33
|
Gjini E, Jing CB, Nguyen AT, Reyon D, Gans E, Kesarsing M, Peterson J, Pozdnyakova O, Rodig SJ, Mansour MR, Joung K, Look AT. Disruption of asxl1 results in myeloproliferative neoplasms in zebrafish. Dis Model Mech 2019; 12:dmm035790. [PMID: 31064769 PMCID: PMC6550042 DOI: 10.1242/dmm.035790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023] Open
Abstract
Somatic loss-of-function mutations of the additional sex combs-like transcriptional regulator 1 (ASXL1) gene are common genetic abnormalities in human myeloid malignancies and induce clonal expansion of mutated hematopoietic stem cells (HSCs). To understand how ASXL1 disruption leads to myeloid cell transformation, we generated asxl1 haploinsufficient and null zebrafish lines using genome-editing technology. Here, we show that homozygous loss of asxl1 leads to apoptosis of newly formed HSCs. Apoptosis occurred via the mitochondrial apoptotic pathway mediated by upregulation of bim and bid Half of the asxl1+/- zebrafish had myeloproliferative neoplasms (MPNs) by 5 months of age. Heterozygous loss of asxl1 combined with heterozygous loss of tet2 led to a more penetrant MPN phenotype, while heterozygous loss of asxl1 combined with complete loss of tet2 led to acute myeloid leukemia (AML). These findings support the use of asxl1+/- zebrafish as a strategy to identify small-molecule drugs to suppress the growth of asxl1 mutant but not wild-type HSCs in individuals with somatically acquired inactivating mutations of ASXL1.
Collapse
Affiliation(s)
- Evisa Gjini
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| | - Chang-Bin Jing
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| | - Ashley T Nguyen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| | - Deepak Reyon
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Emma Gans
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| | - Michiel Kesarsing
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| | - Joshua Peterson
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Marc R Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6AG, United Kingdom
| | - Keith Joung
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts 02215, USA
| |
Collapse
|
34
|
Abstract
A number of recent epidemiological studies have associated the clonal expansion of hematopoietic cells, a process referred to as clonal hematopoiesis, with increased mortality. Clonal hematopoiesis increases the risk of hematological cancer, but this overall risk cannot account for the increase in mortality in the general population. Surprisingly, these mutations have also been associated with higher rates of cardiovascular disease, suggesting a previously unrecognized link between somatic mutations in hematopoietic cells and chronic disease. Here, we review recent epidemiological and experimental studies on clonal hematopoiesis that relate to cardiovascular disease.
Collapse
Affiliation(s)
- Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| |
Collapse
|
35
|
Asada S, Kitamura T. Aberrant histone modifications induced by mutant ASXL1 in myeloid neoplasms. Int J Hematol 2018; 110:179-186. [PMID: 30515738 DOI: 10.1007/s12185-018-2563-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022]
Abstract
An epigenetic modulator Additional sex combs-like 1 (ASXL1) is recurrently mutated in myeloid neoplasms such as myelodysplastic syndromes (MDS), acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs). ASXL1 mutations are also frequently detected in clonal hematopoiesis with indeterminate potential (CHIP), which is the clonal expansion of premalignant hematopoietic cells without any evidence of hematological malignancies. Thus, understanding the roles of ASXL1 in hematopoiesis and myeloid neoplasms is a clinically crucial issue. ASXL1 mutations in hematological neoplasms are typically frameshift or nonsense mutations and occur near the 5' end of the last exon, thereby the transcripts would escape from nonsense-mediated decay, Indeed, we identified the C-terminally truncated mutant protein of ASXL1 in several cell lines derived from patients with myeloid leukemia. In mouse models, expression of the mutant ASXL1 results in impaired hematopoiesis and promotes development of myeloid neoplasms. In addition, recent findings from biochemical analysis have demonstrated that the mutant ASXL1 protein gains new functions including enhancing catalytic activity of BRCA1-associated protein 1 (BAP1), resulting in reduction of H2AK119ub and aberrant gene expression essential for myeloid transformation. In this review, we will focus on the pivotal roles of the mutant ASXL1 on histone modifications and myeloid transformation.
Collapse
Affiliation(s)
- Shuhei Asada
- Division of Cellular Therapy, Advanced Clinical Research Center, Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan.
| |
Collapse
|
36
|
Abstract
FLT3 mutations are one of the most common findings in acute myeloid leukemia (AML). FLT3 inhibitors have been in active clinical development. Midostaurin as the first-in-class FLT3 inhibitor has been approved for treatment of patients with FLT3-mutated AML. In this review, we summarized the preclinical and clinical studies on new FLT3 inhibitors, including sorafenib, lestaurtinib, sunitinib, tandutinib, quizartinib, midostaurin, gilteritinib, crenolanib, cabozantinib, Sel24-B489, G-749, AMG 925, TTT-3002, and FF-10101. New generation FLT3 inhibitors and combination therapies may overcome resistance to first-generation agents.
