1
|
Xu J, Wu Q, Rao Y, Li Z, He W, Sun W, Zheng J, Wang Q, Tang A. Establishment of human acute monocytic leukemia model with systemic infiltration in NPG mice. Histol Histopathol 2024; 39:1517-1526. [PMID: 38634557 DOI: 10.14670/hh-18-742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
A model construction of systemic acute leukemia is challenging. Herein, we established a systemic leukemia mouse model using highly immunodeficient NPG mice without any immunosuppressive treatments. NPG mice received tail intravenous injection of SHI-1 cells at the concentration of 1×107 cells (group A) or 5×107 cells (group B) and randomly sacrificed each seven days post-inoculation. Tumor development was monitored using nested-PCR, peripheral blood-smear analysis, flow cytometry, pathological examinations, and immunohistochemistry. The median survival of mice in groups A and B were 33.0 and 30.0 days, respectively. Blast cells in peripheral blood appeared on day 14 in group B, and on day 21 in group A. In addition, SHI-1 cell specific MLL-AF6 mRNA was detected in both spleen and bone marrow on day 14 post-inoculation. 21 days after inoculation, we observed human CD45+CD33+ cells with an SH-1-immunophenotype in the peripheral blood, spleen, and bone marrow, as well as solid neoplasms in multiple organs. Moreover, the histologically infiltrated leukemic cells expressed CD45. In conclusion, the current study demonstrated the normal growth of SHI-1 cells in the NPG mice without immunosuppression, which caused systemic leukemia similar to that observed in acute leukemia patients. We developed an efficient and reproducible model to study leukemia pathogenesis and progression.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Qiong Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Yanfei Rao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Zhenjiang Li
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China.
| | - Wenfeng He
- Key Laboratory of Molecular Medicine of Jiangxi, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Wanlei Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jifu Zheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Qingming Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Aiping Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| |
Collapse
|
2
|
Kushwaha AC, Mrunalini B, Malhotra P, Roy Choudhury S. CD56-targeted in vivo genetic engineering of natural killer cells mediates immunotherapy for acute myeloid leukemia. NANOSCALE 2024; 16:19743-19755. [PMID: 39363829 DOI: 10.1039/d4nr02692f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy that starts from bone marrow and spreads to other organs. At the time of diagnosis, both innate and defective natural killer (NK) cells are present in AML patients. The dysfunction of the NK cells is due to the absence of NK cell receptors such as NKG2D on tumor cells that help with tumor immune escape, and also the polycomb protein, EzH2, which plays an important role in the commitment and differentiation of NK cells. The inhibition of EzH2 activates NK cells towards enhanced lytic activity. However, the adoptive transfer of NK cells for cancer treatment is still under scrutiny due to limitations like production cost, vein-to-vein time, and complicated experimental procedures. In order to circumvent these issues, here, in vivo CD56+ NK cell genetic engineering is hypothesized through the CD56-directed delivery of the pSMP-EzH2 shRNA plasmid encapsulated in chitosan nanoparticles (pEzH2@CSNPs@CD56). The pSMP-EzH2 shRNA plasmid was encapsulated in chitosan nanoparticles followed by CD56 antibody conjugation through EDC-NHS chemistry. CD56 antibody-conjugated nanoparticles selectively target CD56+ NK cells and downregulate EzH2 expression in CD56+ NK cells of human PBMCs. The in vitro CD56+ CD3- NK cells were enriched and stably suppressed EzH2 expression to prepare adoptive CD56+ CD3- NK (EzH2-) cells for anti-AML immunotherapy. The in vitro NK (EzH2-) cells and pEzH2@CSNPs@CD56 reduced splenomegaly while immunophenotyping revealed in vivo downregulation of the c-Kit+ leukemia stem cell population along with upregulation of the differentiation markers CD11b and Gr-1 in the peripheral blood and bone marrow of AML1-ETO9a-induced xenograft nude mice. CD56+CD3- and CD56+CD38+ cell populations were significantly increased in the peripheral blood and bone marrow, which indicated NK cell-mediated AML cell killing took place suggesting that use of pEzH2@CSNPs@CD56 is a safe and viable strategy for NK cell-mediated anti-AML immunotherapy.
