1
|
Edamana S, Login FH, Riishede A, Dam VS, Kirkegaard T, Nejsum LN. The water channels aquaporin-1 and aquaporin-3 interact with and affect the cell polarity protein Scribble in 3D in vitro models of breast cancer. Am J Physiol Cell Physiol 2024; 327:C1323-C1334. [PMID: 39279492 DOI: 10.1152/ajpcell.00094.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Cellular changes in carcinomas include alterations in cell proliferation, cell migration, cell-cell adhesion, and cellular polarity. In vitro studies have revealed that the water channels, aquaporin-1 (AQP1) and AQP3, can influence cell migration and cell-cell adhesion. Of note, we previously showed that AQP1 overexpression reduced levels of cell-cell adhesion proteins, whereas AQP3 increased levels when overexpressed in normal epithelial cells. Expression of AQP1 and AQP3 in breast carcinoma is associated with lymph node metastasis, recurrence, and poor survival of patients with breast cancer. In this study, we investigated if AQP1 and AQP3 affected cell polarity in breast cancer by studying the relationship between the major polarity protein Scribble and AQP1 and AQP3. In breast cancer tissue samples, the protein expression of AQP1, AQP3, and Scribble did not show an obvious correlation. However, in a GST pull-down assay, AQP1 and AQP3 interacted with Scribble. AQP1 overexpression reduced the size of 3D spheroids as well as reduced Scribble levels at cell-cell contacts, whereas AQP3 overexpression showed no significant change in spheroid size compared with control, AQP3 overexpression also reduced Scribble levels at cell-cell contacts. Of note, AQP1 overexpression increased cell migration and induced cell detachment and dissemination from migrating breast cancer cell sheets, whereas AQP3 overexpression did not. Thus, AQP1 and AQP3 differentially affect 3D-grown breast cancer spheroids, and especially AQP1 may contribute to cancer development and spread via negatively affecting cellular junctions and cell polarity proteins as well as increasing cell migration and cell detachment.NEW & NOTEWORTHY Overexpression of the water channels aquaporin-1 and aquaporin-3 reduced levels of the key polarity protein Scribble at cell-cell junctions, suggesting potential implications in breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S Dam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Teresa Kirkegaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Azimi Mohammadabadi M, Moazzeni A, Jafarzadeh L, Faraji F, Mansourabadi AH, Safari E. Aquaporins in colorectal cancer: exploring their role in tumorigenesis, metastasis, and drug response. Hum Cell 2024; 37:917-930. [PMID: 38806940 DOI: 10.1007/s13577-024-01078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Aquaporins (AQPs) are small, integral proteins facilitating water transport across plasma cell membranes in response to osmotic gradients. This family has 13 unique members (AQP0-12), which can also transport glycerol, urea, gases, and other salute small molecules. AQPs play a crucial role in the regulation of different cellular processes, including metabolism, migration, immunity, barrier function, and angiogenesis. These proteins are found to aberrantly overexpress in various cancers, including colorectal cancer (CRC). Growing evidence has explored AQPs as a potential diagnostic biomarker and therapeutic target in different cancers. However, there is no comprehensive review compiling the available information on the crucial role of AQPs in the context of colorectal cancer. This review highlights the significance of AQPs as the biomarker and regulator of tumor cells metabolism. In addition, the proliferation, angiogenesis, and metastasis of tumor cells related to AQPs expression as well as function are discussed. Understanding the AQPs prominent role in chemotherapy resistance is of great importance clinically.
Collapse
Affiliation(s)
- Maryam Azimi Mohammadabadi
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Ali Moazzeni
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Leila Jafarzadeh
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mansourabadi
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada, Ottawa, Canada
- University of Ottawa, Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada, Ottawa, Canada
| | - Elahe Safari
- Breast Health & Cancer Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Liu H, Jin C, Xia N, Dong Q. Overexpression of aquaporin-1 plays a vital role in proliferation, apoptosis, and pyroptosis of Wilms' tumor cells. J Cancer Res Clin Oncol 2024; 150:85. [PMID: 38334883 PMCID: PMC10858134 DOI: 10.1007/s00432-024-05616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Nephroblastoma, also known as Wilms' tumor (WT), is an embryonic malignant tumor and one of the most common malignant tumors in the abdominal region of children. The exact role and underlying mechanisms of aquaporin-1 (AQP1) in the occurrence and development of nephroblastoma remain unclear. METHODS After overexpression of AQP1, cell proliferation was assessed using the CCK-8 proliferation assay and EdU staining. Flow cytometry was employed to assess cell apoptosis, and Western blotting (WB) analysis was conducted to validate the expression of relevant protein markers. mRNA sequencing (mRNA-Seq) was performed on WT cells overexpressing AQP1 to predict and characterize the associated mechanisms. Transmission electron microscopy was utilized to observe changes in the ultrastructure of WT cells undergoing apoptosis and pyroptosis following AQP1 overexpression. Functional in vivo validation was conducted through animal experiments. RESULTS We validated that overexpression of AQP1 inhibited cell proliferation and promoted cell apoptosis and pyroptosis both in vitro and in vivo. mRNA-Seq analysis of WT cells with AQP1 overexpression suggested that these effects might be mediated through the inhibition of the JAK-STAT signaling pathway. Additionally, we discovered that overexpression of AQP1 activated the classical pyroptosis signaling pathway dependent on caspase-1, thereby promoting pyroptosis in WT. CONCLUSION These findings highlight the important functional role of AQP1 in the pathobiology of nephroblastoma, providing novel insights into the development of this disease. Moreover, these results offer new perspectives on the potential therapeutic targeting of AQP1 as a treatment strategy for nephroblastoma.
Collapse
Affiliation(s)
- Hong Liu
- Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Chen Jin
- Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Nan Xia
- Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Qian Dong
- Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
4
|
Toader C, Tataru CP, Florian IA, Covache-Busuioc RA, Dumitrascu DI, Glavan LA, Costin HP, Bratu BG, Ciurea AV. From Homeostasis to Pathology: Decoding the Multifaceted Impact of Aquaporins in the Central Nervous System. Int J Mol Sci 2023; 24:14340. [PMID: 37762642 PMCID: PMC10531540 DOI: 10.3390/ijms241814340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporins (AQPs), integral membrane proteins facilitating selective water and solute transport across cell membranes, have been the focus of extensive research over the past few decades. Particularly noteworthy is their role in maintaining cellular homeostasis and fluid balance in neural compartments, as dysregulated AQP expression is implicated in various degenerative and acute brain pathologies. This article provides an exhaustive review on the evolutionary history, molecular classification, and physiological relevance of aquaporins, emphasizing their significance in the central nervous system (CNS). The paper journeys through the early studies of water transport to the groundbreaking discovery of Aquaporin 1, charting the molecular intricacies that make AQPs unique. It delves into AQP distribution in mammalian systems, detailing their selective permeability through permeability assays. The article provides an in-depth exploration of AQP4 and AQP1 in the brain, examining their contribution to fluid homeostasis. Furthermore, it elucidates the interplay between AQPs and the glymphatic system, a critical framework for waste clearance and fluid balance in the brain. The dysregulation of AQP-mediated processes in this system hints at a strong association with neurodegenerative disorders such as Parkinson's Disease, idiopathic normal pressure hydrocephalus, and Alzheimer's Disease. This relationship is further explored in the context of acute cerebral events such as stroke and autoimmune conditions such as neuromyelitis optica (NMO). Moreover, the article scrutinizes AQPs at the intersection of oncology and neurology, exploring their role in tumorigenesis, cell migration, invasiveness, and angiogenesis. Lastly, the article outlines emerging aquaporin-targeted therapies, offering a glimpse into future directions in combatting CNS malignancies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
5
|
Lee S, Kim B, Jung M, Moon KC. Loss of aquaporin-1 expression is associated with worse clinical outcomes in clear cell renal cell carcinoma: an immunohistochemical study. J Pathol Transl Med 2023; 57:232-237. [PMID: 37460397 PMCID: PMC10369134 DOI: 10.4132/jptm.2023.06.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Aquaporin (AQP) expression has been investigated in various malignant neoplasms, and the overexpression of AQP is related to poor prognosis in some malignancies. However, the expression of AQP protein in clear cell renal cell carcinoma (ccRCC) has not been extensively investigated by immunohistochemistry with large sample size. METHODS We evaluated the AQP expression in 827 ccRCC with immunohistochemical staining in tissue microarray blocks and classified the cases into two categories, high and low expression. RESULTS High expression of aquaporin-1 (AQP1) was found in 320 cases (38.7%), but aquaporin-3 was not expressed in ccRCC. High AQP1 expression was significantly related to younger age, low TNM stage, low World Health Organization/International Society of Urologic Pathology nuclear grade, and absence of distant metastasis. Furthermore, high AQP1 expression was also significantly associated with longer overall survival (OS; p<.001) and progression-specific survival (PFS; p<.001) and was an independent predictor of OS and PFS in ccRCC. CONCLUSIONS Our study revealed the prognostic significance of AQP1 protein expression in ccRCC. These findings could be applied to predict the prognosis of ccRCC.
Collapse
Affiliation(s)
- Seokhyeon Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Bohyun Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Minsun Jung
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Tarawneh N, Hamadneh L, Abu-Irmaileh B, Shraideh Z, Bustanji Y, Abdalla S. Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions. Molecules 2023; 28:molecules28093823. [PMID: 37175233 PMCID: PMC10180100 DOI: 10.3390/molecules28093823] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Berberine is a natural isoquinoline alkaloid with anti-cancer properties. Nevertheless, the underlying mechanism of its action in human colorectal cancer (CRC) has not been thoroughly elucidated. We investigated the anti-cancer effect of berberine on HT-29, SW-480 and HCT-116 human CRC cell lines. Methods: Cell proliferation, migration and invasion were studied by MTT assay, wound healing, transwell chambers and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunostaining were used to evaluate the expression of aquaporins (AQPs) 1, 3 and 5 in colon cancer cell lines before and after treatment with berberine (10, 30 and 100 µM). RT-qPCR and Western blotting were used to further explore the PI3K/AKT signaling pathway and the molecular mechanisms underlying berberine-induced inhibition of cell proliferation. Results: We demonstrated that treatment of these CRC cell lines with berberine inhibited cell proliferation, migration and invasion through induction of apoptosis and necrosis. HT-29, SW-480 and HCT-116 stained positively for AQP 1, 3 and 5, and berberine treatment down-regulated the expression of all three types of AQPs. Berberine also modulated PI3K/AKT pathway activity through up-regulating PTEN and down-regulating PI3K, AKT and p-AKT expression as well as suppressing its downstream targets, mTOR and p-mTOR at the protein level. Discussion/Conclusions: These findings indicate that berberine inhibited growth, migration and invasion of these colon cancer cell lines via down-regulation of AQP 1, 3 and 5 expressions, up-regulating PTEN which inhibited the PI3K/AKT pathway at the gene and protein levels, and that AQP 1, 3 and 5 expression level can be used as prognostic biomarkers for colon cancer metastasis.
