1
|
Shen J, Li J, Yang R, Wu S, Mu Z, Ding S, Zhang X, Duo M, Chen Y, Liu J. Advances in the treatment of mantle cell lymphoma with BTK inhibitors. Leuk Res 2024; 147:107615. [PMID: 39514946 DOI: 10.1016/j.leukres.2024.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Mantle cell lymphoma (MCL) is a heterogenous disease that is one of the most challenging blood cancers due to its poor prognosis, high risk of relapse and drug resistance. Recent researches have brought significant changes in MCL patients outcomes and new clinical. Bruton's Tyrosine Kinase (BTK), a key kinase in the B-cell antigen receptor (BCR) signaling pathway, is a clinical research hot spot and plays a major role in the survival and spread of malignant B cells. The first generation of BTK inhibitors, led by ibrutinib, have shown promising results in targeted treatment. Meanwhile, several inhibitors have entered clinical studies and demonstrated outstanding therapeutic activity in clinical trials for MCL, indicating a good prospect for development. Despite these encouraging findings, the duration of response is limited, and resistance to BTK inhibitors develops in a portion of individuals. This review summarizes the pathogenesis of MCL and targeted BTK inhibitors and provides an overview of the mutations that can lead to resistance to BTK inhibitors. The purpose of this article is to review the literature describing these selective therapies and provides perspectives for their further development.
Collapse
Affiliation(s)
- Jiwei Shen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China; Small molecular targeted drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China
| | - Jiawei Li
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China
| | - Rui Yang
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China
| | - Shuang Wu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China
| | - Zhimei Mu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China
| | - Shi Ding
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China; Small molecular targeted drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China
| | - Xinyu Zhang
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China
| | - Meiying Duo
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China
| | - Ye Chen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China; Small molecular targeted drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China.
| | - Ju Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China; Small molecular targeted drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China.
| |
Collapse
|
2
|
Cartagena J, Deshpande A, Rosenthal A, Tsang M, Hilal T, Rimsza L, Kurzrock R, Munoz J. Measurable Residual Disease in Mantle Cell Lymphoma: The Unbearable Lightness of Being Undetectable. Curr Oncol Rep 2024; 26:1664-1674. [PMID: 39641852 DOI: 10.1007/s11912-024-01620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW This paper evaluates the benefits and limitations of detecting measurable residual disease (MRD) in mantle cell lymphoma (MCL) and assesses its prognostic value. It also aims to highlight the importance of detecting low MRD levels post-treatment and their application in clinical practice. RECENT FINDINGS Recent studies show that MRD levels predict relapse and survival outcomes in hematologic neoplasms, including MCL. RT-qPCR is currently the most used method due to its high reproducibility and sensitivity. Ideal MRD detection should be highly sensitive, cost-effective, and applicable to a wide demographic of patients. This paper concludes that MRD detection has prognostic value in MCL but faces limitations in sensitivity and specificity. Further research is needed to establish the significance of low MRD levels before integrating these methods into clinical practice. Improved MRD detection technologies and understanding their impact on clinical outcomes will guide better patient management in MCL.
Collapse
Affiliation(s)
- Julio Cartagena
- University of Puerto Rico School of Medicine, San Juan, PR, USA
| | | | - Allison Rosenthal
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Mazie Tsang
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Talal Hilal
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Lisa Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Razelle Kurzrock
- Michels Rare Cancers Research Laboratories, Froedtert and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Javier Munoz
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| |
Collapse
|
3
|
Ge Q, Zhang ZY, Li SN, Ma JQ, Zhao Z. Liquid biopsy: Comprehensive overview of circulating tumor DNA (Review). Oncol Lett 2024; 28:548. [PMID: 39319213 PMCID: PMC11420644 DOI: 10.3892/ol.2024.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Traditional tumor diagnosis methods rely on tissue biopsy, which can be invasive and unsuitable for long-term monitoring of tumor dynamics. The advent of liquid biopsy has notably improved the overall management of patients with cancer. Liquid biopsy techniques primarily involve detection of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). The present review focuses on ctDNA because of its significance in tumor diagnosis, monitoring and treatment. The use of ctDNA-based liquid biopsy offers several advantages, including non-invasive or minimally invasive collection methods, the ability to conduct repeated assessment and comprehensive insights into tumor biology. It serves crucial roles in disease management by facilitating screening of high-risk patients, dynamically monitoring therapeutic responses and diagnosis. Furthermore, ctDNA can be used to demonstrate pseudo-progression, monitor postoperative tumor status and guide adaptive treatment plans. The present study provides a comprehensive review of ctDNA, exploring its origins, metabolism, detection methods, clinical role and the current challenges associated with its application.