Collapse
Affiliation(s)
- Avinash Chandra Kushwaha
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Boddu Mrunalini
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Pankaj Malhotra
- Department of Clinical Hematology & Medical Oncology, Room No 18, 4th Level, F Block, Nehru Hospital, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh 160020, India
| | - Subhasree Roy Choudhury
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
3
|
Zhang J, Zhou L, Zhao S, El-Deiry WS. Regorafenib synergizes with TAS102 against multiple gastrointestinal cancers and overcomes cancer stemness, trifluridine-induced angiogenesis, ERK1/2 and STAT3 signaling regardless of KRAS or BRAF mutational status. Oncotarget 2024; 15:424-438. [PMID: 38953895 PMCID: PMC11218792 DOI: 10.18632/oncotarget.28602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Single-agent TAS102 (trifluridine/tipiracil) and regorafenib are FDA-approved treatments for metastatic colorectal cancer (mCRC). We previously reported that regorafenib combined with a fluoropyrimidine can delay disease progression in clinical case reports of multidrug-resistant mCRC patients. We hypothesized that the combination of TAS102 and regorafenib may be active in CRC and other gastrointestinal (GI) cancers and may in the future provide a treatment option for patients with advanced GI cancer. We investigated the therapeutic effect of TAS102 in combination with regorafenib in preclinical studies employing cell culture, colonosphere assays that enrich for cancer stem cells, and in vivo. TAS102 in combination with regorafenib has synergistic activity against multiple GI cancers in vitro including colorectal and gastric cancer, but not liver cancer cells. TAS102 inhibits colonosphere formation and this effect is potentiated by regorafenib. In vivo anti-tumor effects of TAS102 plus regorafenib appear to be due to anti-proliferative effects, necrosis and angiogenesis inhibition. Growth inhibition by TAS102 plus regorafenib occurs in xenografted tumors regardless of p53, KRAS or BRAF mutations, although more potent tumor suppression was observed with wild-type p53. Regorafenib significantly inhibits TAS102-induced angiogenesis and microvessel density in xenografted tumors, as well inhibits TAS102-induced ERK1/2 activation regardless of RAS or BRAF status in vivo. TAS102 plus regorafenib is a synergistic drug combination in preclinical models of GI cancer, with regorafenib suppressing TAS102-induced increase in microvessel density and p-ERK as contributing mechanisms. The TAS102 plus regorafenib drug combination may be further tested in gastric and other GI cancers.
Collapse
Affiliation(s)
- Jun Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, RI 02912, USA
| | - Lanlan Zhou
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, RI 02912, USA
| | - Shuai Zhao
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, RI 02912, USA
| | - Wafik S. El-Deiry
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, RI 02912, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, RI 02912, USA
| |
Collapse
|
4
|
Liu H, Wu K, Hu W, Chen X, Tang Y, Ma Y, Chen C, Xie Y, Yu L, Huang J, Shen S, Wang X. Immunophenotypic clustering in paediatric acute myeloid leukaemia. Br J Haematol 2024; 204:2275-2286. [PMID: 38639201 DOI: 10.1111/bjh.19471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease, exhibiting diverse subtypes according to the characteristics of tumour cells. The immunophenotype is one of the aspects acquired routinely through flow cytometry in the diagnosis of AML. Here, we characterized the antigen expression in paediatric AML cases across both morphological and molecular genetic subgroups. We discovered a subgroup of patients with unfavourable prognosis that can be immunologically characterized, irrespective of morphological FAB results or genetic aberrations. Cox regression analysis unveiled key antigens influencing the prognosis of AML patients. In terms of underlying genotypes, we observed that the antigenic profiles and outcomes of one specific group, primarily composed of CBFA2T3::GLIS2 and FUS::ERG, were analogous to the reported RAM phenotype. Overall, our data highlight the significance of immunophenotype to tailor treatment for paediatric AML.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kefei Wu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenting Hu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Chen