Collapse
Affiliation(s)
- Noor Tarawneh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Lama Hamadneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University, Amman 11733, Jordan
- Department of Basic Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Bashaer Abu-Irmaileh
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Ziad Shraideh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Yasser Bustanji
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shtaywy Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
7
|
Lv W, He X, Wang Y, Zhao C, Dong M, Wu Y, Zhang Q. A novel immune score model predicting the prognosis and immunotherapy response of breast cancer. Sci Rep 2023; 13:6403. [PMID: 37076508 PMCID: PMC10115816 DOI: 10.1038/s41598-023-31153-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/07/2023] [Indexed: 04/21/2023] Open
Abstract
Breast cancer (BC) is one of the most common malignancies. However, the existing pathological grading system cannot accurately and effectively predict the survival rate and immune checkpoint treatment response of BC patients. In this study, based on The Cancer Genome Atlas (TCGA) database, a total of 7 immune-related genes (IRGs) were screened out to construct a prognostic model. Subsequently, the clinical prognosis, pathological characteristics, cancer-immunity cycle, tumour immune dysfunction and exclusion (TIDE) score, and immune checkpoint inhibitor (ICI) response were compared between the high- and low-risk groups. In addition, we determined the potential regulatory effect of NPR3 on BC cell proliferation, migration, and apoptosis. The model consisting of 7 IRGs was an independent prognostic factor. Patients with lower risk scores exhibited longer survival times. Moreover, the expression of NPR3 was increased but the expression of PD-1, PD-L1, and CTLA-4 was decreased in the high-risk group compared to the low-risk group. In addition, compared with si-NC, si-NPR3 suppressed proliferation and migration but promoted apoptosis in both MDA-MB-231 and MCF-7 cells. This study presents a model for predicting survival outcomes and provides a strategy to guide effective personalized immunotherapy in BC patients.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiao He
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Leischner C, Marongiu L, Piotrowsky A, Niessner H, Venturelli S, Burkard M, Renner O. Relevant Membrane Transport Proteins as Possible Gatekeepers for Effective Pharmacological Ascorbate Treatment in Cancer. Antioxidants (Basel) 2023; 12:antiox12040916. [PMID: 37107291 PMCID: PMC10135768 DOI: 10.3390/antiox12040916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the increasing number of newly diagnosed malignancies worldwide, therapeutic options for some tumor diseases are unfortunately still limited. Interestingly, preclinical but also some clinical data suggest that the administration of pharmacological ascorbate seems to respond well, especially in some aggressively growing tumor entities. The membrane transport and channel proteins are highly relevant for the use of pharmacological ascorbate in cancer therapy and are involved in the transfer of active substances such as ascorbate, hydrogen peroxide, and iron that predominantly must enter malignant cells to induce antiproliferative effects and especially ferroptosis. In this review, the relevant conveying proteins from cellular surfaces are presented as an integral part of the efficacy of pharmacological ascorbate, considering the already known genetic and functional features in tumor tissues. Accordingly, candidates for diagnostic markers and therapeutic targets are mentioned.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Luigi Marongiu
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Alban Piotrowsky
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Heike Niessner
- Department of Dermatology, Division of Dermatooncology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076 Tuebingen, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| | - Markus Burkard
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Olga Renner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
9
|
Ishida Y, Nosaka M, Ishigami A, Kondo T. Forensic application of aquaporins. Leg Med (Tokyo) 2023; 63:102249. [PMID: 37060638 DOI: 10.1016/j.legalmed.2023.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/04/2023] [Indexed: 04/03/2023]
Abstract
Aquaporins (AQPs) are a family of water channel proteins that primarily elicit the basic functions of water transport and osmotic homeostasis. To date, at least 17 mammalian AQPs have been identified, AQP-0 to -12 have been found in higher orders including human, and AQP-13 to -16 have been described in older lineages. Moreover, these proteins have recently been shown to regulate many biological processes through unique activities, such as cell proliferation, migration, apoptosis, and mitochondrial metabolism. Several studies have focused on the involvement of AQPs in cell biology aspect, showing that they are involved in a variety of physiological processes and pathophysiological conditions. Furthermore, in the field of forensic medicine, studies on whether AQPs can be a useful marker for diagnosing various causes of death have been conducted using autopsy samples and animal experiments, which have produced interesting results. Herein, we review certain observations regarding AQPs and discuss their potential to contribute to the future practice of forensic research.
Collapse
|
10
|
Aquaporin-mediated dysregulation of cell migration in disease states. Cell Mol Life Sci 2023; 80:48. [PMID: 36682037 DOI: 10.1007/s00018-022-04665-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 01/23/2023]
Abstract
Dysregulated cell migration and invasion are hallmarks of many disease states. This dysregulated migratory behavior is influenced by the changes in expression of aquaporins (AQPs) that occur during pathogenesis, including conditions such as cancer, endometriosis, and arthritis. The ubiquitous function of AQPs in migration of diseased cells makes them a crucial target for potential therapeutics; this possibility has led to extensive research into the specific mechanisms underlying AQP-mediated diseased cell migration. The functions of AQPs depend on a diverse set of variables including cell type, AQP isoform, disease state, cell microenvironments, and even the subcellular localization of AQPs. To consolidate the considerable work that has been conducted across these numerous variables, here we summarize and review the last decade's research covering the role of AQPs in the migration and invasion of cells in diseased states.
Collapse
|
11
|
The Interplay between Aquaporin-1 and the Hypoxia-Inducible Factor 1α in a Lipopolysaccharide-Induced Lung Injury Model in Human Pulmonary Microvascular Endothelial Cells. Int J Mol Sci 2022; 23:ijms231810588. [PMID: 36142499 PMCID: PMC9502402 DOI: 10.3390/ijms231810588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 12/21/2022] Open
Abstract
Aquaporin-1 (AQP1), a water channel, and the hypoxia-inducible factor 1α (HIF1A) are implicated in acute lung injury responses, modulating among others pulmonary vascular leakage. We hypothesized that the AQP1 and HIF1A systems interact, affecting mRNA, protein levels and function of AQP1 in human pulmonary microvascular endothelial cells (HPMECs) exposed to lipopolysaccharide (LPS). Moreover, the role of AQP1 in apoptosis and wound healing progression was examined. Both AQP1 mRNA and protein expression levels were higher in HPMECs exposed to LPS compared to untreated HPMECs. However, in the LPS-exposed HIF1A-silenced cells, the mRNA and protein expression levels of AQP1 remained unaltered. In the permeability experiments, a statistically significant volume increase was observed at the 360 s time-point in the LPS-exposed HPMECs, while LPS-exposed HIF1A-silenced HPMECs did not exhibit cell swelling, implying a dysfunctional AQP1. AQP1 did not seem to affect cell apoptosis yet could interfere with endothelial migration and/or proliferation. Based on our results, it seems that HIF1A silencing negatively affects AQP1 mRNA and protein expression, as well as AQP1 function, in the setting of lung injury.
Collapse
|
12
|
Nagy ÁG, Székács I, Bonyár A, Horvath R. Simple and automatic monitoring of cancer cell invasion into an epithelial monolayer using label-free holographic microscopy. Sci Rep 2022; 12:10111. [PMID: 35710696 PMCID: PMC9203807 DOI: 10.1038/s41598-022-14034-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022] Open
Abstract
The invasiveness of cancer cells describes the metastasizing capability of a primary tumor. The straightforward detection and quantification of cancer cell invasion are important to predict the survival rate of a cancer patient and to test how anti-cancer compounds influence cancer progression. Digital holographic microscopy based M4 Holomonitor (HM) is a technique that allows the label-free monitoring of cell morphological and kinetical parameters in real-time. Here, a fully confluent epithelial monolayer derived from the African green monkey kidney (Vero) on a gelatin-coated surface was established, then HeLa cells were seeded on top of the monolayer, and their behavior was monitored for 24 h using HM. Several cancer cells showing invasiveness were detected during this period, while other HeLa cells did not show any signs of aggressivity. It was demonstrated that the invasion of single cancer cells is soundly observable and also quantifiable through monitoring parameters such as phase shift, optical volume, area, and motility, which parameters can easily be obtained and processed automatically. Based on the experimental data, the invasion speed of cancer cells entering the epithelial layer can be defined as the shrinking of detected single-cell volume per unit time. The invasion speed and its correlation with cell migration parameters were analyzed in depth. A clear linear relationship between migration and invasion speed was found, cancer cells with stronger migration have slower invasion speed. These results not only describe the effect of how cancer cells invade the underlying monolayer in contrast to non-invasive HeLa cells, but could help in future research to optimize drugs affecting cell invasibility in a fully automated, label-free and high-throughput manner.
Collapse
Affiliation(s)
- Ágoston G Nagy
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary.,Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary.
| |
Collapse
|
13
|
Pellavio G, Martinotti S, Patrone M, Ranzato E, Laforenza U. Aquaporin-6 May Increase the Resistance to Oxidative Stress of Malignant Pleural Mesothelioma Cells. Cells 2022; 11:cells11121892. [PMID: 35741021 PMCID: PMC9221246 DOI: 10.3390/cells11121892] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer of the pleural surface and is associated with previous asbestos exposure. The chemotherapy drug is one of the main treatments, but the median survival ranges from 8 to 14 months from diagnosis. The redox homeostasis of tumor cells should be carefully considered since elevated levels of ROS favor cancer cell progression (proliferation and migration), while a further elevation leads to ferroptosis. This study aims to analyze the functioning/role of aquaporins (AQPs) as a hydrogen peroxide (H2O2) channel in epithelial and biphasic MPM cell lines, as well as their possible involvement in chemotherapy drug resistance. Results show that AQP-3, -5, -6, -9, and -11 were expressed at mRNA and protein levels. AQP-6 was localized in the plasma membrane and intracellular structures. Compared to normal mesothelial cells, the water permeability of mesothelioma cells is not reduced by exogenous oxidative stress, but it is considerably increased by heat stress, making these cells resistant to ferroptosis. Functional experiments performed in mesothelioma cells silenced for aquaporin-6 revealed that it is responsible, at least in part, for the increase in H2O2 efflux caused by heat stress. Moreover, mesothelioma cells knocked down for AQP-6 showed a reduced proliferation compared to mock cells. Current findings suggest the major role of AQP-6 in providing mesothelioma cells with the ability to resist oxidative stress that underlies their resistance to chemotherapy drugs.
Collapse
Affiliation(s)
- Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Simona Martinotti
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; (S.M.); (M.P.); (E.R.)
| | - Mauro Patrone
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; (S.M.); (M.P.); (E.R.)
| | - Elia Ranzato
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; (S.M.); (M.P.); (E.R.)
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-98-7568
| |
Collapse
|
14
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
15
|
Zhou Z, Zhang C, Ma Z, Wang H, Tuo B, Cheng X, Liu X, Li T. Pathophysiological role of ion channels and transporters in HER2-positive breast cancer. Cancer Gene Ther 2022; 29:1097-1104. [PMID: 34997219 DOI: 10.1038/s41417-021-00407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
The incidence of breast cancer (BC) has been increasing each year, and BC is now the most common malignant tumor in women. Among the numerous BC subtypes, HER2-positive BC can be treated with a variety of strategies based on targeting HER2. Although there has been great progress in the treatment of HER2-positive BC, recurrence, metastasis and drug resistance remain considerable challenges. The dysfunction of ion channels and transporters can affect the development and progression of HER2-positive BC, so these entities are expected to be new therapeutic targets. This review summarizes various ion channels and transporters associated with HER2-positive BC and suggests potential targets for the development of new and effective therapies.