Collapse
Affiliation(s)
- Qian Ge
- Graduate School, Xi'an Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Zhi-Yun Zhang
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Suo-Ni Li
- Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Jie-Qun Ma
- Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Zheng Zhao
- Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
4
|
Shukla ND, Schroers-Martin JG, Sworder BJ, Kathuria KR, Alig SK, Frank MJ, Miklos DB, Coutre S, Diehn M, Khodadoust MS, Roschewski M, Kurtz DM, Alizadeh AA. Specificity of immunoglobulin high-throughput sequencing minimal residual disease monitoring in non-Hodgkin lymphomas. Blood Adv 2024; 8:780-784. [PMID: 38147627 PMCID: PMC10847740 DOI: 10.1182/bloodadvances.2023011997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023] Open
Affiliation(s)
- Navika D. Shukla
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | | | - Brian J. Sworder
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Karan Raj Kathuria
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Stefan K. Alig
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Matthew J. Frank
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - David B. Miklos
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Steven Coutre
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | | | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - David M. Kurtz
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| |
Collapse
|
5
|
Eyre TA, Bishton MJ, McCulloch R, O'Reilly M, Sanderson R, Menon G, Iyengar S, Lewis D, Lambert J, Linton KM, McKay P. Diagnosis and management of mantle cell lymphoma: A British Society for Haematology Guideline. Br J Haematol 2024; 204:108-126. [PMID: 37880821 DOI: 10.1111/bjh.19131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Affiliation(s)
- Toby A Eyre
- Department of Haematology, Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mark J Bishton
- Department of Haematology, Nottingham University Hospitals NHS Foundation Trust, Oxford, UK
- Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Rory McCulloch
- Department of Haematology, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | - Maeve O'Reilly
- Department of Haematology, University College London Hospitals, London, UK
| | - Robin Sanderson
- Department of Haematology, King's College Hospital, London, UK
| | - Geetha Menon
- Department of Cellular Pathology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Sunil Iyengar
- Department of Haematology, The Royal Marsden Hospital, London, UK
| | - David Lewis
- Department of Haematology, Derriford Hospital, Plymouth, UK
| | - Jonathan Lambert
- Department of Haematology, University College London Hospitals, London, UK
| | - Kim M Linton
- Department of Haematology, The Christie NHS Foundation Trust, Manchester, UK
| | - Pamela McKay
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| |
Collapse
|
6
|
Bodet-Milin C, Morvant C, Carlier T, Frecon G, Tournilhac O, Safar V, Kraeber-Bodere F, Le Gouill S, Macintyre E, Bailly C. Performance of baseline FDG-PET/CT radiomics for prediction of bone marrow minimal residual disease status in the LyMa-101 trial. Sci Rep 2023; 13:18177. [PMID: 37875524 PMCID: PMC10598231 DOI: 10.1038/s41598-023-45215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
The prognostic value of 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) at baseline or the predictive value of minimal residual disease (MRD) detection appear as potential tools to improve mantle cell lymphoma (MCL) patients' management. The LyMa-101, a phase 2 trial of the LYSA group (ClinicalTrials.gov:NCT02896582) reported induction therapy with obinutuzumab, a CD20 monoclonal antibody. Herein, we investigated the added prognostic value of radiomic features (RF) derived from FDG-PET/CT at diagnosis for MRD value prediction. FDG-PET/CT of 59 MCL patients included in the LyMa-101 trial have been independently, blindly and centrally reviewed. RF were extracted from the disease area with the highest uptake and from the total metabolic tumor volume (TMTV). Two models of machine learning were used to compare several combinations for prediction of MRD before autologous stem cell transplant consolidation (ASCT). Each algorithm was generated with or without constrained feature selections for clinical and laboratory parameters. Both algorithms showed better discrimination performances for negative vs positive MRD in the lesion with the highest uptake than in the TMTV. The constrained use of clinical and biological features showed a clear loss in sensitivity for the prediction of MRD status before ASCT, regardless of the machine learning model. These data plead for the importance of FDG-PET/CT RF compared to clinical and laboratory parameters and also reinforced the previously made hypothesis that the prognosis of the disease in MCL patients is linked to the most aggressive contingent, within the lesion with the highest uptake.