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjing Tang
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Ma
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Changcheng Chen
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Xie
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lisha Yu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Huang
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Li C, Zhang D, Pan Y, Chen B. Human Serum Albumin Based Nanodrug Delivery Systems: Recent Advances and Future Perspective. Polymers (Basel) 2023; 15:3354. [PMID: 37631411 PMCID: PMC10459149 DOI: 10.3390/polym15163354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
With the success of several clinical trials of products based on human serum albumin (HSA) and the rapid development of nanotechnology, HSA-based nanodrug delivery systems (HBNDSs) have received extensive attention in the field of nanomedicine. However, there is still a lack of comprehensive reviews exploring the broader scope of HBNDSs in biomedical applications beyond cancer therapy. To address this gap, this review takes a systematic approach. Firstly, it focuses on the crystal structure and the potential binding sites of HSA. Additionally, it provides a comprehensive summary of recent progresses in the field of HBNDSs for various biomedical applications over the past five years, categorized according to the type of therapeutic drugs loaded onto HSA. These categories include small-molecule drugs, inorganic materials and bioactive ingredients. Finally, the review summarizes the characteristics and current application status of HBNDSs in drug delivery, and also discusses the challenges that need to be addressed for the clinical transformation of HSA formulations and offers future perspectives in this field.
Collapse
Affiliation(s)
- Changyong Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Dagui Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Yujing Pan
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Biaoqi Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
6
|
Isaioglou I, Aldehaiman MM, Li Y, Lahcen AA, Rauf S, Al-Amoodi AS, Habiba U, Alghamdi A, Nozue S, Habuchi S, Salama KN, Merzaban JS. CD34 + HSPCs-derived exosomes contain dynamic cargo and promote their migration through functional binding with the homing receptor E-selectin. Front Cell Dev Biol 2023; 11:1149912. [PMID: 37181754 PMCID: PMC10166801 DOI: 10.3389/fcell.2023.1149912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 05/16/2023] Open
Abstract
Exosomes are tiny vesicles released by cells that carry communications to local and distant locations. Emerging research has revealed the role played by integrins found on the surface of exosomes in delivering information once they reach their destination. But until now, little has been known on the initial upstream steps of the migration process. Using biochemical and imaging approaches, we show here that exosomes isolated from both leukemic and healthy hematopoietic stem/progenitor cells can navigate their way from the cell of origin due to the presence of sialyl Lewis X modifications surface glycoproteins. This, in turn, allows binding to E-selectin at distant sites so the exosomes can deliver their messages. We show that when leukemic exosomes were injected into NSG mice, they traveled to the spleen and spine, sites typical of leukemic cell engraftment. This process, however, was inhibited in mice pre-treated with blocking E-selectin antibodies. Significantly, our proteomic analysis found that among the proteins contained within exosomes are signaling proteins, suggesting that exosomes are trying to deliver active cues to recipient cells that potentially alter their physiology. Intriguingly, the work outlined here also suggests that protein cargo can dynamically change upon exosome binding to receptors such as E-selectin, which thereby could alter the impact it has to regulate the physiology of the recipient cells. Furthermore, as an example of how miRNAs contained in exosomes can influence RNA expression in recipient cells, our analysis showed that miRNAs found in KG1a-derived exosomes target tumor suppressing proteins such as PTEN.