Collapse
Affiliation(s)
- Zhengxing Zhou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Chengmin Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
16
|
Čipak Gašparović A, Milković L, Rodrigues C, Mlinarić M, Soveral G. Peroxiporins Are Induced upon Oxidative Stress Insult and Are Associated with Oxidative Stress Resistance in Colon Cancer Cell Lines. Antioxidants (Basel) 2021; 10:1856. [PMID: 34829727 PMCID: PMC8615012 DOI: 10.3390/antiox10111856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress can induce genetic instability and change cellular processes, resulting in colorectal cancer. Additionally, adaptation of oxidative defense causes therapy resistance, a major obstacle in successful cancer treatment. Peroxiporins are aquaporin membrane channels that facilitate H2O2 membrane permeation, crucial for regulating cell proliferation and antioxidative defense. Here, we investigated four colon cancer cell lines (Caco-2, HT-29, SW620, and HCT 116) for their sensitivity to H2O2, cellular antioxidative status, and ROS intracellular accumulation after H2O2 treatment. The expression of peroxiporins AQP1, AQP3, and AQP5 and levels of NRF2, the antioxidant transcription factor, and PPARγ, a transcription factor that regulates lipid metabolism, were evaluated before and after oxidative insult. Of the four tested cell lines, HT-29 was the most resistant and showed the highest expression of all tested peroxiporins and the lowest levels of intracellular ROS, without differences in GSH levels, catalase activity, nor NF2 and PPARγ levels. Caco-2 shows high expression of AQP3 and similar resistance as HT-29. These results imply that oxidative stress resistance can be obtained by several mechanisms other than the antioxidant defense system. Regulation of intracellular ROS through modulation of peroxiporin expression may represent an additional strategy to target the therapy resistance of cancer cells.
Collapse
Affiliation(s)
- Ana Čipak Gašparović
- Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (M.M.)
| | - Lidija Milković
- Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (M.M.)
| | - Claudia Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Monika Mlinarić
- Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (M.M.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
17
|
Guzel S, Cai CL, Aranda JV, Beharry KD. Dose Response of Bumetanide on Aquaporins and Angiogenesis Biomarkers in Human Retinal Endothelial Cells Exposed to Intermittent Hypoxia. Pharmaceuticals (Basel) 2021; 14:ph14100967. [PMID: 34681190 PMCID: PMC8538009 DOI: 10.3390/ph14100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are important for regulating cellular water, solute transport, and balance. Recently, AQPs have also been recognized as playing a key role in cell migration and angiogenesis. In the retina, hypoxia induces vascular endothelial growth factor (VEGF), a potent angiogenic and vascular permeability factor, resulting in retinal edema, which is facilitated by AQPs. Bumetanide is a diuretic agent and AQP 1–4 blocker. We tested the hypothesis that bumetanide suppression of AQPs ameliorates intermittent hypoxia (IH)-induced angiogenesis and oxidative stress in human microvascular retinal endothelial cells (HMRECs). HMRECs were treated with a low-dose (0.05 µg/mL) or high-dose (0.2 µg/mL) of bumetanide and were exposed to normoxia (Nx), hyperoxia (50% O2), or IH (50% O2 with brief hypoxia 5% O2) for 24, 48, and 72 h. Angiogenesis and oxidative stress biomarkers were determined in the culture media, and the cells were assessed for tube formation capacity and AQP-1 and -4 expression. Both doses of bumetanide significantly decreased oxidative stress and angiogenesis biomarkers. This response was reflected by reductions in tube formation capacity and AQP expression. These findings confirm the role of AQPs in retinal angiogenesis. Therapeutic targeting of AQPs with bumetanide may be advantageous for IH-induced aberrant retinal development.
Collapse
Affiliation(s)
- Sibel Guzel
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; (S.G.); (C.L.C.); (J.V.A.)
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; (S.G.); (C.L.C.); (J.V.A.)
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; (S.G.); (C.L.C.); (J.V.A.)
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
- State University of New York Eye Institute, Brooklyn, NY 11203, USA
| | - Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; (S.G.); (C.L.C.); (J.V.A.)
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
- State University of New York Eye Institute, Brooklyn, NY 11203, USA
- Correspondence: ; Tel.: +1-(718)-270-1475
| |
Collapse
|
18
|
Kong B, Zhao S, Kang X, Wang B. MicroRNA-133a-3p inhibits cell proliferation, migration and invasion in colorectal cancer by targeting AQP1. Oncol Lett 2021; 22:649. [PMID: 34386071 PMCID: PMC8298993 DOI: 10.3892/ol.2021.12910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, miR-133a-3p has been identified as a marker for human colorectal cancer (CRC) and the association between miR-133a-3p and aquaporin 1 (AQP1) has been described in endothelial cells. However, the regulatory functions of the miR-133a-3p/AQP1 axis remain unclear in CRC. The present study analyzed the expression of miR-133a-3p and AQP1 in CRC tissues (n=56) and cell lines using reverse transcription-quantitative PCR and western blot analysis. The χ2 test was used to assess the associations between miR-133a-3p/AQP1 and clinicopathological features of patients with CRC. Next, the functional role of miR-133a-3p/AQP1 in CRC was evaluated in vitro by performing Cell Counting Kit-8 and Transwell assays. Moreover, the online software tool TargetScan7.1 was used to predict AQP1 as the target gene of miR-133a-3p, followed by validation using a luciferase reporter assay. The results showed that miR-133a-3p was significantly downregulated, while AQP1 was upregulated in CRC tissues and cell lines compared with corresponding controls. Clinically, it was demonstrated that miR-133a-3p/AQP1 expression was significantly associated with tumor TNM stage (P=0.020). Functional experiments indicated that miR-133a-3p-overexpression remarkably suppressed, while knockdown promoted, cell proliferation, migration and invasion in CRC cells. Mechanically, AQP1 was identified and validated as a target gene of miR-133a-3p in CRC cells. The expression level of AQP1 mRNA was not correlated with miR-133a-3p expression in CRC tissues. Furthermore, AQP1-knockdown induced, while overexpression reversed, the suppressive effects of miR-133a-3p on CRC cells. Taken together, these findings suggested that miR-133a-3p might be a tumor suppressor by suppressing cell proliferation, migration and invasion via targeting AQP1.
Collapse
Affiliation(s)
- Bin Kong
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Shipeng Zhao
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Xianwu Kang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Bo Wang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
19
|
Tomita Y, Smith E, Palethorpe HM, Nakhjavani M, Yeo KKL, Townsend AR, Price TJ, Yool AJ, Hardingham JE. In Vitro Synergistic Inhibition of HT-29 Proliferation and 2H-11 and HUVEC Tubulogenesis by Bacopaside I and II Is Associated with Ca 2+ Flux and Loss of Plasma Membrane Integrity. Pharmaceuticals (Basel) 2021; 14:ph14050436. [PMID: 34066415 PMCID: PMC8148107 DOI: 10.3390/ph14050436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
We previously showed how triterpene saponin bacopaside (bac) II, purified from the medicinal herb Bacopa monnieri, induced cell death in colorectal cancer cell lines and reduced endothelial cell migration and tube formation, and further demonstrated a synergistic effect of a combination of bac I and bac II on the inhibition of breast cancer cell line growth. Here, we assessed the effects of bac I and II on the colorectal cancer HT-29 cell line, and mouse (2H-11) and human umbilical vein endothelial cell (HUVEC) lines, measuring outcomes including cell viability, proliferation, migration, tube formation, apoptosis, cytosolic Ca2+ levels and plasma membrane integrity. Combined bac I and II, each applied at concentrations below IC50 values, caused a synergistic reduction of the viability and proliferation of HT-29 and endothelial cells, and impaired the migration of HT-29 and tube formation of endothelial cells. A significant enhancement of apoptosis was induced only in HUVEC, although an increase in cytosolic Ca2+ was detected in all three cell lines. Plasma membrane integrity was compromised in 2H-11 and HUVEC, as determined by an increase in propidium iodide staining, which was preceded by Ca2+ flux. These in vitro findings support further research into the mechanisms of action of the combined compounds for potential clinical use.
Collapse
Affiliation(s)
- Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Correspondence: ; Tel.: +61-8-8222-7096
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Helen M. Palethorpe
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Maryam Nakhjavani
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Kenny K. L. Yeo
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Amanda R. Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Timothy J. Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Andrea J. Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Jennifer E. Hardingham
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
20
|
AQP3 and AQP5-Potential Regulators of Redox Status in Breast Cancer. Molecules 2021; 26:molecules26092613. [PMID: 33947079 PMCID: PMC8124745 DOI: 10.3390/molecules26092613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is still one of the leading causes of mortality in the female population. Despite the campaigns for early detection, the improvement in procedures and treatment, drastic improvement in survival rate is omitted. Discovery of aquaporins, at first described as cellular plumbing system, opened new insights in processes which contribute to cancer cell motility and proliferation. As we discover new pathways activated by aquaporins, the more we realize the complexity of biological processes and the necessity to fully understand the pathways affected by specific aquaporin in order to gain the desired outcome-remission of the disease. Among the 13 human aquaporins, AQP3 and AQP5 were shown to be significantly upregulated in breast cancer indicating their role in the development of this malignancy. Therefore, these two aquaporins will be discussed for their involvement in breast cancer development, regulation of oxidative stress and redox signalling pathways leading to possibly targeting them for new therapies.
Collapse
|
21
|
Huo Z, Lomora M, Kym U, Palivan C, Holland-Cunz SG, Gros SJ. AQP1 Is Up-Regulated by Hypoxia and Leads to Increased Cell Water Permeability, Motility, and Migration in Neuroblastoma. Front Cell Dev Biol 2021; 9:605272. [PMID: 33644043 PMCID: PMC7905035 DOI: 10.3389/fcell.2021.605272] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
The water channel aquaporin 1 (AQP1) has been implicated in tumor progression and metastasis. It is hypothesized that AQP1 expression can facilitate the transmembrane water transport leading to changes in cell structure that promote migration. Its impact in neuroblastoma has not been addressed so far. The objectives of this study have been to determine whether AQP1 expression in neuroblastoma is dependent on hypoxia, to demonstrate whether AQP1 is functionally relevant for migration, and to further define AQP1-dependent properties of the migrating cells. This was determined by investigating the reaction of neuroblastoma cell lines, particularly SH-SY5Y, Kelly, SH-EP Tet-21/N and SK-N-BE(2)-M17 to hypoxia, quantitating the AQP1-related water permeability by stopped-flow spectroscopy, and studying the migration-related properties of the cells in a modified transwell assay. We find that AQP1 expression in neuroblastoma cells is up-regulated by hypoxic conditions, and that increased AQP1 expression enabled the cells to form a phenotype which is associated with migratory properties and increased cell agility. This suggests that the hypoxic tumor microenvironment is the trigger for some tumor cells to transition to a migratory phenotype. We demonstrate that migrating tumor cell express elevated AQP1 levels and a hypoxic biochemical phenotype. Our experiments strongly suggest that elevated AQP1 might be a key driver in transitioning stable tumor cells to migrating tumor cells in a hypoxic microenvironment.