Collapse
Affiliation(s)
- Caroline Bodet-Milin
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, 44000, Nantes, France
- Nuclear Medicine Unit, University Hospital, 44093, Nantes, France
| | - Cyrille Morvant
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, 44000, Nantes, France
- Nuclear Medicine Unit, University Hospital, 44093, Nantes, France
| | - Thomas Carlier
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, 44000, Nantes, France
- Nuclear Medicine Unit, University Hospital, 44093, Nantes, France
| | - Gauthier Frecon
- Nuclear Medicine Unit, University Hospital, 44093, Nantes, France
| | - Olivier Tournilhac
- Haematology and Cell Therapy Department, Hôpital Estaing, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Violaine Safar
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Françoise Kraeber-Bodere
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, 44000, Nantes, France
- Nuclear Medicine Unit, University Hospital, 44093, Nantes, France
| | - Steven Le Gouill
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, 44000, Nantes, France
- Institut Curie, Paris and Saint-Cloud, Université Versailles-Saint Quentin, Saint-Cloud, France
| | - Elizabeth Macintyre
- Onco-Haematology, Université de Paris, Hôpital and Institut Necker-Enfants Malades, Assistance-Publique-Hôpitaux de Paris, INSERM U1151, Paris, France
| | - Clément Bailly
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, 44000, Nantes, France.
- Nuclear Medicine Unit, University Hospital, 44093, Nantes, France.
| |
Collapse
|
7
|
Singh AP, Courville EL. Advances in Monitoring and Prognostication for Lymphoma by Flow Cytometry. Clin Lab Med 2023; 43:351-361. [PMID: 37481316 DOI: 10.1016/j.cll.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Flow cytometry (FC) is a well-established method important in the diagnosis and subclassification of lymphoma. In this article, the role of FC in lymphoma prognostication will be explored, and the clinical role for FC minimal/measurable residual disease testing as a monitoring tool for mature lymphoma will be introduced. Potential pitfalls of monitoring for residual/recurrent disease following immunotherapy will be presented.
Collapse
Affiliation(s)
- Amrit P Singh
- Department of Pathology, University of Virginia Health, PO Box 800214, Charlottesville, VA 22908, USA
| | - Elizabeth L Courville
- Department of Pathology, University of Virginia Health, PO Box 800214, Charlottesville, VA 22908, USA.