Collapse
Affiliation(s)
- Mei Wu
- Department of Hematology, The People’s Hospital of Bozhou, Bozhou, 236800 China
| | - Chuntuan Li
- Department of Hematology, First Hospital of Quanzhou affiliated to Fujian Medical University, Quanzhou, 362000 China
| | - Xiongpeng Zhu
- Department of Hematology, First Hospital of Quanzhou affiliated to Fujian Medical University, Quanzhou, 362000 China
| |
Collapse
|
37
|
Ciboddo M, Mullally A. JAK2 (and other genes) be nimble with MPN diagnosis, prognosis, and therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:110-117. [PMID: 30504299 PMCID: PMC6246021 DOI: 10.1182/asheducation-2018.1.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Now that the spectrum of somatic mutations that initiate, propagate, and drive the progression of myeloproliferative neoplasms (MPNs) has largely been defined, recent efforts have focused on integrating this information into clinical decision making. In this regard, the greatest progress has been made in myelofibrosis, in which high-molecular-risk mutations have been identified and incorporated into prognostic models to help guide treatment decisions. In this chapter, we focus on advances in 4 main areas: (1) What are the MPN phenotypic driver mutations? (2) What constitutes high molecular risk in MPN (focusing on ASXL1)? (3) How do we risk-stratify patients with MPN? And (4) What is the significance of molecular genetics for MPN treatment? Although substantial progress has been made, we still have an incomplete understanding of the molecular basis for phenotypic diversity in MPN, and few rationally designed therapeutic approaches to target high-risk mutations are available. Ongoing research efforts in these areas are critical to understanding the biological consequences of genetic heterogeneity in MPN and to improving outcomes for patients.
Collapse
Affiliation(s)
- Michele Ciboddo
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; and
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
38
|
Gu R, Yang X, Wei H. Molecular landscape and targeted therapy of acute myeloid leukemia. Biomark Res 2018; 6:32. [PMID: 30455953 PMCID: PMC6225571 DOI: 10.1186/s40364-018-0146-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022] Open
Abstract
For decades, genetic aberrations including chromosome and molecular abnormalities are important diagnostic and prognostic factors in acute myeloid leukemia (AML). ATRA and imatinib have been successfully used in AML and chronic myelogenous leukemia, which proved that targeted therapy by identifying molecular lesions could improve leukemia outcomes. Recent advances in next generation sequencing have revealed molecular landscape of AML, presenting us with many molecular abnormalities. The individual prognostic information derived from a specific mutation could be modified by other molecular lesions. Therefore, the genomic complexity in AML poses a huge challenge to successful translation into more accurate risk stratification and targeted therapy. Herein, a summary of these mutations and targeted therapies are described. We focus on the prognostic information of recent identified molecular lesions and emerging targeted therapy.
Collapse
Affiliation(s)
- Runxia Gu
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 People’s Republic of China
| | - Xue Yang
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 People’s Republic of China
| | - Hui Wei
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 People’s Republic of China
| |
Collapse
|
39
|
Uni M, Masamoto Y, Sato T, Kamikubo Y, Arai S, Hara E, Kurokawa M. Modeling ASXL1 mutation revealed impaired hematopoiesis caused by derepression of p16Ink4a through aberrant PRC1-mediated histone modification. Leukemia 2018; 33:191-204. [PMID: 29967380 DOI: 10.1038/s41375-018-0198-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/19/2018] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
Abstract
In spite of distinct clinical importance, the molecular mechanisms how Additional sex combs-like 1 (ASXL1) mutation contributes to the pathogenesis of premalignant conditions are largely unknown. Here, with newly generated knock-in mice, we investigated the biological effects of the mutant. Asxl1G643fs heterozygous (Asxl1G643fs/+) mice developed phenotypes recapitulating human low-risk myelodysplastic syndromes (MDS), and some of them developed MDS/myeloproliferative neoplasm-like disease after long latency. H2AK119ub1 level around the promoter region of p16Ink4a was significantly decreased in Asxl1G643fs/+ hematopoietic stem cells (HSC), suggesting perturbation of Bmi1-driven H2AK119ub1 histone modification by mutated Asxl1. The mutant form of ASXL1 had no ability to interact with BMI1 as opposed to wild-type ASXL1 protein. Restoration of HSC pool and amelioration of increased apoptosis in hematopoietic stem and progenitor cells were obtained from Asxl1G643fs/+ mice heterozygous for p16Ink4a. These results indicated that loss of protein interaction between Asxl1 mutant and Bmi1 affected the activity of PRC1, and subsequent derepression of p16Ink4a by aberrant histone ubiquitination could induce cellular senescence, resulting in low-risk MDS-like phenotypes in Asxl1G643fs/+ mice. This model provides a useful platform to unveil the molecular basis for hematological disorders induced by ASXL1 mutation and to develop therapeutic strategies for these patients.
Collapse
Affiliation(s)
- Masahiro Uni
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Yosuke Masamoto
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomohiko Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Yasuhiko Kamikubo
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunya Arai
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
40
|
|