Collapse
Affiliation(s)
- Zihe Huo
- Department of Pediatric Surgery, University Children's Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Mihai Lomora
- Department of Physical Chemistry, University of Basel, Basel, Switzerland
| | - Urs Kym
- Department of Pediatric Surgery, University Children's Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Cornelia Palivan
- Department of Physical Chemistry, University of Basel, Basel, Switzerland
| | - Stefan G Holland-Cunz
- Department of Pediatric Surgery, University Children's Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Stephanie J Gros
- Department of Pediatric Surgery, University Children's Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Ala M, Mohammad Jafari R, Hajiabbasi A, Dehpour AR. Aquaporins and diseases pathogenesis: From trivial to undeniable involvements, a disease-based point of view. J Cell Physiol 2021; 236:6115-6135. [PMID: 33559160 DOI: 10.1002/jcp.30318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Aquaporins (AQPs), as transmembrane proteins, were primarily identified as water channels with the ability of regulating the transmission of water, glycerol, urea, and other small-sized molecules. The classic view of AQPs involvement in therapeutic plan restricted them and their regulators into managing only a narrow spectrum of the diseases such as diabetes insipidus and the syndrome of inappropriate ADH secretion. However, further investigations performed, especially in the third millennium, has found that their cooperation in water transmission control can be manipulated to handle other burden-imposing diseases such as cirrhosis, heart failure, Meniere's disease, cancer, bullous pemphigoid, eczema, and Sjögren's syndrome.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Hajiabbasi
- Guilan Rheumatology Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Targeting Aquaporins in Novel Therapies for Male and Female Breast and Reproductive Cancers. Cells 2021; 10:cells10020215. [PMID: 33499000 PMCID: PMC7911300 DOI: 10.3390/cells10020215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aquaporins are membrane channels in the broad family of major intrinsic proteins (MIPs), with 13 classes showing tissue-specific distributions in humans. As key physiological modulators of water and solute homeostasis, mutations, and dysfunctions involving aquaporins have been associated with pathologies in all major organs. Increases in aquaporin expression are associated with greater severity of many cancers, particularly in augmenting motility and invasiveness for example in colon cancers and glioblastoma. However, potential roles of altered aquaporin (AQP) function in reproductive cancers have been understudied to date. Published work reviewed here shows distinct classes aquaporin have differential roles in mediating cancer metastasis, angiogenesis, and resistance to apoptosis. Known mechanisms of action of AQPs in other tissues are proving relevant to understanding reproductive cancers. Emerging patterns show AQPs 1, 3, and 5 in particular are highly expressed in breast, endometrial, and ovarian cancers, consistent with their gene regulation by estrogen response elements, and AQPs 3 and 9 in particular are linked with prostate cancer. Continuing work is defining avenues for pharmacological targeting of aquaporins as potential therapies to reduce female and male reproductive cancer cell growth and invasiveness.
Collapse
|
24
|
Anti-Angiogenic Properties of Ginsenoside Rg3. Molecules 2020; 25:molecules25214905. [PMID: 33113992 PMCID: PMC7660320 DOI: 10.3390/molecules25214905] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Ginsenoside Rg3 (Rg3) is a member of the ginsenoside family of chemicals extracted from Panax ginseng. Like other ginsenosides, Rg3 has two epimers: 20(S)-ginsenoside Rg3 (SRg3) and 20(R)-ginsenoside Rg3 (RRg3). Rg3 is an intriguing molecule due to its anti-cancer properties. One facet of the anti-cancer properties of Rg3 is the anti-angiogenic action. This review describes the controversies on the effects and effective dose range of Rg3, summarizes the evidence on the efficacy of Rg3 on angiogenesis, and raises the possibility that Rg3 is a prodrug.
Collapse
|
25
|
Wang Z, Wang Y, He Y, Zhang N, Chang W, Niu Y. Aquaporin-1 facilitates proliferation and invasion of gastric cancer cells via GRB7-mediated ERK and Ras activation. Anim Cells Syst (Seoul) 2020; 24:253-259. [PMID: 33209198 PMCID: PMC7646557 DOI: 10.1080/19768354.2020.1833985] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gastric cancer, one of the most common malignant tumors of the digestive tract, is devoid of effective treatment owing to its highly invasive ability. Aquaporins (AQPs), transmembrane water channel proteins, has been shown to be involved in the malignancy of gastric cancer. This study aims to investigate the pathophysiological roles of AQP-1 in gastric cancer. We first demonstrated quantitative real-time polymerase chain reaction analysis and found up-regulation of AQP-1 in gastric cancer cell lines. Additionally, silence of AQP-1 inhibited cell proliferation via decrease of proliferating cell nuclear antigen (PCNA) and minichromosome maintenance complex component 2 (MCM2). Moreover, migration and invasion of gastric cancer cells were also suppressed by the interference of AQP-1. However, the tumorigenic mechanism of AQP-1 on gastric cancer is yet to be found. We demonstrated western blot analysis and found that knockdown of AQP-1 decreased protein expression of phospho (p)-GRB7 (growth factor receptor-bound protein 7) and led to a remarkable reduction of p-extracellular signal-regulated kinase (ERK) via inactivation of RAS. In general, our findings indicated that AQP-1 facilitates proliferation and invasion of gastric cancer cells via GRB7-mediated ERK and Ras activation, illuminating a novel AQP-1-RAS/ERK molecular axis as regulator in gastric cancer progression and suggesting potential implications in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhenjie Wang
- Department of Digesting Internal Medicine, Changzhi City, People's Republic of China
| | - Yujuan Wang
- Department of Ultrasound Diagnosis, Affiliated Heping Hospital, Changzhi Medical College, Changzhi City, People's Republic of China
| | - Yuan He
- Department of Gastrointestinal Surgery, Affiliated Heping Hospital, Changzhi Medical College, Changzhi City, People's Republic of China
| | - Ning Zhang
- Department of Digesting Internal Medicine, Changzhi City, People's Republic of China
| | - Wei Chang
- Department of Ear-Nose-Throat, Affiliated Heping Hospital, Changzhi Medical College, Changzhi City, People's Republic of China
| | - Yahui Niu
- Department of Digesting Internal Medicine, Changzhi City, People's Republic of China
| |
Collapse
|
26
|
Mu YR, Zhou MY, Cai L, Liu MM, Li R. Overexpression of Aquaporin 1 in Synovium Aggravates Rat Collagen-Induced Arthritis Through Regulating β-Catenin Signaling: An in vivo and in vitro Study. J Inflamm Res 2020; 13:701-712. [PMID: 33116749 PMCID: PMC7550268 DOI: 10.2147/jir.s271664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Previous studies have confirmed that aquaporin 1 (AQP1) is up-regulated in synovium of rheumatoid arthritis (RA), but its exact pathogenic mechanisms in RA are unclear. This study revealed the pathogenic role of AQP1 in rat collagen-induced arthritis (CIA) and the underlying mechanisms related to β-catenin signaling. Materials and Methods Secondary paw swelling and pathological changes of ankle joints were used to evaluate the severity of rat CIA. Synovial AQP1 and β-catenin expression were measured by immunohistochemistry (IHC) and Western blot assay. AQP1 siRNA was applied to knockdown AQP1 in cultured CIA fibroblast-like synoviocyte (FLS). Assays of MTT, PCNA immunofluorescence and transwell were performed to detect cell proliferation, migration and invasion. The protein levels of β-catenin pathway members and ratio of TOP/FOP luciferase activity were also measured. Results In vivo, we revealed that synovial AQP1 and β-catenin expressions in CIA rats were higher than normal rats, and synovial AQP1 expression of CIA rats increased in parallel with secondary paw swelling and total pathological score on joint damage. Correlation analysis of IHC results indicated that synovial AQP1 expression positively correlated with β-catenin expression in CIA rat. In vitro, AQP1 siRNA apparently reduced the proliferation, migration and invasion of CIA FLS by inhibiting β-catenin signaling pathway. As an activator of β-catenin signaling, lithium chloride (an inhibitor of GSK-3β) reversed the inhibitory effects of AQP1 siRNA on the cultured CIA FLS. Conclusion We concluded that the overexpression of synovial AQP1 aggravated rat CIA by promoting the activation of FLS through β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yu-Rong Mu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Meng-Yuan Zhou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Ming-Ming Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| |
Collapse
|
27
|
Kang Y, Datta P, Shanmughapriya S, Ozbolat IT. 3D Bioprinting of Tumor Models for Cancer Research. ACS APPLIED BIO MATERIALS 2020; 3:5552-5573. [DOI: 10.1021/acsabm.0c00791] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Youngnam Kang
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, Pennsylvania 16802, United States
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, West Bengal 711103, India
| | - Santhanam Shanmughapriya
- Department of Medicine, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Cellular and Molecular Physiology, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- Heart and Vascular Institute, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Ibrahim T. Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, Pennsylvania 16802, United States
- Biomedical Engineering Department, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Neurosurgery, Penn State University, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
28
|
Abdelrahman AE, Ibrahim DA, El-Azony A, Alnagar AA, Ibrahim A. ERCC1, PARP-1, and AQP1 as predictive biomarkers in colon cancer patients receiving adjuvant chemotherapy. Cancer Biomark 2020; 27:251-264. [PMID: 31903985 DOI: 10.3233/cbm-190994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The recognition of high-risk colon cancer patients prone to chemoresistant and recurrent disease is a challenge. OBJECTIVES We aimed to assess the immunohistochemical expression of ERCC1, PARP-1, and AQP1 in 60 cases of stage II and III colon cancer who underwent curative resection and adjuvant chemotherapy. Their predictive role of tumor progression and disease-free survival (DFS) was analyzed. METHODS The immunohistochemical expression of ERCC1, PARP-1, and AQP1 in 60 cases of stage II and III colon cancer who underwent curative resection and adjuvant chemotherapy was studied. The collected data on the overall survival (OS), disease-free survival (DFS), and the response to the chemotherapy were analyzed. RESULTS Positive nuclear ERCC1 expression was identified in 58.3% of the patients, ERCC1 expression was significantly associated with left-sided tumors (P< 0.01). Moreover, its expression was significantly associated with the aggressive tumor characteristics including high grade, lymph node metastasis and advanced tumor stage (P< 0.001 for each). High nuclear PARP-1 expression was observed in 63.3% of the cases, and its expression was significantly associated with tumor grade and lymph node metastasis (P= 0.003 for each). Positive membranous AQP1 expression was identified in 41.7% of patients, and it was associated with high grade, lymph node metastasis and advanced tumor stage (P< 0.001 for each). During the follow-up period, 23 patients (38.3%) exhibited a tumor progression; this was significantly associated with positive ERCC1, high PARP-1, and negative AQP1 expression. Statistics of the survival data revealed that shorter DFS was significantly associated with positive ERCC1, high PARP-1, and positive AQP1 expression (P= 0.005, 0.016, 0.002, respectively). CONCLUSIONS ERCC1, PARP1, and AQP1 are adverse prognostic biomarkers in stage II-III colon cancer. Moreover, adjuvant chemotherapy may not be beneficial for patients with positive ERCC1, high PARP1, and AQP1-negative tumors. Therefore, we recommend that ERCC1, PARP-1, and AQP1 should be assessed during the selection of the treatment strategy for stage II-III colon cancer patients.