Collapse
Affiliation(s)
- Ioannis Isaioglou
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mansour M. Aldehaiman
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yanyan Li
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdellatif Ait Lahcen
- Electrical and Computer Engineering Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sakandar Rauf
- Electrical and Computer Engineering Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Asma S. Al-Amoodi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Umme Habiba
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdullah Alghamdi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shuho Nozue
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Satoshi Habuchi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khaled N. Salama
- Electrical and Computer Engineering Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jasmeen S. Merzaban
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Smart-Health Initiative, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Jin KT, Du WL, Lan HR, Liu YY, Mao CS, Du JL, Mou XZ. Development of humanized mouse with patient-derived xenografts for cancer immunotherapy studies: A comprehensive review. Cancer Sci 2021; 112:2592-2606. [PMID: 33938090 PMCID: PMC8253285 DOI: 10.1111/cas.14934] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment, however, not all tumor types and patients are completely responsive to this approach. Establishing predictive pre-clinical models would allow for more accurate and practical immunotherapeutic drug development. Mouse models are extensively used as in vivo system for biomedical research. However, due to the significant differences between rodents and human, it is impossible to translate most of the findings from mouse models to human. Pharmacological development and advancing personalized medicine using patient-derived xenografts relies on producing mouse models in which murine cells and genes are substituted with their human equivalent. Humanized mice (HM) provide a suitable platform to evaluate xenograft growth in the context of a human immune system. In this review, we discussed recent advances in the generation and application of HM models. We also reviewed new insights into the basic mechanisms, pre-clinical evaluation of onco-immunotherapies, current limitations in the application of these models as well as available improvement strategies. Finally, we pointed out some issues for future studies.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chun-Sen Mao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jin-Lin Du
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
8
|
Wang Z, Zhang Z, Li Y, Sun L, Peng D, Du D, Zhang X, Han L, Zhao L, Lu L, Du H, Yuan S, Zhan M. Preclinical efficacy against acute myeloid leukaemia of SH1573, a novel mutant IDH2 inhibitor approved for clinical trials in China. Acta Pharm Sin B 2021; 11:1526-1540. [PMID: 34221866 PMCID: PMC8245910 DOI: 10.1016/j.apsb.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/04/2023] Open
Abstract
Acute myeloid leukaemia (AML) is the most common form of acute leukaemia in adults, with increasing incidence with age and a generally poor prognosis. Almost 20% of AML patients express mutant isocitrate dehydrogenase 2 (mIDH2), which leads to the accumulation of the carcinogenic metabolite 2-hydroxyglutarate (2-HG), resulting in poor prognosis. Thus, global institutions have been working to develop mIDH2 inhibitors. SH1573 is a novel mIDH2 inhibitor that we independently designed and synthesised. We have conducted a comprehensive study on its pharmacodynamics, pharmacokinetics and safety. First, SH1573 exhibited a strong selective inhibition of mIDH2 R140Q protein, which could effectively reduce the production of 2-HG in cell lines, serum and tumors of an animal model. It could also promote the differentiation of mutant AML cell lines and granulocytes in PDX models. Then, it was confirmed that SH1573 possessed characteristics of high bioavailability, good metabolic stability and wide tissue distribution. Finally, toxicological data showed that SH1573 had no effects on the respiratory system, cardiovascular system and nervous system, and was genetically safe. This research successfully promoted the approval of SH1573 for clinical trials (CTR20200247). All experiments demonstrated that, as a potential drug against mIDH2 R140Q acute myeloid leukaemia, SH1573 was effective and safe.
Collapse
Key Words
- 2-HG, 2-hydroxyglutaric acid
- 2-Hydroxyglutarate
- ADME, absorption, distribution, metabolism and excretion
- AG-221, enasidenib
- AML, acute myeloid leukemia
- AUC, area under the cure
- Acute myeloid leukaemia
- BCRP, breast cancer resistance protein
- CDX, cell-line-derived xenograft
- CYP, cytochrome P450
- Differentiation
- EPO, erythropoietin
- IC50, half maximal inhibitory concentration
- LC–MS/MS, liquid chromatography–tandem mass spectrometry
- MDR1, multidrug resistance protein 1
- Mutant isocitrate dehydrogenase 2 (mIDH2)
- OAT, organic anion transporter
- OATP, organic anion transporting polypeptide
- OCT, organ cation transporter
- PD, pharamacodynamics
- PDX, patient-derived tumor xenograft
- PK, pharmacokinetics
- Papp, apparent permeability coefficient
- Preclinical efficacy
- SH1573
- Tumor metabolism
- mIDH2 inhibitor
- mIDH2, mutant isocitrate dehydrogenase
- α-KG, α-ketoglutaric acid
Collapse
Affiliation(s)
- Zhiqiang Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Zhibo Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Dezhen Peng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Danyu Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Xian Zhang
- Sanhome Pharmaceutical Co., Ltd., Nanjing 210000, China
| | - Luwei Han
- Sanhome Pharmaceutical Co., Ltd., Nanjing 210000, China
| | - Liwen Zhao
- Sanhome Pharmaceutical Co., Ltd., Nanjing 210000, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Corresponding authors.