| |
Collapse
|
8
|
Bou Zerdan M, Kassab J, Saba L, Haroun E, Bou Zerdan M, Allam S, Nasr L, Macaron W, Mammadli M, Abou Moussa S, Chaulagain CP. Liquid biopsies and minimal residual disease in lymphoid malignancies. Front Oncol 2023; 13:1173701. [PMID: 37228488 PMCID: PMC10203459 DOI: 10.3389/fonc.2023.1173701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Minimal residual disease (MRD) assessment using peripheral blood instead of bone marrow aspirate/biopsy specimen or the biopsy of the cancerous infiltrated by lymphoid malignancies is an emerging technique with enormous interest of research and technological innovation at the current time. In some lymphoid malignancies (particularly ALL), Studies have shown that MRD monitoring of the peripheral blood may be an adequate alternative to frequent BM aspirations. However, additional studies investigating the biology of liquid biopsies in ALL and its potential as an MRD marker in larger patient cohorts in treatment protocols are warranted. Despite the promising data, there are still limitations in liquid biopsies in lymphoid malignancies, such as standardization of the sample collection and processing, determination of timing and duration for liquid biopsy analysis, and definition of the biological characteristics and specificity of the techniques evaluated such as flow cytometry, molecular techniques, and next generation sequencies. The use of liquid biopsy for detection of minimal residual disease in T-cell lymphoma is still experimental but it has made significant progress in multiple myeloma for example. Recent attempt to use artificial intelligence may help simplify the algorithm for testing and may help avoid inter-observer variation and operator dependency in these highly technically demanding testing process.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Joseph Kassab
- Cleveland Clinic, Research Institute, Cleveland, OH, United States
| | - Ludovic Saba
- Department of Hematology-Oncology, Myeloma and Amyloidosis Program, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, United States
| | - Elio Haroun
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, New York, NY, United States
| | | | - Sabine Allam
- Department of Medicine and Medical Sciences, University of Balamand, Balamand, Lebanon
| | - Lewis Nasr
- University of Texas MD Anderson Cancer Center, Texas, TX, United States
| | - Walid Macaron
- University of Texas MD Anderson Cancer Center, Texas, TX, United States
| | - Mahinbanu Mammadli
- Department of Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | | | - Chakra P. Chaulagain
- Department of Hematology-Oncology, Myeloma and Amyloidosis Program, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, United States
| |
Collapse
|
9
|
Che Y, Liu Y, Yao Y, Hill HA, Li Y, Cai Q, Yan F, Jain P, Wang W, Rui L, Wang M. Exploiting PRMT5 as a target for combination therapy in mantle cell lymphoma characterized by frequent ATM and TP53 mutations. Blood Cancer J 2023; 13:27. [PMID: 36797243 PMCID: PMC9935633 DOI: 10.1038/s41408-023-00799-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Constant challenges for the treatment of mantle cell lymphoma (MCL) remain to be recurrent relapses and therapy resistance, especially in patients harboring somatic mutations in the tumor suppressors ATM and TP53, which are accumulated as therapy resistance emerges and the disease progresses, consistent with our OncoPrint results that ATM and TP53 alterations were most frequent in relapsed/refractory (R/R) MCL. We demonstrated that protein arginine methyltransferase-5 (PRMT5) was upregulated in R/R MCL, which predicted a poor prognosis. PRMT5 inhibitors displayed profound antitumor effects in the mouse models of MCL with mutated ATM and/or TP53, or refractory to CD19-targeted CAR T-cell therapy. Genetic knockout of PRMT5 robustly inhibited tumor growth in vivo. Co-targeting PRMT5, and ATR or CDK4 by using their inhibitors showed synergistic antitumor effects both in vitro and in vivo. Our results have provided a rational combination therapeutic strategy targeting multiple PRMT5-coordinated tumor-promoting processes for the treatment of R/R MCL with high mutation burdens.