Collapse
Affiliation(s)
- Aziza E Abdelrahman
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Ahmed El-Azony
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Alnagar
- Medical Oncology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amr Ibrahim
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
29
|
Chow PH, Bowen J, Yool AJ. Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers (Basel) 2020; 12:E1911. [PMID: 32679804 PMCID: PMC7409285 DOI: 10.3390/cancers12071911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic analyses of RNAseq data (Human Protein Atlas database). Meta-analyses confirmed predominantly negative associations between AQP protein and RNA expression levels and patient survival times, most notably for AQP1 in lung, breast and prostate cancers; AQP3 in esophageal, liver and breast cancers; and AQP9 in liver cancer. Patterns of AQP expression were clustered for groups of cancers and associated with risk of death. A quantitative transcriptomic analysis of AQP1-10 in human cancer biopsies similarly showed that increased transcript levels of AQPs 1, 3, 5 and 9 were most frequently associated with poor survival. Unexpectedly, increased AQP7 and AQP8 levels were associated with better survival times in glioma, ovarian and endometrial cancers, and increased AQP11 with better survival in colorectal and breast cancers. Although molecular mechanisms of aquaporins in pathology or protection remain to be fully defined, results here support the hypothesis that overexpression of selected classes of AQPs differentially augments cancer progression. Beyond fluid homeostasis, potential roles for AQPs in cancers (suggested from an expanding appreciation of their functions in normal tissues) include cell motility, membrane process extension, transport of signaling molecules, control of proliferation and apoptosis, increased mechanical compliance, and gas exchange. AQP expression also has been linked to differences in sensitivity to chemotherapy treatments, suggesting possible roles as biomarkers for personalized treatments. Development of AQP pharmacological modulators, administered in cancer-specific combinations, might inspire new interventions for controlling malignant carcinomas.
Collapse
Affiliation(s)
| | | | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia; (P.H.C.); (J.B.)
| |
Collapse
|
30
|
Zhang M, Li T, Zhu J, Tuo B, Liu X. Physiological and pathophysiological role of ion channels and transporters in the colorectum and colorectal cancer. J Cell Mol Med 2020; 24:9486-9494. [PMID: 32662230 PMCID: PMC7520301 DOI: 10.1111/jcmm.15600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
The incidence of colorectal cancer has increased annually, and the pathogenesis of this disease requires further investigation. In normal colorectal tissues, ion channels and transporters maintain the water‐electrolyte balance and acid/base homeostasis. However, dysfunction of these ion channels and transporters leads to the development and progression of colorectal cancer. Therefore, this review focuses on the progress in understanding the roles of ion channels and transporters in the colorectum and in colorectal cancer, including aquaporins (AQPs), Cl− channels, Cl−/HCO3‐ exchangers, Na+/HCO3‐ transporters and Na+/H+ exchangers. The goal of this review is to promote the identification of new targets for the treatment and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| |
Collapse
|
31
|
Zhang G, Ma W, Dong H, Shu J, Hou W, Guo Y, Wang M, Wei X, Ren J, Zhang J. Based on Histogram Analysis: ADC aqp Derived from Ultra-high b-Value DWI could be a Non-invasive Specific Biomarker for Rectal Cancer Prognosis. Sci Rep 2020; 10:10158. [PMID: 32576929 PMCID: PMC7311405 DOI: 10.1038/s41598-020-67263-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
Aquaporins (AQP) are not only water channel protein, but also potential prognostic indicator and therapeutic target for rectal cancer. Some previous studies have demonstrated the AQP expression could be estimated by ADCaqp value derived from ultra-high b-value diffusion-weighted imaging (DWI). We aim to determine whether ADCaqp could be a new and specific biomarker for indicating the AQP expression and prognostic factors of rectal cancer. 76 untreated patients with rectal cancer confirmed by colonoscopy biopsy were enrolled. ADCaqp value was generated from ultra-high b-value DWI with five b-values (1700–3500 s/mm2). AQP (AQP1, 3 and 5)staining intensity was estimated by both of software (QuPath) and manual manner. The relationships between histogram features of ADCaqp and AQP staining intensity were analyzed. The correlations between histogram features of ADCaqp and differentiation degrees (good, moderate, poor), T stage (T1–2 vs T3–4), and lymph node status (N+ vs N−) were also evaluated respectively. The mean, 75th percentile and 97.5th percentile of ADCaqp were correlated with AQP1 staining intensity (r = 0.237, 0.323 and 0.362, respectively, all P < 0.05) . No correlation was found between the histogram features of ADCaqp and AQP3 or AQP5 staining intensity. The mean, 50th percentile, 75th percentile and 97.5th percentile of ADCaqp value exhibited significant differences between differentiation status (all P < 0.05). Histogram features of ADCaqp value showed no significant differences in two subgroups of T stage and lymph node status (all P > 0.05). Histogram analysis showed that the ADCaqp value derived from ultra-high b-value DWI of rectal cancer could reflect AQP1’s expression and rectal cancer’s malignancy degree. ADCaqp might be a new imaging biomarker for evaluating rectal cancer.
Collapse
Affiliation(s)
- Guangwen Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Wanling Ma
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Hui Dong
- Research Equipment Management Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Jun Shu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Weihuan Hou
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yong Guo
- Department of Gastrointestinal Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Mian Wang
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Xiaocheng Wei
- MR Research China, GE Healthcare Greater China, Beijing, P.R. China
| | - Jialiang Ren
- MR Research China, GE Healthcare Greater China, Beijing, P.R. China
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China.
| |
Collapse
|
32
|
Chow PH, Kourghi M, Pei JV, Nourmohammadi S, Yool AJ. 5-Hydroxymethyl-Furfural and Structurally Related Compounds Block the Ion Conductance in Human Aquaporin-1 Channels and Slow Cancer Cell Migration and Invasion. Mol Pharmacol 2020; 98:38-48. [PMID: 32434851 DOI: 10.1124/mol.119.119172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Aquaporin-1 (AQP1) dual water and ion channels enhance migration and invasion when upregulated in leading edges of certain classes of cancer cells. Work here identifies structurally related furan compounds as novel inhibitors of AQP1 ion channels. 5-Hydroxymethyl-2-furfural (5HMF), a component of natural medicinal honeys, and three structurally related compounds, 5-nitro-2-furoic acid (5NFA), 5-acetoxymethyl-2-furaldehyde (5AMF), and methyl-5-nitro-2-furoate (M5NF), were analyzed for effects on water and ion channel activities of human AQP1 channels expressed in Xenopus oocytes. Two-electrode voltage clamp showed dose-dependent block of the AQP1 ion current by 5HMF (IC50 0.43 mM), 5NFA (IC50 1.2 mM), and 5AMF (IC50 ∼3 mM) but no inhibition by M5NF. In silico docking predicted the active ligands interacted with glycine 165, located in loop D gating domains surrounding the intracellular vestibule of the tetrameric central pore. Water fluxes through separate intrasubunit pores were unaltered by the furan compounds (at concentrations up to 5 mM). Effects on cell migration, invasion, and cytoskeletal organization in vitro were tested in high-AQP1-expressing cancer lines, colon cancer (HT29) and AQP1-expressing breast cancer (MDA), and low-AQP1-expressing SW480. 5HMF, 5NFA, and 5AMF selectively impaired cell motility in the AQP1-enriched cell lines. In contrast, M5NF immobilized all the cancer lines by disrupting actin cytoskeleton. No reduction in cell viability was observed at doses that were effective in blocking motility. These results define furans as a new class of AQP1 ion channel inhibitors for basic research and potential lead compounds for development of therapeutic agents targeting aquaporin channel activity. SIGNIFICANCE STATEMENT: 5-Hydroxymethyl-2-furfural (5HMF), a component of natural medicinal honeys, blocks the ion conductance but not the water flux through human Aquaporin-1 (AQP1) channels and impairs AQP1-dependent cell migration and invasiveness in cancer cell lines. Analyses of 5HMT and structural analogs demonstrate a structure-activity relationship for furan compounds, supported by in silico docking modeling. This work identifies new low-cost pharmacological antagonists for AQP1 available to researchers internationally. Furans merit consideration as a new class of therapeutic agents for controlling cancer metastasis.
Collapse
Affiliation(s)
- Pak Hin Chow
- Adelaide Medical School, University of Adelaide, Adelaide, Australia (P.H.C., M.K., J.V.P., S.N., A.J.Y.) and College of Science, The Australian National University, Canberra, Australia (J.V.P.)
| | - Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, Australia (P.H.C., M.K., J.V.P., S.N., A.J.Y.) and College of Science, The Australian National University, Canberra, Australia (J.V.P.)
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, Australia (P.H.C., M.K., J.V.P., S.N., A.J.Y.) and College of Science, The Australian National University, Canberra, Australia (J.V.P.)
| | - Saeed Nourmohammadi
- Adelaide Medical School, University of Adelaide, Adelaide, Australia (P.H.C., M.K., J.V.P., S.N., A.J.Y.) and College of Science, The Australian National University, Canberra, Australia (J.V.P.)
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, Australia (P.H.C., M.K., J.V.P., S.N., A.J.Y.) and College of Science, The Australian National University, Canberra, Australia (J.V.P.)
| |
Collapse
|
33
|
Yorozu A, Yamamoto E, Niinuma T, Tsuyada A, Maruyama R, Kitajima H, Numata Y, Kai M, Sudo G, Kubo T, Nishidate T, Okita K, Takemasa I, Nakase H, Sugai T, Takano K, Suzuki H. Upregulation of adipocyte enhancer-binding protein 1 in endothelial cells promotes tumor angiogenesis in colorectal cancer. Cancer Sci 2020; 111:1631-1644. [PMID: 32086986 PMCID: PMC7226196 DOI: 10.1111/cas.14360] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor angiogenesis is an important therapeutic target in colorectal cancer (CRC). We aimed to identify novel genes associated with angiogenesis in CRC. Using RNA sequencing analysis in normal and tumor endothelial cells (TECs) isolated from primary CRC tissues, we detected frequent upregulation of adipocyte enhancer‐binding protein 1 (AEBP1) in TECs. Immunohistochemical analysis revealed that AEBP1 is upregulated in TECs and stromal cells in CRC tissues. Quantitative RT‐PCR analysis showed that there is little or no AEBP1 expression in CRC cell lines, but that AEBP1 is well expressed in vascular endothelial cells. Levels of AEBP1 expression in Human umbilical vein endothelial cells (HUVECs) were upregulated by tumor conditioned medium derived from CRC cells or by direct coculture with CRC cells. Knockdown of AEBP1 suppressed proliferation, migration, and in vitro tube formation by HUVECs. In xenograft experiments, AEBP1 knockdown suppressed tumorigenesis and microvessel formation. Depletion of AEBP1 in HUVECs downregulated a series of genes associated with angiogenesis or endothelial function, including aquaporin 1 (AQP1) and periostin (POSTN), suggesting that AEBP1 might promote angiogenesis through regulation of those genes. These results suggest that upregulation of AEBP1 contributes to tumor angiogenesis in CRC, which makes AEBP1 a potentially useful therapeutic target.
