1
|
Xiu C, Deng X, Deng D, Zhou T, Jiang C, Wu D, Qian Y. miR-144-3p Targets GABRB2 to Suppress Thyroid Cancer Progression In Vitro. Cell Biochem Biophys 2024:10.1007/s12013-024-01446-y. [PMID: 39093515 DOI: 10.1007/s12013-024-01446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Thyroid cancer, as one of the most common cancers in many countries, has attracted increasing attention, but its pathogenesis is still unclear. This research explored the effects of miR-144-3p and GABRB2 on thyroid cancer cells and the underlying mechanism. Gene expression data was obtained from the GEO database to analyze differential expression of mRNAs and miRNAs in patients with thyroid cancer. CCK-8, transwell, scratch, and flow cytometry assays were performed to detect cell proliferation, invasion, migration, and apoptosis, respectively. Dual-luciferase reporters were used to detect the binding of miR-144-3p to GABRB2. GABRB2 was highly expressed and miR-144-3p was underexpressed in thyroid cancer. In thyroid cancer cells, inhibiting GABRB2 or upregulating miR-144-3p reduced proliferation, invasion, and migration and increased apoptotic rates; GABRB2 overexpression or miR-144-3p inhibition brought about the opposite results. miR-144-3p targeted GABRB2 and negatively regulated its expression. PI3K/AKT activation was reduced in thyroid cancer cells overexpressing miR-144-3p. GABRB2 overexpression partially mitigated the tumor-suppressive effect of miR-144-3p overexpression. In conclusion, miR-144-3p targets GABRB2 to inhibit PI3K/AKT activation, thereby inhibiting the progression of thyroid cancer in vitro.
Collapse
Affiliation(s)
- Cheng Xiu
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China
| | - Xiaocong Deng
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China
| | - Da Deng
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China
| | - Tao Zhou
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China
| | - Chuiguang Jiang
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China
| | - Di Wu
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China
| | - Yong Qian
- Department of Head and Neck Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570000, P. R. China.
| |
Collapse
|
2
|
Chen X, Zhang T, He YQ, Miao TW, Yin J, Ding Q, Yang M, Chen FY, Zeng HP, Liu J, Zhu Q. NGEF is a potential prognostic biomarker and could serve as an indicator for immunotherapy and chemotherapy in lung adenocarcinoma. BMC Pulm Med 2024; 24:248. [PMID: 38764064 PMCID: PMC11102621 DOI: 10.1186/s12890-024-03046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Neuronal guanine nucleotide exchange factor (NGEF) plays a key role in several cancers; however, its role in lung adenocarcinoma (LUAD) remains unclear. The aim of this study was to evaluate the efficacy of NGEF as a prognostic biomarker and potential therapeutic target for LUAD. METHODS NGEF expression data for multiple cancers and LUAD were downloaded from multiple databases. The high- and low-NGEF expression groups were constructed based on median NGEF expression in LUAD samples, and then performed Kaplan-Meier survival analysis. Differentially expressed genes (DEGs) from the two NGEF expression groups were screened and applied to construct a protein-protein interaction network. The primary pathways were obtained using gene set enrichment analysis. The associations between NGEF expression and clinical characteristics, immune infiltration, immune checkpoint inhibitors (ICIs), sensitivity to chemotherapy, and tumor mutation burden (TMB) were investigated using R. Levels of NGEF expression in the lung tissue was validated using single-cell RNA sequencing, quantitative polymerase chain reaction (qPCR), immunohistochemical staining, and western blot analysis. RESULTS The expression of NGEF mRNA was upregulated in multiple cancers. mRNA and protein expression levels of NGEF were higher in patients with LUAD than in controls, as validated using qPCR and western blot. High NGEF expression was an independent prognostic factor for LUAD and was associated with advanced tumor stage, large tumor size, more lymph node metastasis, and worse overall survival (OS). A total of 182 overlapping DEGs were screened between The Cancer Genome Atlas and GSE31210, among which the top 20 hub genes were identified. NGEF expression was mainly enriched in the pathways of apoptosis, cell cycle, and DNA replication. Moreover, elevated NGEF expression were associated with a high fraction of activated memory CD4+ T cells and M0 macrophages; elevated expression levels of the ICIs: programmed cell death 1 and programmed cell death 1 ligand 1 expression; higher TMB; and better sensitivity to bortezomib, docetaxel, paclitaxel, and parthenolide, but less sensitivity to axitinib and metformin. CONCLUSION NGEF expression is upregulated in LUAD and is significantly associated with tumor stages, OS probability, immune infiltration, immunotherapy response, and chemotherapy response. NGEF may be a potential diagnostic and prognostic biomarker and therapeutic target in LUAD.