Collapse
Affiliation(s)
- Yuxuan Che
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yixin Yao
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Holly A Hill
- Department of Bioinformatics and Computer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yijing Li
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Qingsong Cai
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Fangfang Yan
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Wei Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Lixin Rui
- Department of Medicine, the University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53726, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA. .,Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Hou Y, Zi J, Liu S, Ge Q, Ge Z. Mutational profiling of circulating tumor DNA and clinical characteristics in lymphoma: Based on next generation sequencing. Mol Carcinog 2023; 62:200-209. [PMID: 36300887 DOI: 10.1002/mc.23476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/10/2022] [Accepted: 09/30/2022] [Indexed: 01/21/2023]
Abstract
Liquid biopsy has been experimented with to identify the mutation of lymphoma based on next-generation sequencing (NGS). We applied NGS analysis to circulating tumor DNA (ctDNA) in 20 lymphoma patients. Then, we compared treatment outcomes, and clinical characteristics among these patients, then investigated mutational profiling. Two independent cohorts of 241 patients with mature B cell lymphoma in Mature B-cell malignancies data set (MBN) data set and 50 diffuse large B-cell lymphoma (DLBCL) patients in DLBCL data set, were used to examine the association between gene mutations and prognosis. We found ctDNA positive group had significantly more relapsed/PD (7/12, 58.3%) and less CR/PR patients (1/12, 8.3%) compared to negative group (0, 0%) (5/8, 62.5%) (p < 0.001). Somatic alterations were identified in 12 of 20 patients and the total 11 mutations were: Ataxia telangiectasia mutated (ATM), TP53, BCL2, BTG2, CD28, EP300, IDH2, IRF8, JAK3, NOTCH1, and NRAS. ATM (S2168L) was found in SLL and TLBL for the first time. BTG2 (c.292_293del), CD28 (P119T), IRF8 (E74D) and NOTCH1 (c.4348 G > A) were newly detected in DLBCL, angioimmunoblastic T-cell lymphoma, primary central nervous system lymphoma, and BCL for the first time respectively. We also disclosed an unreported mutation EP300 (c.1058_1059insC) in DLBCL. Our cases implied ctDNA detection consistent with the FISH of tissue samples to some extent, speculating new molecular subtypes of DLBCL, finding some potential drug-resistant mutations, and suggesting disease recurrence. Moreover, in MBN and DLBCL datasets, patients with TP53 mutation had a significantly shorter OS (all p < 0.05) in both circulating free DNA and tumor tissue. The mutations (no SNP) of NOTCH1 (all p < 0.05) significantly contributed to worse OS in the two cohorts.
Collapse
Affiliation(s)
- Yue Hou
- Department of Hematology, School of Medicine, Zhongda Hospital, Institute of Hematology Southeast University, Southeast University, Nanjing, China
| | - Jie Zi
- Department of Hematology, School of Medicine, Zhongda Hospital, Institute of Hematology Southeast University, Southeast University, Nanjing, China
| | - Shuo Liu
- Department of Hematology, School of Medicine, Zhongda Hospital, Institute of Hematology Southeast University, Southeast University, Nanjing, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zheng Ge
- Department of Hematology, School of Medicine, Zhongda Hospital, Institute of Hematology Southeast University, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Recent advances have been made in circulating tumor DNA (ctDNA), the method to minimally invasive detect lymphoma sensitively with tumor-derived DNA in the blood of patients with lymphomas. This article discusses these various methods of ctDNA detection and the clinical context in which they have been applied to for a variety of lymphoma subtypes. RECENT FINDINGS ctDNA has been applied to a variety of subtypes of lymphoma and has been used in the context of genotyping somatic mutations and classification of disease, monitoring of response during treatment, detecting minimal residual disease even with radiographic remission, and predicting relapse and long-term survival outcomes. There are a variety of techniques used to measure ctDNA including digital polymerase chain reaction and next-generation sequencing techniques including high-throughput variable-diversity-joining rearrangement sequencing, high-throughput sequencing of somatic mutations, and Cancer Personalized Profiling by deep sequencing. While the greatest data has been generated in diffuse large B cell lymphoma, there have been studies utilizing application of ctDNA in follicular lymphoma, mantle cell lymphoma, Hodgkin's lymphoma, peripheral T cell lymphoma, and primary CNS lymphoma among others. ctDNA is an emerging biomarker in lymphoma that can minimally invasively provide further genotypic information, diagnostic clarification, and treatment prognostication by detection of minimal residual disease even without radiographic evidence of disease. Future studies are needed to standardize the use of ctDNA and translate its use clinically for the management of lymphoma patients.