Collapse
Affiliation(s)
- Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Tsuyada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuto Numata
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gota Sudo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Kubo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Nishidate
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenji Okita
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
34
|
Maltaneri RE, Schiappacasse A, Chamorro ME, Nesse AB, Vittori DC. Aquaporin-1 plays a key role in erythropoietin-induced endothelial cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118569. [PMID: 31676353 DOI: 10.1016/j.bbamcr.2019.118569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 01/30/2023]
Abstract
Water influx through aquaporin-1 (AQP-1) has been linked to the ability of different cell types to migrate, and therefore plays an important part in processes like metastasis and angiogenesis. Since the erythroid growth factor erythropoietin (Epo) is now recognized as an angiogenesis promoter, we investigated the participation of AQP-1 as a downstream effector of this cytokine in the migration of endothelial cells. Inhibition of AQP-1 with either mercury ions (Hg2+) or a specific siRNA led to an impaired migration of EA.hy926 endothelial cells exposed to Epo (wound-healing assays). Epo also induced the expression of AQP-1 at mRNA and protein levels, an effect which was dependent on the influx of extracellular calcium through L-type calcium channels as well as TRPC3 channels. The relationship between Epo and AQP-1 was further confirmed at shorter exposure times, as the cytokine was unable to trigger calcium influxes in cells where AQP-1 had previously been knocked down. Moreover, Epo promoted changes in the subcellular localization of AQP-1 as well as rearrangements in the actin cytoskeleton, which are consistent with a migratory phenotype. Worthy of note, carbamylated erythropoietin (cEpo), the non-erythropoietic and non-promigratory derivative of Epo, was incapable of AQP-1 modulation. The therapeutical implications of aquaporin targeting in angiogenesis-related diseases highlight the importance of the present results in the context of the relationship between AQP-1 and Epo.
Collapse
Affiliation(s)
- Romina E Maltaneri
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Agustina Schiappacasse
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - María E Chamorro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Alcira B Nesse
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Daniela C Vittori
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Palethorpe HM, Smith E, Tomita Y, Nakhjavani M, Yool AJ, Price TJ, Young JP, Townsend AR, Hardingham JE. Bacopasides I and II Act in Synergy to Inhibit the Growth, Migration and Invasion of Breast Cancer Cell Lines. Molecules 2019; 24:E3539. [PMID: 31574930 PMCID: PMC6803832 DOI: 10.3390/molecules24193539] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 12/24/2022] Open
Abstract
Bacopaside (bac) I and II are triterpene saponins purified from the medicinal herb Bacopa monnieri. Previously, we showed that bac II reduced endothelial cell migration and tube formation and induced apoptosis in colorectal cancer cell lines. The aim of the current study was to examine the effects of treatment with combined doses of bac I and bac II using four cell lines representative of the breast cancer subtypes: triple negative (MDA-MB-231), estrogen receptor positive (T47D and MCF7) and human epidermal growth factor receptor 2 (HER2) positive (BT-474). Drug treatment outcome measures included cell viability, proliferation, cell cycle, apoptosis, migration, and invasion assays. Relationships were analysed by one- and two-way analysis of variance with Bonferroni post-hoc analysis. Combined doses of bac I and bac II, each below their half maximal inhibitory concentration (IC50), were synergistic and reduced the viability and proliferation of the four breast cancer cell lines. Cell loss occurred at the highest dose combinations and was associated with G2/M arrest and apoptosis. Migration in the scratch wound assay was significantly reduced at apoptosis-inducing combinations, but also at non-cytotoxic combinations, for MDA-MB-231 and T47D (p < 0.0001) and BT-474 (p = 0.0003). Non-cytotoxic combinations also significantly reduced spheroid invasion of MDA-MB-231 cells by up to 97% (p < 0.0001). Combining bac I and II below their IC50 reduced the viability, proliferation, and migration and invasiveness of breast cancer cell lines, suggesting synergy between bac I and II.
Collapse
Affiliation(s)
- Helen M Palethorpe
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Maryam Nakhjavani
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Timothy J Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
- Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Joanne P Young
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Amanda R Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
- Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Jennifer E Hardingham
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
36
|
Nakhjavani M, Hardingham JE, Palethorpe HM, Price TJ, Townsend AR. Druggable Molecular Targets for the Treatment of Triple Negative Breast Cancer. J Breast Cancer 2019; 22:341-361. [PMID: 31598336 PMCID: PMC6769384 DOI: 10.4048/jbc.2019.22.e39] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Breast cancer (BC) is still the most common cancer among women worldwide. Amongst the subtypes of BC, triple negative breast cancer (TNBC) is characterized by deficient expression of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. These patients are therefore not given the option of targeted therapy and have worse prognosis as a result. Consequently, much research has been devoted to identifying specific molecular targets that can be utilized for targeted cancer therapy, thereby limiting the progression and metastasis of this invasive tumor, and improving patient outcomes. In this review, we have focused on the molecular targets in TNBC, categorizing these into targets within the immune system such as immune checkpoint modulators, intra-nuclear targets, intracellular targets, and cell surface targets. The aim of this review is to introduce and summarize the known targets and drugs under investigation in phase II or III clinical trials, while introducing additional possible targets for future drug development. This review brings a tangible benefit to cancer researchers who seek a comprehensive comparison of TNBC treatment options.
Collapse
Affiliation(s)
- Maryam Nakhjavani
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Jennifer E Hardingham
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Helen M Palethorpe
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Tim J Price
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Medical Oncology, The Queen Elizabeth Hospital, Woodville South, Australia
| | - Amanda R Townsend
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Medical Oncology, The Queen Elizabeth Hospital, Woodville South, Australia
| |
Collapse
|
37
|
De Ieso ML, Pei JV, Nourmohammadi S, Smith E, Chow PH, Kourghi M, Hardingham JE, Yool AJ. Combined pharmacological administration of AQP1 ion channel blocker AqB011 and water channel blocker Bacopaside II amplifies inhibition of colon cancer cell migration. Sci Rep 2019; 9:12635. [PMID: 31477744 PMCID: PMC6718670 DOI: 10.1038/s41598-019-49045-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Aquaporin-1 (AQP1) has been proposed as a dual water and cation channel that when upregulated in cancers enhances cell migration rates; however, the mechanism remains unknown. Previous work identified AqB011 as an inhibitor of the gated human AQP1 cation conductance, and bacopaside II as a blocker of AQP1 water pores. In two colorectal adenocarcinoma cell lines, high levels of AQP1 transcript were confirmed in HT29, and low levels in SW480 cells, by quantitative PCR (polymerase chain reaction). Comparable differences in membrane AQP1 protein levels were demonstrated by immunofluorescence imaging. Migration rates were quantified using circular wound closure assays and live-cell tracking. AqB011 and bacopaside II, applied in combination, produced greater inhibitory effects on cell migration than did either agent alone. The high efficacy of AqB011 alone and in combination with bacopaside II in slowing HT29 cell motility correlated with abundant membrane localization of AQP1 protein. In SW480, neither agent alone was effective in blocking cell motility; however, combined application did cause inhibition of motility, consistent with low levels of membrane AQP1 expression. Bacopaside alone or combined with AqB011 also significantly impaired lamellipodial formation in both cell lines. Knockdown of AQP1 with siRNA (confirmed by quantitative PCR) reduced the effectiveness of the combined inhibitors, confirming AQP1 as a target of action. Invasiveness measured using transwell filters layered with extracellular matrix in both cell lines was inhibited by AqB011, with a greater potency in HT29 than SW480. A side effect of bacopaside II at high doses was a potentiation of invasiveness, that was reversed by AqB011. Results here are the first to demonstrate that combined block of the AQP1 ion channel and water pores is more potent in impairing motility across diverse classes of colon cancer cells than single agents alone.
Collapse
Affiliation(s)
- Michael L De Ieso
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Saeed Nourmohammadi
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Eric Smith
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
- Oncology Department, The Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
| | - Pak Hin Chow
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jennifer E Hardingham
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
- Oncology Department, The Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
38
|
Nakhjavani M, Palethorpe HM, Tomita Y, Smith E, Price TJ, Yool AJ, Pei JV, Townsend AR, Hardingham JE. Stereoselective Anti-Cancer Activities of Ginsenoside Rg3 on Triple Negative Breast Cancer Cell Models. Pharmaceuticals (Basel) 2019; 12:E117. [PMID: 31374984 PMCID: PMC6789838 DOI: 10.3390/ph12030117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Ginsenoside Rg3 (Rg3) has two epimers, 20(S)-ginsenoside Rg3 (SRg3) and 20(R)-ginsenoside Rg3 (RRg3), and while Rg3 itself has been reported to have anti-cancer properties, few studies have been reported on the anti-cancer effects of the different epimers. The aim was to investigate the stereoselective effects of the Rg3 epimers on triple negative breast cancer (TNBC) cell lines, tested using cell-based assays for proliferation, apoptosis, cell cycle arrest, migration and invasion. Molecular docking showed that Rg3 interacted with the aquaporin 1 (AQP1) water channel (binding score -9.4 kJ mol-1). The Xenopus laevis oocyte expression system was used to study the effect of Rg3 epimers on the AQP1 water permeability. The AQP1 expression in TNBC cell lines was compared with quantitative-polymerase chain reaction (PCR). The results showed that only SRg3 inhibited the AQP1 water flux and inhibited the proliferation of MDA-MB-231 (100 μM), due to cell cycle arrest at G0/G1. SRg3 inhibited the chemoattractant-induced migration of MDA-MB-231. The AQP1 expression in MDA-MB-231 was higher than in HCC1143 or DU4475 cell lines. These results suggest a role for AQP1 in the proliferation and chemoattractant-induced migration of this cell line. Compared to SRg3, RRg3 had more potency and efficacy, inhibiting the migration and invasion of MDA-MB-231. Rg3 has stereoselective anti-cancer effects in the AQP1 high-expressing cell line MDA-MB-231.
Collapse
Affiliation(s)
- Maryam Nakhjavani
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Helen M Palethorpe
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Yoko Tomita
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Eric Smith
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Timothy J Price
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Amanda R Townsend
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Jennifer E Hardingham
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
39
|
Tomita Y, Palethorpe HM, Smith E, Nakhjavani M, Townsend AR, Price TJ, Yool AJ, Hardingham JE. Bumetanide-Derived Aquaporin 1 Inhibitors, AqB013 and AqB050 Inhibit Tube Formation of Endothelial Cells through Induction of Apoptosis and Impaired Migration In Vitro. Int J Mol Sci 2019; 20:ijms20081818. [PMID: 31013775 PMCID: PMC6515555 DOI: 10.3390/ijms20081818] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
AqB013 and AqB050 compounds inhibit aquaporin 1 (AQP1), a dual water and ion channel implicated in tumour angiogenesis. We tested AqB013 and AqB050 either as monotherapy or in combination on tube formation of murine endothelial cells (2H-11 and 3B-11) and human umbilical vascular endothelial cells (HUVECs). The mechanism underlying their anti-tubulogenic effect was explored by examining cell viability, induction of apoptosis and migration using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, Annexin V/propidium iodide apoptosis assay and scratch wound assay. Tube formation of all the cell lines was inhibited by AqB013, AqB050 and the combination of the two compounds. The inhibition of 2H-11 and 3B-11 was frequently accompanied by impaired migration, whereas that of HUVEC treated with AqB050 and the combination was associated with reduced cell viability due to apoptosis. AqB013 and AqB050 exhibited an anti-tubulogenic effect through inhibition of AQP1-mediated cell migration and induction of apoptosis. Together with previously reported anti-tumour cell effect of AqB013 and AqB050, our findings support further evaluation of these compounds as potential cancer therapeutics.