Collapse
Affiliation(s)
- Xin Chen
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China.
| | - Tao Zhang
- Department of Intensive Care Unit, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yan-Qiu He
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| | - Ti-Wei Miao
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| | - Jie Yin
- School of Automation & Information Engineering, Sichuan university of Science & Engineering, Zigong, China
| | - Qian Ding
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| | - Mei Yang
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| | - Fang-Ying Chen
- Department of Tuberculosis, The Third People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Hong-Ping Zeng
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| | - Jie Liu
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| | - Qi Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| |
Collapse
|
3
|
Petrini I, Cecchini RL, Mascaró M, Ponzoni I, Carballido JA. Papillary Thyroid Carcinoma: A thorough Bioinformatic Analysis of Gene Expression and Clinical Data. Genes (Basel) 2023; 14:1250. [PMID: 37372430 DOI: 10.3390/genes14061250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The likelihood of being diagnosed with thyroid cancer has increased in recent years; it is the fastest-expanding cancer in the United States and it has tripled in the last three decades. In particular, Papillary Thyroid Carcinoma (PTC) is the most common type of cancer affecting the thyroid. It is a slow-growing cancer and, thus, it can usually be cured. However, given the worrying increase in the diagnosis of this type of cancer, the discovery of new genetic markers for accurate treatment and prognostic is crucial. In the present study, the aim is to identify putative genes that may be specifically relevant in PTC through bioinformatic analysis of several gene expression public datasets and clinical information. Two datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) dataset were studied. Statistics and machine learning methods were sequentially employed to retrieve a final small cluster of genes of interest: PTGFR, ZMAT3, GABRB2, and DPP6. Kaplan-Meier plots were employed to assess the expression levels regarding overall survival and relapse-free survival. Furthermore, a manual bibliographic search for each gene was carried out, and a Protein-Protein Interaction (PPI) network was built to verify existing associations among them, followed by a new enrichment analysis. The results revealed that all the genes are highly relevant in the context of thyroid cancer and, more particularly interesting, PTGFR and DPP6 have not yet been associated with the disease up to date, thus making them worthy of further investigation as to their relationship to PTC.
Collapse
Affiliation(s)
- Iván Petrini
- Department of Computer Science and Engineering, Universidad Nacional del Sur, Bahía Blanca 8000, Argentina
| | - Rocío L Cecchini
- Department of Computer Science and Engineering, Universidad Nacional del Sur, Bahía Blanca 8000, Argentina
- Institute for Computer Science and Engineering (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Marilina Mascaró
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Argentina
| | - Ignacio Ponzoni
- Department of Computer Science and Engineering, Universidad Nacional del Sur, Bahía Blanca 8000, Argentina
- Institute for Computer Science and Engineering (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Jessica A Carballido
- Department of Computer Science and Engineering, Universidad Nacional del Sur, Bahía Blanca 8000, Argentina
- Institute for Computer Science and Engineering (UNS-CONICET), Bahía Blanca 8000, Argentina
| |
Collapse
|
4
|
Ramarao KDR, Somasundram C, Razali Z, Kunasekaran W, Jin TL, Musa S, Achari VM. Antiproliferative effects of dried Moringa oleifera leaf extract on human Wharton's Jelly mesenchymal stem cells. PLoS One 2022; 17:e0274814. [PMID: 36197921 PMCID: PMC9534417 DOI: 10.1371/journal.pone.0274814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have seen an elevated use in clinical works like regenerative medicine. Its potential therapeutic properties increases when used in tandem with complementary agents like bio-based materials. Therefore, the present study is the first to investigate the cytotoxicity of a highly valued medicinal plant, Moringa oleifera, on human Wharton's Jelly mesenchymal stem cells (hWJMSCs) and its effects on the cells' gene expression when used as a pre-treatment agent in vitro. M. oleifera leaves (MOL) were dried and subjected to UHPLC-QTOF/MS analysis, revealing several major compounds like apigenin, kaempferol, and quercetin in the MOL, with various biological activities like antioxidant and anti-cancer properties. We then treated the hWJMSCs with MOL and noticed a dose-dependant inhibition on the cells' proliferation. RNA-sequencing was performed to explain the possible mechanism of action and revealed genes like PPP1R1C, SULT2B1, CDKN1A, mir-154 and CCNB1, whose expression patterns were closely associated with the negative cell cycle regulation and cell cycle arrest process. This is also evident from gene set enrichment analysis where the GO and KEGG terms for down-regulated pathways were closely related to the cell cycle regulation. The Ingenuity pathway analysis (IPA) software further predicted the significant activation of (p < 0.05, z-score > 2) of the G2/M DNA damage checkpoint regulation pathway. The present study suggests that MOL exhibits an antiproliferative effect on hWJMSCs via cell cycle arrest and apoptotic pathways. We believe that this study provides an important baseline reference for future works involving MOL's potential to accompany MSCs for clinical works. Future works can take advantage of the cell's strong anti-cancer gene expression found in this study, and evaluate our MOL treatment on various cancer cell lines.