Collapse
Affiliation(s)
| | - Jasmine Zain
- City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
12
|
Deng X, Zhang M, Zhou J, Xiao M. Next-generation sequencing for MRD monitoring in B-lineage malignancies: from bench to bedside. Exp Hematol Oncol 2022; 11:50. [PMID: 36057673 PMCID: PMC9440501 DOI: 10.1186/s40164-022-00300-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/21/2022] [Indexed: 12/02/2022] Open
Abstract
Minimal residual disease (MRD) is considered the strongest relevant predictor of prognosis and an effective decision-making factor during the treatment of hematological malignancies. Remarkable breakthroughs brought about by new strategies, such as epigenetic therapy and chimeric antigen receptor-T (CAR-T) therapy, have led to considerably deeper responses in patients than ever, which presents difficulties with the widely applied gold-standard techniques of MRD monitoring. Urgent demands for novel approaches that are ultrasensitive and provide sufficient information have put a spotlight on high-throughput technologies. Recently, advances in methodology, represented by next-generation sequencing (NGS)-based clonality assays, have proven robust and suggestive in numerous high-quality studies and have been recommended by some international expert groups as disease-monitoring modalities. This review demonstrates the applicability of NGS-based clonality assessment for MRD monitoring of B-cell malignancies by summarizing the oncogenesis of neoplasms and the corresponding status of immunoglobulin (IG) rearrangements. Furthermore, we focused on the performance of NGS-based assays compared with conventional approaches and the interpretation of results, revealing directions for improvement and prospects in clinical practice.
Collapse
Affiliation(s)
- Xinyue Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Meilan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China.
| |
Collapse
|
13
|
Tyner JW, Haderk F, Kumaraswamy A, Baughn LB, Van Ness B, Liu S, Marathe H, Alumkal JJ, Bivona TG, Chan KS, Druker BJ, Hutson AD, Nelson PS, Sawyers CL, Willey CD. Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Res 2022; 82:1448-1460. [PMID: 35195258 PMCID: PMC9018544 DOI: 10.1158/0008-5472.can-21-3695] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Decades of research into the molecular mechanisms of cancer and the development of novel therapeutics have yielded a number of remarkable successes. However, our ability to broadly assign effective, rationally targeted therapies in a personalized manner remains elusive for many patients, and drug resistance persists as a major problem. This is in part due to the well-documented heterogeneity of cancer, including the diversity of tumor cell lineages and cell states, the spectrum of somatic mutations, the complexity of microenvironments, and immune-suppressive features and immune repertoires, which collectively require numerous different therapeutic approaches. Here, we describe a framework to understand the types and biological causes of resistance, providing translational opportunities to tackle drug resistance by rational therapeutic strategies.
Collapse
Affiliation(s)
- Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | | | - Linda B. Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brian Van Ness
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Himangi Marathe
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joshi J. Alumkal
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Trever G. Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Keith Syson Chan
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Alan D. Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Peter S. Nelson
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Sharma M, Bakshi AK, Mittapelly N, Gautam S, Marwaha D, Rai N, Singh N, Tiwari P, Aggarwal N, Kumar A, Mishra PR. Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer. J Control Release 2022; 346:43-70. [PMID: 35405165 DOI: 10.1016/j.jconrel.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
|
15
|
Colmenares R, Álvarez N, Barrio S, Martínez-López J, Ayala R. The Minimal Residual Disease Using Liquid Biopsies in Hematological Malignancies. Cancers (Basel) 2022; 14:1310. [PMID: 35267616 PMCID: PMC8909350 DOI: 10.3390/cancers14051310] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/02/2022] Open
Abstract
The study of cell-free DNA (cfDNA) and other peripheral blood components (known as "liquid biopsies") is promising, and has been investigated especially in solid tumors. Nevertheless, it is increasingly showing a greater utility in the diagnosis, prognosis, and response to treatment of hematological malignancies; in the future, it could prevent invasive techniques, such as bone marrow (BM) biopsies. Most of the studies about this topic have focused on B-cell lymphoid malignancies; some of them have shown that cfDNA can be used as a novel way for the diagnosis and minimal residual monitoring of B-cell lymphomas, using techniques such as next-generation sequencing (NGS). In myelodysplastic syndromes, multiple myeloma, or chronic lymphocytic leukemia, liquid biopsies may allow for an interesting genomic representation of the tumor clones affecting different lesions (spatial heterogeneity). In acute leukemias, it can be helpful in the monitoring of the early treatment response and the prediction of treatment failure. In chronic lymphocytic leukemia, the evaluation of cfDNA permits the definition of clonal evolution and drug resistance in real time. However, there are limitations, such as the difficulty in obtaining sufficient circulating tumor DNA for achieving a high sensitivity to assess the minimal residual disease, or the lack of standardization of the method, and clinical studies, to confirm its prognostic impact. This review focuses on the clinical applications of cfDNA on the minimal residual disease in hematological malignancies.