Collapse
Affiliation(s)
- Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
- Medical Oncology, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Helen M Palethorpe
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Maryam Nakhjavani
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Amanda R Townsend
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
- Medical Oncology, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Timothy J Price
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
- Medical Oncology, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jennifer E Hardingham
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
40
|
Aquaporins 1, 3 and 5 in Different Tumors, their Expression, Prognosis Value and Role as New Therapeutic Targets. Pathol Oncol Res 2019; 26:615-625. [PMID: 30927206 DOI: 10.1007/s12253-019-00646-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
All different types of metabolism of tumors are dependent on the flow of water molecules through the biological membrane, where fluid transfer interceded by aquaporins (AQPs) are the basis means for water entrance into the cells or outside them. Aquaporins play other roles including cellular migration, cellular expansion and cellular adhesion facilitation. Therefore, regulators of AQPs may be useful anticancer agents. Medline, Scopus, Embase, and Web of Sciences were searched. From among the papers found, 106 were related to the subject. All of the examined cancers in relation to AQP1 included adenoid cystic carcinoma, bladder, breast, cervical, colon, colorectal, hepatocellular, lung, ovarian, plural mesothelioma, prostate, renal cell carcinoma and squamous cell carcinoma. All of the studied cancers in relation with AQP3 included gastric, breast, prostate, lung, pancreas, skin, bladder, squamous cell carcinoma, cervical, adenoid cystic carcinoma, colon, colorectal, ovarian, and hepatocellular cancers and with regard to AQP5 were lung, squamous cell carcinoma, ovarian, adenoid cystic carcinoma, breast, colon, colorectal, hepatic, pancreas, gallbladder, prostate, and gastric cancers. Over or under-expression of AQP1, 3 and is exist in the mentioned cancers across different studies. Over-expression of AQP1, AQP3 and AQP5 is clearly associated with carcinogenesis, metastasis, reduced survival rate, lymph node metastasis, poorer prognosis, and cellular migration. Also, cancer treatments in relation to these markers suggest AQP reduction during the treatment.
Collapse
|
41
|
Pei JV, Heng S, De Ieso ML, Sylvia G, Kourghi M, Nourmohammadi S, Abell AD, Yool AJ. Development of a Photoswitchable Lithium-Sensitive Probe to Analyze Nonselective Cation Channel Activity in Migrating Cancer Cells. Mol Pharmacol 2019; 95:573-583. [PMID: 30858164 DOI: 10.1124/mol.118.115428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/05/2019] [Indexed: 11/22/2022] Open
Abstract
This is the first work to use a newly designed Li+-selective photoswitchable probe Sabrina Heng Lithium (SHL) in living colon cancer cells to noninvasively monitor cation channel activity in real time by the appearance of lithium hot spots detected by confocal microscopy. Punctate Li+ hot spots are clustered in the lamellipodial leading edges of HT29 human colon cancer cells and are colocalized with aquaporin-1 (AQP1) channels. AQP1 is a dual water and cyclic-nucleotide-gated cation channel located in lamellipodia and is essential for rapid cell migration in a subset of aggressive cancers. Both the Li+ hot spots and cell migration are blocked in HT29 cells by the AQP1 ion channel antagonist AqB011. In contrast, Li+ hot spots are not evident in a poorly migrating colon cancer cell line, SW620, which lacks comparable membrane expression of AQP1. Knockdown of AQP1 by RNA interference in HT29 cells significantly impairs Li+ hot spot activity. The SHL probe loaded in living cells shows signature chemical properties of ionic selectivity and reversibility. Dynamic properties of the Li+ hot spots, turning on and off, are confirmed by time-lapse imaging. SHL is a powerful tool for evaluating cation channel function in living cells in real time, with particular promise for studies of motile cells or interlinked networks not easily analyzed by electrophysiological methods. The ability to reset SHL by photoswitching allows monitoring of dynamic signals over time. Future applications of the Li+ probe could include high-throughput optical screening for discovering new classes of channels, or finding new pharmacological modulators for nonselective cation channels.
Collapse
Affiliation(s)
- Jinxin V Pei
- Adelaide Medical School, and the Institute for Photonics and Advanced Sensing (IPAS) (J.V.P., M.D.I., M.K., S.N., A.J.Y.) and ARC Centre of Excellence for Nanoscale BioPhotonics, IPAS, School of Physical Sciences (S.H., G.S., A.D.A.), University of Adelaide, Adelaide, South Australia, Australia
| | - Sabrina Heng
- Adelaide Medical School, and the Institute for Photonics and Advanced Sensing (IPAS) (J.V.P., M.D.I., M.K., S.N., A.J.Y.) and ARC Centre of Excellence for Nanoscale BioPhotonics, IPAS, School of Physical Sciences (S.H., G.S., A.D.A.), University of Adelaide, Adelaide, South Australia, Australia
| | - Michael L De Ieso
- Adelaide Medical School, and the Institute for Photonics and Advanced Sensing (IPAS) (J.V.P., M.D.I., M.K., S.N., A.J.Y.) and ARC Centre of Excellence for Nanoscale BioPhotonics, IPAS, School of Physical Sciences (S.H., G.S., A.D.A.), University of Adelaide, Adelaide, South Australia, Australia
| | - Georgina Sylvia
- Adelaide Medical School, and the Institute for Photonics and Advanced Sensing (IPAS) (J.V.P., M.D.I., M.K., S.N., A.J.Y.) and ARC Centre of Excellence for Nanoscale BioPhotonics, IPAS, School of Physical Sciences (S.H., G.S., A.D.A.), University of Adelaide, Adelaide, South Australia, Australia
| | - Mohamad Kourghi
- Adelaide Medical School, and the Institute for Photonics and Advanced Sensing (IPAS) (J.V.P., M.D.I., M.K., S.N., A.J.Y.) and ARC Centre of Excellence for Nanoscale BioPhotonics, IPAS, School of Physical Sciences (S.H., G.S., A.D.A.), University of Adelaide, Adelaide, South Australia, Australia
| | - Saeed Nourmohammadi
- Adelaide Medical School, and the Institute for Photonics and Advanced Sensing (IPAS) (J.V.P., M.D.I., M.K., S.N., A.J.Y.) and ARC Centre of Excellence for Nanoscale BioPhotonics, IPAS, School of Physical Sciences (S.H., G.S., A.D.A.), University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Abell
- Adelaide Medical School, and the Institute for Photonics and Advanced Sensing (IPAS) (J.V.P., M.D.I., M.K., S.N., A.J.Y.) and ARC Centre of Excellence for Nanoscale BioPhotonics, IPAS, School of Physical Sciences (S.H., G.S., A.D.A.), University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea J Yool
- Adelaide Medical School, and the Institute for Photonics and Advanced Sensing (IPAS) (J.V.P., M.D.I., M.K., S.N., A.J.Y.) and ARC Centre of Excellence for Nanoscale BioPhotonics, IPAS, School of Physical Sciences (S.H., G.S., A.D.A.), University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
42
|
Login FH, Jensen HH, Pedersen GA, Koffman JS, Kwon TH, Parsons M, Nejsum LN. Aquaporins differentially regulate cell‐cell adhesion in MDCK cells. FASEB J 2019; 33:6980-6994. [DOI: 10.1096/fj.201802068rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Helene H. Jensen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Gitte A. Pedersen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- King's College LondonLondonUnited Kingdom
| | | | - Tae-Hwan Kwon
- Department of Biochemistry and Cell BiologySchool of MedicineKyungpook National UniversityTaeguSouth Korea
| | | | - Lene N. Nejsum
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Interdisciplinary Nanoscience CenterAarhus UniversityAarhusDenmark
| |
Collapse
|
43
|
Zhu M, Wang H, Wang C, Fang Y, Zhu T, Zhao W, Dong X, Zhang X. L-4, a Well-Tolerated and Orally Active Inhibitor of Hedgehog Pathway, Exhibited Potent Anti-tumor Effects Against Medulloblastoma in vitro and in vivo. Front Pharmacol 2019; 10:89. [PMID: 30846937 PMCID: PMC6393386 DOI: 10.3389/fphar.2019.00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/23/2019] [Indexed: 02/02/2023] Open
Abstract
Inhibition of aberrant Hedgehog (Hh) pathway had been proved to be a promising therapeutic intervention in cancers like basal cell carcinoma (BCC), medulloblastoma (MB), and so on. Two drugs (Vismodegib, Sonidegib) were approved to treat BCC and more inhibitors are in clinical investigation. However, the adverse effects and drug resistance restricted the use of Hh inhibitors. In the present study, 61 synthesized compounds containing central backbone of phthalazine or dimethylpyridazine were screened as candidates of new Hh signaling inhibitors by performing dual luciferase reporter assay. Among the compounds, L-4 exhibited an IC50 value of 2.33 nM in the Shh-Light II assay. L-4 strongly inhibited the Hh pathway in vitro and blocked the Hh pathway by antagonizing the smoothened receptor (Smo). Remarkably, L-4 could significantly suppress the Hh pathway activity provoked by Smo mutant (D473H) which showed strong resistant properties to existing drugs such as Vismodegib. Orally administered L-4 exhibited prominent dose-dependent anti-tumor efficacy in vivo in Ptch+/-; p53-/- MB allograft model. Furthermore, L-4 showed good tolerance in acute toxicity test using ICR mice. These evidences indicated that L-4 was a potent, well-tolerated, orally active inhibitor of Hedgehog pathway, and might be a promising candidate in development of Hh-targeted anti-cancer drugs.
Collapse
Affiliation(s)
- Mingfei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hong Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Chenglin Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanfen Fang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Weili Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaochun Dong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
44
|
Smith E, Tomita Y, Palethorpe HM, Howell S, Nakhjavani M, Townsend AR, Price TJ, Young JP, Hardingham JE. Reduced aquaporin-1 transcript expression in colorectal carcinoma is associated with promoter hypermethylation. Epigenetics 2019; 14:158-170. [PMID: 30739527 DOI: 10.1080/15592294.2019.1580112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aquaporin-1 (AQP1) is a homo-tetrameric transmembrane protein that facilitates rapid movement of water and ions across cell membranes. The clinical significance of AQP1 expression in colorectal carcinoma (CRC) is controversial. The aim of this study was to investigate the prognostic significance of AQP1 transcript expression and the association between expression and promoter methylation in normal colonic mucosa, CRC tissues and cell lines. Analysis of publicly available datasets from The Cancer Genome Atlas revealed that AQP1 expression was significantly decreased in CRC compared to normal mucosa (12.7 versus 33.3 respectively, P < 0.0001). However, expression increased with advanced disease, being significantly higher in stage IV (17.6) compared to either stage I (11.8, P = 0.0039) or II (10.9; P = 0.0023), and in patients with lymph node metastasis compared to those without (13.9 versus 11.3 respectively, P = 0.0023). Elevated expression was associated with decreased overall survival with univariate (Cox Proportional Hazard Ratio 1.60, 95% confidence interval 1.05-2.42, P = 0.028), but not multivariable analysis when considering the confounders stage and age. Analysis of HumanMethylation450 data demonstrated that AQP1 promoter methylation was significantly increased in CRC compared to normal mucosa. Analysis of CRC tissues and cell lines strongly suggested that methylation was associated with decreased expression. BRAFV600E mutation alone did not explain the increase in methylation. In conclusion, AQP1 transcript expression was decreased in CRC compared to normal mucosa, and this was associated with AQP1 promoter hypermethylation. AQP1 transcript expression increased with advanced disease but was not an independent prognostic indicator.
