2
|
The CpG-sites of the CBX3 ubiquitous chromatin opening element are critical structural determinants for the anti-silencing function. Sci Rep 2017; 7:7919. [PMID: 28801671 PMCID: PMC5554207 DOI: 10.1038/s41598-017-04212-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Suppression of therapeutic transgene expression from retroviral gene therapy vectors by epigenetic defence mechanisms represents a problem that is particularly encountered in pluripotent stem cells (PSCs) and their differentiated progeny. Transgene expression in these cells, however, can be stabilised by CpG-rich ubiquitous chromatin opening elements (UCOEs). In this context we recently demonstrated profound anti-silencing properties for the small (679 bp) CBX3-UCO element and we now confirmed this observation in the context of the defined murine chromosomal loci ROSA26 and TIGRE. Moreover, since the structural basis for the anti-silencing activity of UCOEs has remained poorly defined, we interrogated various CBX3 subfragments in the context of lentiviral vectors and murine PSCs. We demonstrated marked though distinct anti-silencing activity in the pluripotent state and during PSC-differentiation for several of the CBX3 subfragments. This activity was significantly correlated with CpG content as well as endogenous transcriptional activity. Interestingly, also a scrambled CBX3 version with preserved CpG-sites retained the anti-silencing activity despite the lack of endogenous promoter activity. Our data therefore highlight the importance of CpG-sites and transcriptional activity for UCOE functionality and suggest contributions from different mechanisms to the overall anti-silencing function of the CBX3 element.
Collapse
|
3
|
Mucci A, Kunkiel J, Suzuki T, Brennig S, Glage S, Kühnel MP, Ackermann M, Happle C, Kuhn A, Schambach A, Trapnell BC, Hansen G, Moritz T, Lachmann N. Murine iPSC-Derived Macrophages as a Tool for Disease Modeling of Hereditary Pulmonary Alveolar Proteinosis due to Csf2rb Deficiency. Stem Cell Reports 2016; 7:292-305. [PMID: 27453007 PMCID: PMC4982988 DOI: 10.1016/j.stemcr.2016.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent an innovative source for the standardized in vitro generation of macrophages (Mφ). We here describe a robust and efficient protocol to obtain mature and functional Mφ from healthy as well as disease-specific murine iPSCs. With regard to morphology, surface phenotype, and function, our iPSC-derived Mφ (iPSC-Mφ) closely resemble their counterparts generated in vitro from bone marrow cells. Moreover, when we investigated the feasibility of our differentiation system to serve as a model for rare congenital diseases associated with Mφ malfunction, we were able to faithfully recapitulate the pathognomonic defects in GM-CSF signaling and Mφ function present in hereditary pulmonary alveolar proteinosis (herPAP). Thus, our studies may help to overcome the limitations placed on research into certain rare disease entities by the lack of an adequate supply of disease-specific primary cells, and may aid the development of novel therapeutic approaches for herPAP patients.
Collapse
Affiliation(s)
- Adele Mucci
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Junior Research Group Translational Hematology of Congenital Diseases, Cluster of Excellence REBIRTH, Hannover Medical School, Carl-Neuberg-Street 1, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jessica Kunkiel
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Takuji Suzuki
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sebastian Brennig
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Junior Research Group Translational Hematology of Congenital Diseases, Cluster of Excellence REBIRTH, Hannover Medical School, Carl-Neuberg-Street 1, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Glage
- Institute of Laboratory Animal Science and Central Animal Facility, Hannover Medical School, 30625 Hannover, Germany
| | - Mark P Kühnel
- Department of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Mania Ackermann
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Junior Research Group Translational Hematology of Congenital Diseases, Cluster of Excellence REBIRTH, Hannover Medical School, Carl-Neuberg-Street 1, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Alexandra Kuhn
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Thomas Moritz
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- Junior Research Group Translational Hematology of Congenital Diseases, Cluster of Excellence REBIRTH, Hannover Medical School, Carl-Neuberg-Street 1, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
4
|
In Vivo Chemoprotective Activity of Bovine Dialyzable Leukocyte Extract in Mouse Bone Marrow Cells against Damage Induced by 5-Fluorouracil. J Immunol Res 2016; 2016:6942321. [PMID: 27191003 PMCID: PMC4852122 DOI: 10.1155/2016/6942321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/27/2016] [Indexed: 01/06/2023] Open
Abstract
Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU) is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE) or IMMUNEPOTENT CRP® (ICRP) is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM) cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM), cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients.
Collapse
|
5
|
Abstract
Advances in molecular technologies have led to the discovery of many disease-related genetic mutations as well as elucidation of aberrant gene and protein expression patterns in several human diseases, including cancer. This information has driven the development of novel therapeutic strategies, such as the utilization of small molecules to target specific cellular pathways and the use of retroviral vectors to retarget immune cells to recognize and eliminate tumor cells. Retroviral-mediated gene transfer has allowed efficient production of T cells engineered with chimeric antigen receptors (CARs), which have demonstrated marked success in the treatment of hematological malignancies. As a safety point, these modified cells can be outfitted with suicide genes. Customized gene editing tools, such as clustered regularly interspaced short palindromic repeats-CRISPR-associated nucleases (CRISPR-Cas9), zinc-finger nucleases (ZFNs), or TAL-effector nucleases (TALENs), may also be combined with retroviral delivery to specifically delete oncogenes, inactivate oncogenic signaling pathways, or deliver wild-type genes. Additionally, the feasibility of retroviral gene transfer strategies to protect the hematopoietic stem cells (HSC) from the dose-limiting toxic effects of chemotherapy and radiotherapy was demonstrated. While some of these approaches have yet to be translated into clinical application, the potential implications for improved cellular replacement therapies to enhance and/or support the current treatment modalities are enormous.
Collapse
|