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
- Corresponding authors.
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
- Corresponding authors.
| |
Collapse
|
9
|
He H, Wang C, Liu G, Ma H, Jiang M, Li P, Lu Q, Li L, Qi H. Isobavachalcone inhibits acute myeloid leukemia: Potential role for ROS-dependent mitochondrial apoptosis and differentiation. Phytother Res 2021; 35:3337-3350. [PMID: 33624885 DOI: 10.1002/ptr.7054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/29/2022]
Abstract
Isobavachalcone (IBC) has been shown to induce apoptosis and differentiation of acute myeloid leukemia (AML) cells. However, the underlying molecular mechanisms are not fully understood. Herein, IBC exhibited significant inhibition on the cell viability, proliferation, and the colony formation ability of AML cells. Moreover, IBC induced mitochondrial apoptosis evidenced by reduced mitochondrial membrane potential, increased Bax level, decreased Bcl-2, Bcl-xL, and Mcl-1 levels, elevated cytochrome c level in the cytosol and increased cleavage of caspase-9, caspase-3, and PARP. Furthermore, IBC obviously promoted the differentiation of AML cells, accompanied by the increase of the phosphorylation of MEK and ERK and the C/EBPα expression as well as the C/EBPβ LAP/LIP isoform ratio, which was significantly reversed by U0126, a specific inhibitor of MEK. Notably, IBC enhanced the intracellular ROS level. More importantly, IBC-induced apoptosis and differentiation of HL-60 cells were significantly mitigated by NAC. In addition, IBC also exhibited an obvious anti-AML effect in NOD/SCID mice with the engraftment of HL-60 cells. Together, our study suggests that the ROS-medicated signaling pathway is highly involved in IBC-induced apoptosis and differentiation of AML cells.
Collapse
Affiliation(s)
- Hui He
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Chengqiang Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Gen Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Haoyue Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Mingdong Jiang
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Pan Li
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Qianwei Lu
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021; 6:62. [PMID: 33589595 PMCID: PMC7884707 DOI: 10.1038/s41392-020-00430-1] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) show a self-renewal capacity and differentiation potential that contribute to tumor progression and therapy resistance. However, the underlying processes are still unclear. Elucidation of the key hallmarks and resistance mechanisms of CSCs may help improve patient outcomes and reduce relapse by altering therapeutic regimens. Here, we reviewed the identification of CSCs, the intrinsic and extrinsic mechanisms of therapy resistance in CSCs, the signaling pathways of CSCs that mediate treatment failure, and potential CSC-targeting agents in various tumors from the clinical perspective. Targeting the mechanisms and pathways described here might contribute to further drug discovery and therapy.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Mashima K, Azuma M, Fujiwara K, Inagaki T, Oh I, Ikeda T, Umino K, Nakano H, Morita K, Sato K, Minakata D, Yamasaki R, Ashizawa M, Yamamoto C, Fujiwara SI, Hatano K, Ohmine K, Muroi K, Ohno N, Kanda Y. Differential Localization and Invasion of Tumor Cells in Mouse Models of Human and Murine Leukemias. Acta Histochem Cytochem 2020; 53:43-53. [PMID: 32624629 PMCID: PMC7322163 DOI: 10.1267/ahc.19035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Leukemias are refractory hematopoietic malignancies, for which the development of new therapeutic agents requires in vivo studies using tumor-bearing mouse models. Although several organs are commonly examined in such studies to evaluate the disease course, the effectiveness of interventions and the localization of tumor cells in the affected organs are still unclear. In this study, we histologically examined the distribution of leukemia cells in several organs using two leukemic mouse models produced by the administration of two cell lines (THP-1, a human myelomonocytic leukemia, and A20, a mouse B cell leukemia/lymphoma) to severe immunodeficient mice. Survival of the mice depended on the tumor burden. Although A20 and THP-1 tumor cells massively infiltrated the parenchyma of the liver and spleen at 21 days after transplantation, A20 cells were hardly found in connective tissues in Glisson’s capsule in the liver as compared with THP-1 cells. In the bone marrow, there was more severe infiltration of A20 cells than THP-1 cells. THP-1 and A20 cells were widely spread in the lungs, but were rarely observed in the small intestine. These findings suggest that each leukemia model has a unique localization of tumor cells in several affected organs, which could critically affect the disease course and the efficacy of therapeutic agents, including cellular immunotherapies.