Collapse
Affiliation(s)
- Kivaandra Dayaa Rao Ramarao
- Institute of Biological Sciences, Faculty of Science and The Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Chandran Somasundram
- Institute of Biological Sciences, Faculty of Science and The Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Zuliana Razali
- Institute of Biological Sciences, Faculty of Science and The Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | | | - Tan Li Jin
- Cytonex Sdn. Bhd., Menara UOA Bangsar, Bangsar, Kuala Lumpur, Malaysia
| | - Sabri Musa
- Department of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayan Manickam Achari
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Dong X, Akuetteh PDP, Song J, Ni C, Jin C, Li H, Jiang W, Si Y, Zhang X, Zhang Q, Huang G. Major Vault Protein (MVP) Associated With BRAF V600E Mutation Is an Immune Microenvironment-Related Biomarker Promoting the Progression of Papillary Thyroid Cancer via MAPK/ERK and PI3K/AKT Pathways. Front Cell Dev Biol 2022; 9:688370. [PMID: 35433709 PMCID: PMC9009514 DOI: 10.3389/fcell.2021.688370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most common malignancy of the endocrine system, with an increase in incidence frequency. Major vault protein (MVP) is the main structural protein of the vault complex that has already been investigated in specific cancers. Yet the underlying biological functions and molecular mechanisms of MVP in PTC still remain considerably uncharacterized. Comprehensive analyses are predicated on several public datasets and local RNA-Seq cohort. Clinically, we found that MVP was upregulated in human PTC than in non-cancerous thyroid tissue and was correlated with vital clinicopathological parameters in PTC patients. MVP expression was associated with BRAF V600E, RAS, TERT, and RET status, and it was correlated with worse progression-free survival in PTC patients. Functionally, enrichment analysis provided new clues for the close relationship between MVP with cancer-related signaling pathways and the immune microenvironment in PTC. In PTC with high MVP expression, we found CD8+ T cells, regulatory T cells, and follicular helper T cells have a higher infiltration level. Intriguingly, MVP expression was positively correlated with multiple distinct phases of the anti-cancer immunity cycle. MVP knockdown significantly suppressed cell viability and colony formation, and promoted apoptosis. In addition, downregulated MVP markedly inhibited the migration and invasion potential of PTC cells. The rescue experiments showed that MVP could reverse the level of cell survival and migration. Mechanistically, MVP exerts its oncogenic function in PTC cells through activating PI3K/AKT/mTOR and MAPK/ERK pathways. These results point out that MVP is a reliable biomarker related to the immune microenvironment and provide a basis for elucidating the oncogenic roles of MVP in PTC progression.