Collapse
Affiliation(s)
- Eric Smith
- a Solid Tumour Group, Basil Hetzel Institute , The Queen Elizabeth Hospital , Woodville South , SA , Australia.,b Adelaide Medical School , University of Adelaide , Adelaide , SA , Australia
| | - Yoko Tomita
- a Solid Tumour Group, Basil Hetzel Institute , The Queen Elizabeth Hospital , Woodville South , SA , Australia.,b Adelaide Medical School , University of Adelaide , Adelaide , SA , Australia
| | - Helen M Palethorpe
- a Solid Tumour Group, Basil Hetzel Institute , The Queen Elizabeth Hospital , Woodville South , SA , Australia.,b Adelaide Medical School , University of Adelaide , Adelaide , SA , Australia
| | - Stuart Howell
- c School of Public Health , University of Adelaide , Adelaide , SA , Australia
| | - Maryam Nakhjavani
- a Solid Tumour Group, Basil Hetzel Institute , The Queen Elizabeth Hospital , Woodville South , SA , Australia.,b Adelaide Medical School , University of Adelaide , Adelaide , SA , Australia
| | - Amanda R Townsend
- a Solid Tumour Group, Basil Hetzel Institute , The Queen Elizabeth Hospital , Woodville South , SA , Australia.,b Adelaide Medical School , University of Adelaide , Adelaide , SA , Australia.,d Medical Oncology , The Queen Elizabeth Hospital , Woodville South , SA , Australia
| | - Timothy J Price
- a Solid Tumour Group, Basil Hetzel Institute , The Queen Elizabeth Hospital , Woodville South , SA , Australia.,b Adelaide Medical School , University of Adelaide , Adelaide , SA , Australia.,d Medical Oncology , The Queen Elizabeth Hospital , Woodville South , SA , Australia
| | - Joanne P Young
- a Solid Tumour Group, Basil Hetzel Institute , The Queen Elizabeth Hospital , Woodville South , SA , Australia.,b Adelaide Medical School , University of Adelaide , Adelaide , SA , Australia
| | - Jennifer E Hardingham
- a Solid Tumour Group, Basil Hetzel Institute , The Queen Elizabeth Hospital , Woodville South , SA , Australia.,b Adelaide Medical School , University of Adelaide , Adelaide , SA , Australia
| |
Collapse
|
45
|
Ginsenoside Rg3: Potential Molecular Targets and Therapeutic Indication in Metastatic Breast Cancer. MEDICINES 2019; 6:medicines6010017. [PMID: 30678106 PMCID: PMC6473622 DOI: 10.3390/medicines6010017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
Abstract
Breast cancer is still one of the most prevalent cancers and a leading cause of cancer death worldwide. The key challenge with cancer treatment is the choice of the best therapeutic agents with the least possible toxicities on the patient. Recently, attention has been drawn to herbal compounds, in particular ginsenosides, extracted from the root of the Ginseng plant. In various studies, significant anti-cancer properties of ginsenosides have been reported in different cancers. The mode of action of ginsenoside Rg3 (Rg3) in in vitro and in vivo breast cancer models and its value as an anti-cancer treatment for breast cancer will be reviewed.
Collapse
|
46
|
An accurate and cost-effective alternative method for measuring cell migration with the circular wound closure assay. Biosci Rep 2018; 38:BSR20180698. [PMID: 30232234 PMCID: PMC6209583 DOI: 10.1042/bsr20180698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Cell migration is important in many physiological and pathological processes. Mechanisms of two-dimensional cell migration have been investigated most commonly by evaluating rates of cell migration into linearly scratched zones on the surfaces of culture plates. Here, we present a detailed description of a simple adaptation for the well-known and popular wound closure assay, using a circular wound instead of a straight line. This method demonstrates improved precision, reproducibility, and sampling objectivity for measurements of wound sizes as compared with classic scratch assays, enabling more accurate calculations of migration rate. The added benefits of the method are simplicity and low cost as compared with commercially available assays for generating circular wounds.
Collapse
|
47
|
Sensi F, D'Angelo E, D'Aronco S, Molinaro R, Agostini M. Preclinical three-dimensional colorectal cancer model: The next generation of in vitro drug efficacy evaluation. J Cell Physiol 2018; 234:181-191. [PMID: 30277557 DOI: 10.1002/jcp.26812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC), the third most common cancer diagnosed in both men and women in the United States, shows a highly ineffective therapeutic management. In these years neither substantial improvements nor new therapeutic approaches have been provided to patients. Performing the early lead discovery phases of new cancer drugs in cellular models, resembling as far as possible the real in vivo tumor environment, may be more effective in predicting their future success in the later clinical phases. In this review, we critically describe the most representative bioengineered models for anticancer drug screening in CRC from the conventional two-dimensional models to the new-generation three-dimensional scaffold-based ones. The scaffold aims to replace the extracellular matrix, thus influencing the biomechanical, biochemical, and biological properties of cells and tissues. In this scenario, we believe that reconstitution of tumor condition is mandatory for an alternative in vitro methods to study cancer development and therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Sensi
- Department of Women and Children Health, University of Padua, Padua, Italy.,Nano-Inspired Biomedicine Lab, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy
| | - Edoardo D'Angelo
- Nano-Inspired Biomedicine Lab, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy
| | - Sara D'Aronco
- Nano-Inspired Biomedicine Lab, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Roberto Molinaro
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marco Agostini
- Nano-Inspired Biomedicine Lab, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
48
|
Smith E, Palethorpe HM, Tomita Y, Pei JV, Townsend AR, Price TJ, Young JP, Yool AJ, Hardingham JE. The Purified Extract from the Medicinal Plant Bacopa monnieri, Bacopaside II, Inhibits Growth of Colon Cancer Cells In Vitro by Inducing Cell Cycle Arrest and Apoptosis. Cells 2018; 7:cells7070081. [PMID: 30037060 PMCID: PMC6070819 DOI: 10.3390/cells7070081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
Aquaporin-1 (AQP1), a transmembrane pore-forming molecule, facilitates the rapid movement of water and small solutes across cell membranes. We have previously shown that bacopaside II, an extract from the medicinal herb Bacopa monnieri, blocks the AQP1 water channel and impairs migration of cells that express AQP1. The aim of this study was to further elucidate the anti-tumour potential of bacopaside II in colon cancer cells. Expression of AQP1 in HT-29, SW480, SW620 and HCT116 was determined by quantitative PCR and western immunoblot. Cells were treated with bacopaside II, and morphology, growth, autophagy, cell cycle and apoptosis assessed by time-lapse microscopy, crystal violet, acridine orange, propidium iodide (PI) and annexin V/PI staining respectively. AQP1 expression was significantly higher in HT-29 than SW480, SW620 and HCT116. Bacopaside II significantly reduced growth at ≥20 µM for HT-29 and ≥15 µM for SW480, SW620 and HCT116. Inhibition of HT-29 at 20 µM was primarily mediated by G0/G1 cell cycle arrest, and at 30 µM by G2/M arrest and apoptosis. Inhibition of SW480, SW620 and HCT116 at ≥15 µM was mediated by G2/M arrest and apoptosis. These results are the first to show that bacopaside II inhibits colon cancer cell growth by inducing cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Eric Smith
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| | - Helen M Palethorpe
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| | - Yoko Tomita
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| | - Amanda R Townsend
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
- Medical Oncology, The Queen Elizabeth Hospital, Woodville South SA 5011, Australia.
| | - Timothy J Price
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
- Medical Oncology, The Queen Elizabeth Hospital, Woodville South SA 5011, Australia.
| | - Joanne P Young
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| | - Jennifer E Hardingham
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| |
Collapse
|
49
|
De Ieso ML, Yool AJ. Mechanisms of Aquaporin-Facilitated Cancer Invasion and Metastasis. Front Chem 2018; 6:135. [PMID: 29922644 PMCID: PMC5996923 DOI: 10.3389/fchem.2018.00135] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 01/02/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and its incidence is rising with numbers expected to increase 70% in the next two decades. The fact that current mainline treatments for cancer patients are accompanied by debilitating side effects prompts a growing demand for new therapies that not only inhibit growth and proliferation of cancer cells, but also control invasion and metastasis. One class of targets gaining international attention is the aquaporins, a family of membrane-spanning water channels with diverse physiological functions and extensive tissue-specific distributions in humans. Aquaporins−1,−2,−3,−4,−5,−8, and−9 have been linked to roles in cancer invasion, and metastasis, but their mechanisms of action remain to be fully defined. Aquaporins are implicated in the metastatic cascade in processes of angiogenesis, cellular dissociation, migration, and invasion. Cancer invasion and metastasis are proposed to be potentiated by aquaporins in boosting tumor angiogenesis, enhancing cell volume regulation, regulating cell-cell and cell-matrix adhesions, interacting with actin cytoskeleton, regulating proteases and extracellular-matrix degrading molecules, contributing to the regulation of epithelial-mesenchymal transitions, and interacting with signaling pathways enabling motility and invasion. Pharmacological modulators of aquaporin channels are being identified and tested for therapeutic potential, including compounds derived from loop diuretics, metal-containing organic compounds, plant natural products, and other small molecules. Further studies on aquaporin-dependent functions in cancer metastasis are needed to define the differential contributions of different classes of aquaporin channels to regulation of fluid balance, cell volume, small solute transport, signal transduction, their possible relevance as rate limiting steps, and potential values as therapeutic targets for invasion and metastasis.
Collapse
Affiliation(s)
- Michael L De Ieso
- Department of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Department of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
50
|
Imaizumi H, Ishibashi K, Takenoshita S, Ishida H. Aquaporin 1 expression is associated with response to adjuvant chemotherapy in stage II and III colorectal cancer. Oncol Lett 2018; 15:6450-6456. [PMID: 29725400 DOI: 10.3892/ol.2018.8170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/27/2017] [Indexed: 01/02/2023] Open
Abstract
Aquaporin 1 (AQP1), which functions as a water transporter, is associated with cancer cell proliferation, invasion, metastasis and angiogenesis in numerous types of solid cancer, including colorectal cancer (CRC). The focus of the present study was to address the potential clinical use of AQP1 expression in CRC as a prognostic and predictive biomarker for disease recurrence and therapeutic outcomes. The current study investigated the expression of AQP1 in surgically resected specimens from 268 patients with stage 0-IV CRC. AQP1 expression was positive in 112 (41.8%) patients, and was significantly associated with left-sided tumors (P<0.01) and with aggressive tumor phenotypes, including depth of invasion (P=0.03), lymph node metastasis (P=0.03), lymphatic invasion (P<0.01) and venous invasion (P<0.01). However, AQP1 expression had no significant prognostic effect on disease-free survival (DFS) in patients with stage II and III CRC following curative surgery. In 84 stage II and III patients who were administered 5-fluorouracil-based adjuvant chemotherapy, positive AQP1 expression was associated with an increased DFS rate compared with that of AQP1-negative patients (P=0.05). Additionally, these results identified that receiving adjuvant chemotherapy was not beneficial to patients with AQP1-negative tumors. This suggests that the expression of AQP1 may be a candidate biomarker predictive of response to 5-fluorouracil-based adjuvant chemotherapy following surgery in patients with stage II and III CRC.
Collapse
Affiliation(s)
- Hideko Imaizumi
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan.,Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Keiichiro Ishibashi
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Seiichi Takenoshita
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| |
Collapse
|