Collapse
Affiliation(s)
- Kiyomi Mashima
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University
| | - Ken Fujiwara
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University
| | - Takeshi Inagaki
- Division of Forensic Medicine, Department of Anatomy, Jichi Medical University
| | - Iekuni Oh
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Takashi Ikeda
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Kento Umino
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Hirofumi Nakano
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Kaoru Morita
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Kazuya Sato
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Daisuke Minakata
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Ryoko Yamasaki
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Masahiro Ashizawa
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Chihiro Yamamoto
- Division of Hematology, Department of Medicine, Jichi Medical University
| | | | - Kaoru Hatano
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Ken Ohmine
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Kazuo Muroi
- Division of Hematology, Department of Medicine, Jichi Medical University
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University
| | - Yoshinobu Kanda
- Division of Hematology, Department of Medicine, Jichi Medical University
| |
Collapse
|
12
|
Kushwaha AC, Mohanbhai SJ, Sardoiwala MN, Sood A, Karmakar S, Roy Choudhury S. Epigenetic Regulation of Bmi1 by Ubiquitination and Proteasomal Degradation Inhibit Bcl-2 in Acute Myeloid Leukemia. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25633-25644. [PMID: 32453568 DOI: 10.1021/acsami.0c06186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bmi1 is associated with advanced prognosis of acute myeloid leukemia (AML), and polyethylenimine (PEI)-stabilized Bmi1 siRNA-entrapped human serum albumin (HSA) nanocarriers (PEI@HSANCs) were used to protect siRNA from degradation and also to control epigenetic regulation-based AML therapy. The nanoform increased the transfection efficiency of Bmi1 siRNA through caveolae-mediated endocytosis and enhanced Bax translocation into the mitochondria. It enhanced the caspase 3-mediated apoptosis through the Bax activation and Bcl-2 inhibition. The molecular analysis reveals the downregulation of polycomb proteins, Bmi1 and EzH2, along with inhibition of H3K27me3 and H2AK119ub1. The signaling cascade revealed downregulation of Bmi1 through ubiquitin-mediated degradation and is reversed by a proteasome inhibitor. Further mechanistic studies established a crucial role of transcription factor, C-Myb and Bmi1, as its direct targets for maintenance and progression of AML. Chromatin immunoprecipitation (ChIP) assay confirmed Bmi1 as a direct target of C-Myb as it binds to promoter sequence of Bmi1 between -235 to +43 and -111 to +43. The in vivo studies performed in the AML xenograft model evidence a decrease in the population of leukemic stem cells marker (CD45+) and an increase in the myeloid differentiating marker expression (CD11b+) in the bone marrow after the Bmi1 siRNA nanoconjugated therapy. Activation of apoptotic pathways and withdrawal of epigenetic repression through a ubiquitin proteasomal pathway potentiating a novel antileukemic therapy were established.