Collapse
Affiliation(s)
- Xubin Dong
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Percy David Papa Akuetteh
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Song
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chao Ni
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cong Jin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huihui Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjie Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuhao Si
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanli Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
6
|
Barki M, Xue H. GABRB2, a key player in neuropsychiatric disorders and beyond. Gene 2022; 809:146021. [PMID: 34673206 DOI: 10.1016/j.gene.2021.146021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
The GABA receptors represent the main inhibitory system in the central nervous system that ensure synaptogenesis, neurogenesis, and the regulation of neuronal plasticity and learning. GABAA receptors are pentameric in structure and belong to the Cys-loop superfamily. The GABRB2 gene, located on chromosome 5q34, encodes the β2 subunit that combines with the α and γ subunits to form the major subtype of GABAA receptors, which account for 43% of all GABAA receptors in the mammalian brain. Each subunit probably consists of an extracellular N-terminal domain, four membrane-spanning segments, a large intracellular loop between TM3 and TM4, and an extracellular C-terminal domain. Alternative splicing of the RNA transcript of the GABRB2 gene gives rise at least to four long and short isoforms with dissimilar electrophysiological properties. Furthermore, GABRB2 is imprinted and subjected to epigenetic regulation and positive selection. It has been associated with schizophrenia first in Han Chinese, and subsequently validated in other populations. Gabrb2 knockout mice also exhibited schizophrenia-like behavior and neuroinflammation that were ameliorated by the antipsychotic drug risperidone. GABRB2 was also associated with other neuropsychiatric disorders including bipolar disorder, epilepsy, autism spectrum disorder, Alzheimer's disease, frontotemporal dementia, substance dependence, depression, internet gaming disorder, and premenstrual dysphoric disorder. Recently, it has been postulated that GABRB2 might be a potential marker for different cancer types. As GABRB2 has a pivotal role in the central nervous system and is increasingly recognized to contribute to human diseases, further understanding of its structure and function may expedite the generation of new therapeutic approaches.
Collapse
Affiliation(s)
- Manel Barki
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hong Xue
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
7
|
Yang L, Zhang X, Zhang J, Liu Y, Ji T, Mou J, Fang X, Wang S, Chen J. Low expression of TFF3 in papillary thyroid carcinoma may correlate with poor prognosis but high immune cell infiltration. Future Oncol 2021; 18:333-348. [PMID: 34756116 DOI: 10.2217/fon-2020-1183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Papillary thyroid carcinoma (PTC) is one of the most common endocrine malignancies and has a favorable prognosis. However, optimal treatments and prognostic markers have not been clearly identified. Methods: Gene expression data from primary PTC were downloaded from the Gene Expression Omnibus database and subjected to two analyses of differentially expressed genes (DEGs), followed by intersecting individual and integrated DEGs analyses as well as gene set enrichment analysis. Analysis of data from Sequence Read Archive and The Cancer Genome Atlas, immunohistochemistry and qRT-PCR of TFF3 were performed to validate the results. Finally, the relationship between gene expression and disease-free survival as well as immune cell infiltration were investigated. Results: Six critical DEGs and several tumor-enriched signaling pathways were identified. Immunohistochemistry and qRT-PCR validated the low expression of TFF3 in PTC. TFF3 and FCGBP are coexpressed in PTC, and patients with lower gene expression had worse disease-free survival but higher immune cell infiltration. Conclusion: TFF3 was significantly underexpressed and may function with FCGBP synergistically in PTC.
Collapse
Affiliation(s)
- Lei Yang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiwei Zhang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiyin Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yuwei Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Tingting Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jianing Mou
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiaolian Fang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jun Chen
- Beijing Engineering Research Center of Pediatric Surgery, Engineering and Transformation Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| |
Collapse
|
8
|
Kim J, Jeon YJ, Lim SC, Ryu J, Lee JH, Chang IY, You HJ. Akt-mediated Ephexin1-Ras interaction promotes oncogenic Ras signaling and colorectal and lung cancer cell proliferation. Cell Death Dis 2021; 12:1013. [PMID: 34711817 PMCID: PMC8553951 DOI: 10.1038/s41419-021-04332-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
ABSTRCT Ephexin1 was reported to be highly upregulated by oncogenic Ras, but the functional consequences of this remain poorly understood. Here, we show that Ephexin1 is highly expressed in colorectal cancer (CRC) and lung cancer (LC) patient tissues. Knockdown of Ephexin1 markedly inhibited the cell growth of CRC and LC cells with oncogenic Ras mutations. Ephexin1 contributes to the positive regulation of Ras-mediated downstream target genes and promotes Ras-induced skin tumorigenesis. Mechanically, Akt phosphorylates Ephexin1 at Ser16 and Ser18 (pSer16/18) and pSer16/18 Ephexin1 then interacts with oncogenic K-Ras to promote downstream MAPK signaling, facilitating tumorigenesis. Furthermore, pSer16/18 Ephexin1 is associated with both an increased tumor grade and metastatic cases of CRC and LC, and those that highly express pSer16/18 exhibit poor overall survival rates. These data indicate that Ephexin1 plays a critical role in the Ras-mediated CRC and LC and pSer16/18 Ephexin1 might be an effective therapeutic target for CRC and LC.