Collapse
Affiliation(s)
- Rafael Colmenares
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, 28041 Madrid, Spain; (R.C.); (N.Á.); (S.B.); (J.M.-L.)
| | - Noemí Álvarez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, 28041 Madrid, Spain; (R.C.); (N.Á.); (S.B.); (J.M.-L.)
- Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
| | - Santiago Barrio
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, 28041 Madrid, Spain; (R.C.); (N.Á.); (S.B.); (J.M.-L.)
- Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, 28041 Madrid, Spain; (R.C.); (N.Á.); (S.B.); (J.M.-L.)
- Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Department of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, 28041 Madrid, Spain; (R.C.); (N.Á.); (S.B.); (J.M.-L.)
- Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Department of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| |
Collapse
|
16
|
Abstract
OPINION STATEMENT While there have been numerous advances in the field of non-Hodgkin lymphoma (NHL) over the last decade, relapsed and/or refractory (R/R) NHL remains a challenge and an area with unmet needs. T-cell redirecting immunotherapeutic approaches including chimeric antigen receptor (CAR) T-cells and bispecific antibodies (BsAbs) have the potential to revolutionize NHL therapy. BsAbs target CD3 on T-cells and CD19 or CD20 on malignant B-cells and have shown promises as a novel immunotherapy for NHL. The development of CD19 × CD3 BsAbs such as blinatumomab was met with significant challenges due to dose-limiting neurologic side effects. However, several CD20 × CD3 BsAbs including odronextamab, mosunetuzumab, glofitamab, and epcoritamab emerged recently. They have favorable toxicity profiles, with reduced cytokine release syndrome and neurotoxicity. In addition, all these BsAbs have demonstrated very promising efficacy in R/R NHL. With expansion and registrational studies actively ongoing, approvals of these agents for R/R NHL are anticipated in the near future. Some important questions pertinent to future clinical development of BsAbs include when and how to best utilize BsAbs in the management of R/R NHL, whether there is a role of BsAbs in treatment-naïve NHL, and how to combine BsAbs with other therapies. For example, whether BsAbs can be combined with cytotoxic chemotherapy effectively remains to be seen. A plethora of clinical studies will be needed to help address these questions, some of which are already ongoing. In addition, how do BsAbs compare to CAR T-cell therapy and how to choose and sequence between BsAbs and CAR T-cell therapy need to be addressed. While many of these critical questions remain to be answered in clinical studies, we believe the future of BsAbs in the NHL is very bright.