Collapse
Affiliation(s)
- Avinash Chandra Kushwaha
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Soni Jignesh Mohanbhai
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Mohammed Nadim Sardoiwala
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ankur Sood
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
13
|
Ying X, Zhang W, Fang M, Wang C, Han L, Yang C. LncRNA SNHG5 regulates SOX4 expression through competitive binding to miR-489-3p in acute myeloid leukemia. Inflamm Res 2020; 69:607-618. [PMID: 32266420 DOI: 10.1007/s00011-020-01345-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Currently, lncRNA plays an important role in the occurrence and development of acute myeloid leukemia (AML), including SNHG5. However, the role and mechanism of SNHG5 in AML remains unclear. In this study, we explored the regulatory mechanism of SNHG5 in the development of AML. METHODS AND RESULTS QRT-PCR was used to investigate the expression of SNHG5, miR-489-3p, and SOX. The proliferation and apoptosis of AML cells were analyzed by cell transfection, cell counting kit-8 (CCK8), and flow cytometric analysis. Moreover, the expression analysis of marker proteins was detected by western blot. Through luciferase activity assay, RNA pull-down, and RNA-binding protein immunoprecipitation (RIP), we proved that SNHG5 could bind miR-489-3p and SOX4 which might be the target gene of miR-489-3p. RESULTS We first found that SNHG5 was up-regulated in both AML patient bone marrow samples and various AML cell lines. Second, we found that knockdown of SNHG5 inhibited proliferation of AML cells and promoted apoptosis. It was found that SNHG5 could bind miR-489-3p, and the relative expression of SNHG5 was negatively correlated with miR-489-3p. Further results suggested that SOX4 might be the target gene of miR-489-3p. Finally, our experimental data indicated that knockdown of SNHG5 could reduce the tumor volume and down-regulated SOX4 levels in vivo. CONCLUSIONS Our results demonstrated that SNHG5 affected the expression of SOX4 through binding miR-489-3p to regulate proliferation and apoptosis of AML, which might act as a prospective prognostic biological marker and a promising therapeutic target for AML.
Collapse
Affiliation(s)
- Xiaoyang Ying
- Department of Clinical Hematology, Affiliated No. 2 Hospital School of Medicine, Xi'an Jiaotong University, Xi'an Jiaotong University West Five Road, No 157, Xi'an, 710004, People's Republic of China.,Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, Liaoning, Dalian, 116001, China
| | - Wanggang Zhang
- Department of Clinical Hematology, Affiliated No. 2 Hospital School of Medicine, Xi'an Jiaotong University, Xi'an Jiaotong University West Five Road, No 157, Xi'an, 710004, People's Republic of China.
| | - Meiyun Fang
- Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, Liaoning, Dalian, 116001, China
| | - Chenchen Wang
- Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, Liaoning, Dalian, 116001, China
| | - Li Han
- Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, Liaoning, Dalian, 116001, China
| | - Chenmeng Yang
- Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, Liaoning, Dalian, 116001, China
| |
Collapse
|
14
|
Gacha-Garay MJ, Niño-Joya AF, Bolaños NI, Abenoza L, Quintero G, Ibarra H, Gonzalez JM, Akle V, Garavito-Aguilar ZV. Pilot Study of an Integrative New Tool for Studying Clinical Outcome Discrimination in Acute Leukemia. Front Oncol 2019; 9:245. [PMID: 31024847 PMCID: PMC6465644 DOI: 10.3389/fonc.2019.00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/18/2019] [Indexed: 01/04/2023] Open
Abstract
Acute leukemia is a heterogeneous set of diseases affecting children and adults. Current prognostic factors are not accurate predictors of the clinical outcome of adult patients and the stratification of risk groups remains insufficient. For that reason, this study proposes a multifactorial analysis which integrates clinical parameters, ex vivo tumor characterization and behavioral in vivo analysis in zebrafish. This model represents a new approach to understand leukemic primary cells behavior and features associated with aggressiveness and metastatic potential. Xenotransplantation of primary samples from patients newly diagnosed with acute leukemia in zebrafish embryos at 48 hpf was used to asses survival rate, dissemination pattern, and metastatic potential. Seven samples from young adults classified in adverse, favorable or intermediate risk group were characterized. Tumor heterogeneity defined by Leukemic stem cell (LSC) proportion, was performed by metabolic and cell membrane biomarkers characterization. Thus, our work combines all these parameters with a robust quantification strategy that provides important information about leukemia biology, their relationship with specific niches and the existent inter and intra-tumor heterogeneity in acute leukemia. In regard to prognostic factors, leukemic stem cell proportion and Patient-derived xenografts (PDX) migration into zebrafish were the variables with highest weights for the prediction analysis. Higher ALDH activity, less differentiated cells and a broader and random migration pattern are related with worse clinical outcome after induction chemotherapy. This model also recapitulates multiple aspects of human acute leukemia and therefore is a promising tool to be employed not only for preclinical studies but also supposes a new tool with a higher resolution compared to traditional methods for an accurate stratification of patients into worse or favorable clinical outcome.
Collapse
Affiliation(s)
- María José Gacha-Garay
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Andrés Felipe Niño-Joya
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Natalia I Bolaños
- Biomedical Sciences Group, School of Medicine, Universidad de los Andes, Bogotá, Colombia
| | - Lina Abenoza
- Department of Oncology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Humberto Ibarra
- Microscopy Core, Vice-Presidency of Research, Universidad de los Andes, Bogotá, Colombia
| | - John M Gonzalez
- Biomedical Sciences Group, School of Medicine, Universidad de los Andes, Bogotá, Colombia
| | - Verónica Akle
- Laboratory of Neuroscience and Circadian Rhythms, School of Medicine, Universidad de los Andes, Bogotá, Colombia
| | - Zayra V Garavito-Aguilar
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
15
|
Agnoletto C, Minotti L, Brulle-Soumare L, Pasquali L, Galasso M, Corrà F, Baldassari F, Judde JG, Cairo S, Volinia S. Heterogeneous expression of EPCAM in human circulating tumour cells from patient-derived xenografts. Biomark Res 2018; 6:31. [PMID: 30450210 PMCID: PMC6208170 DOI: 10.1186/s40364-018-0145-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background We aim to characterize the heterogeneous circulating tumour cells (CTCs) in peripheral blood, independently of physical or immunological purification, by using patient-derived xenografts (PDXs) models. CTC studies from blood generally rely on enrichment or purification. Conversely, we devised a method for the inclusive study of human cells from blood of PDX models, without pre-selection or enrichment. Methods A qRT-PCR assay was developed to detect human and cancer-related transcripts from CTCs in PDXs. We quantified the EPCAM and keratins CTC markers, in a PDX cohort of breast cancer. The murine beta actin gene was used for normalization. Spearman's rho coefficients were calculated for correlation. Results We demonstrated, for the first time, that we can quantify the content of CTCs and the expression of human CTC markers in PDX blood using human-specific qRT-PCR. Our method holds strong potential for the study of CTC heterogeneity and for the identification of novel CTC markers. Conclusions The identification and the relative quantification of the diverse spectrum of CTCs in patients, irrespective of EPCAM or other currently used markers, will have a great impact on personalized medicine: unrestricted CTCs characterization will allow the early detection of metastases in cancer patients and the assessment of personalized therapies.
Collapse
Affiliation(s)
- Chiara Agnoletto
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Linda Minotti
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | | | - Lorenzo Pasquali
- 3Dermatology and Venereology Unit, Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Marco Galasso
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Fabio Corrà
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Baldassari
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | | | | | - Stefano Volinia
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
16
|
Yong KSM, Her Z, Chen Q. Humanized Mice as Unique Tools for Human-Specific Studies. Arch Immunol Ther Exp (Warsz) 2018; 66:245-266. [PMID: 29411049 PMCID: PMC6061174 DOI: 10.1007/s00005-018-0506-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
With an increasing human population, medical research is pushed to progress into an era of precision therapy. Humanized mice are at the very heart of this new forefront where it is acutely required to decipher human-specific disease pathogenesis and test an array of novel therapeutics. In this review, “humanized” mice are defined as immunodeficient mouse engrafted with functional human biological systems. Over the past decade, researchers have been conscientiously making improvements on the development of humanized mice as a model to closely recapitulate disease pathogenesis and drug mechanisms in humans. Currently, literature is rife with descriptions of novel and innovative humanized mouse models that hold a significant promise to become a panacea for drug innovations to treat and control conditions such as infectious disease and cancer. This review will focus on the background of humanized mice, diseases, and human-specific therapeutics tested on this platform as well as solutions to improve humanized mice for future clinical use.
Collapse
Affiliation(s)
- Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|