Collapse
|
17
|
Vogt SL, Patel M, Lakha A, Philip V, Omar T, Ashmore P, Pather S, Haley LM, Zheng G, Stone J, Mayne E, Stevens W, Wagner-Johnston N, Gocke CD, Martinson NA, Ambinder RF, Xian RR. Feasibility of Cell-Free DNA Collection and Clonal Immunoglobulin Sequencing in South African Patients With HIV-Associated Lymphoma. JCO Glob Oncol 2021; 7:611-621. [PMID: 33909482 PMCID: PMC8162966 DOI: 10.1200/go.20.00651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Diagnosis of AIDS lymphoma in low-resource settings, like South Africa, is often delayed, leaving patients with limited treatment options. In tuberculosis (TB) endemic regions, overlapping signs and symptoms often lead to diagnostic delays. Assessment of plasma cell-free DNA (cfDNA) by next-generation sequencing (NGS) may expedite the diagnosis of lymphoma but requires high-quality cfDNA. METHODS People living with HIV with newly diagnosed aggressive B-cell lymphoma and those with newly diagnosed TB seeking care at Chris Hani Baragwanath Academic Hospital and its surrounding clinics, in Soweto, South Africa, were enrolled in this study. Each participant provided a whole blood specimen collected in cell-stabilizing tubes. Quantity and quality of plasma cfDNA were assessed. NGS of the immunoglobulin heavy chain was performed. RESULTS Nine HIV+ patients with untreated lymphoma and eight HIV+ patients with TB, but without lymphoma, were enrolled. All cfDNA quantity and quality metrics were similar between the two groups, except that cfDNA accounted for a larger fraction of recovered plasma DNA in patients with lymphoma. The concentration of cfDNA in plasma also trended higher in patients with lymphoma. NGS of immunoglobulin heavy chain showed robust amplification of DNA, with large amplicons (> 250 bp) being more readily detected in patients with lymphoma. Clonal sequences were detected in five of nine patients with lymphoma, and none of the patients with TB. CONCLUSION This proof-of-principle study demonstrates that whole blood collected for cfDNA in a low-resource setting is suitable for sophisticated sequencing analyses, including clonal immunoglobulin NGS. The detection of clonal sequences in more than half of patients with lymphoma shows promise as a diagnostic marker that may be explored in future studies.
Collapse
Affiliation(s)
- Samantha L Vogt
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Moosa Patel
- Clinical Haematology Unit, Department of Medicine, Chris Hani Baragwanath Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Atul Lakha
- Clinical Haematology Unit, Department of Medicine, Chris Hani Baragwanath Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vinitha Philip
- Clinical Haematology Unit, Department of Medicine, Chris Hani Baragwanath Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanvier Omar
- Division of Anatomical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Philippa Ashmore
- Clinical Haematology, Netcare Olivedale Hospital, Johannesburg, South Africa
| | - Sugeshnee Pather
- Division of Anatomical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa M Haley
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Gang Zheng
- Department of Pathology, Mayo Clinic, Rochester, MN
| | - Jennifer Stone
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Elizabeth Mayne
- Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Wendy Stevens
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Nina Wagner-Johnston
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Neil A Martinson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD.,Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg, South Africa
| | - Richard F Ambinder
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Rena R Xian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
18
|
Goy A. Exploiting gene mutations and biomarkers to guide treatment recommendations in mantle cell lymphoma. Expert Rev Hematol 2021; 14:927-943. [PMID: 34253131 DOI: 10.1080/17474086.2021.1950529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION While there has been an improvement in the treatment of mantle cell lymphoma (MCL) in both median progression-free survival (PFS; >7-8 years) and overall survival (OS; >10-12 years), patients with high-risk features such as high risk MIPI (mantle cell international prognostic index), high Ki-67 (≥30%), or blastoid variants still carry poor outcome with a median OS of 3 years. Furthermore, patients with high-risk molecular features, such as TP53 mutations, show dismal outcome, with a median OS of 1.8 years, regardless of therapy used. Further studies have led to the development of six novel drugs approved for the treatment of relapse/refractory (R/R) MCL, leading to improved survival even in refractory or high-risk patients. AREAS COVERED This review covers clinical biological and molecular features that impact MCL outcome with current standards. Beyond the recognition of separate subentities, we review how high-risk molecular features have paved the way towards a new paradigm away from chemoimmunotherapy. EXPERT OPINION Progress in novel therapies and in routine diagnostics, particularly next-generation sequencing (NGS), support the development of new treatment strategies, not based on the dose intensity/age dichotomy, which may prevent the need for chemotherapy and improve outcome across MCL including in high-risk subsets.
Collapse
Affiliation(s)
- Andre Goy
- John Theurer Cancer Center, Hackensack University Medical Center, NJ
| |
Collapse
|