Collapse
Affiliation(s)
- Jeeho Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of medicine, 375 Seosuk-Dong, Gwangju, 501-759, South Korea
- Department of Pharmacology, Chosun University School of medicine, 375 Seosuk-Dong, Gwangju, 501-759, South Korea
| | - Young Jin Jeon
- Department of Pharmacology, Chosun University School of medicine, 375 Seosuk-Dong, Gwangju, 501-759, South Korea
| | - Sung-Chul Lim
- Department of Pathology, Chosun University School of medicine, 375 Seosuk-Dong, Gwangju, 501-759, South Korea
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of medicine, 375 Seosuk-Dong, Gwangju, 501-759, South Korea
- Department of Cellular and Molecular Medicine, Chosun University School of medicine, 375 Seosuk-Dong, Gwangju, 501-759, South Korea
| | - In-Youb Chang
- Department of Anatomy, Chosun University School of medicine, 375 Seosuk-Dong, Gwangju, 501-759, South Korea.
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of medicine, 375 Seosuk-Dong, Gwangju, 501-759, South Korea.
- Department of Pharmacology, Chosun University School of medicine, 375 Seosuk-Dong, Gwangju, 501-759, South Korea.
| |
Collapse
|
9
|
Akt-mediated Ephexin1-Ras interaction promotes oncogenic Ras signaling and colorectal and lung cancer cell proliferation. Cell Death Dis 2021. [PMID: 34711817 DOI: 10.1038/s41419-021-04332-0.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRCT Ephexin1 was reported to be highly upregulated by oncogenic Ras, but the functional consequences of this remain poorly understood. Here, we show that Ephexin1 is highly expressed in colorectal cancer (CRC) and lung cancer (LC) patient tissues. Knockdown of Ephexin1 markedly inhibited the cell growth of CRC and LC cells with oncogenic Ras mutations. Ephexin1 contributes to the positive regulation of Ras-mediated downstream target genes and promotes Ras-induced skin tumorigenesis. Mechanically, Akt phosphorylates Ephexin1 at Ser16 and Ser18 (pSer16/18) and pSer16/18 Ephexin1 then interacts with oncogenic K-Ras to promote downstream MAPK signaling, facilitating tumorigenesis. Furthermore, pSer16/18 Ephexin1 is associated with both an increased tumor grade and metastatic cases of CRC and LC, and those that highly express pSer16/18 exhibit poor overall survival rates. These data indicate that Ephexin1 plays a critical role in the Ras-mediated CRC and LC and pSer16/18 Ephexin1 might be an effective therapeutic target for CRC and LC.
Collapse
|
10
|
A Five-Gene Prognostic Nomogram Predicting Disease-Free Survival of Differentiated Thyroid Cancer. DISEASE MARKERS 2021; 2021:5510780. [PMID: 34221185 PMCID: PMC8221860 DOI: 10.1155/2021/5510780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/27/2021] [Indexed: 01/06/2023]
Abstract
Background Differentiated thyroid cancer (DTC) is the most common type of thyroid tumor with a high recurrence rate. Here, we developed a nomogram to effectively predict postoperative disease-free survival (DFS) in DTC patients. Methods The mRNA expressions and clinical data of DTC patients were downloaded from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Seventy percent of patients were randomly selected as the training dataset, and thirty percent of patients were classified into the testing dataset. Multivariate Cox regression analysis was adopted to establish a nomogram to predict 1-year, 3-year, and 5-year DFS rate of DTC patients. Results A five-gene signature comprised of TENM1, FN1, APOD, F12, and BTNL8 genes was established to predict the DFS rate of DTC patients. Results from the concordance index (C-index), area under curve (AUC), and calibration curve showed that both the training dataset and the testing dataset exhibited good prediction ability, and they were superior to other traditional models. The risk score and distant metastasis (M) of the five-gene signature were independent risk factors that affected DTC recurrence. A nomogram that could predict 1-year, 3-year, and 5-year DFS rate of DTC patients was established with a C-index of 0.801 (95% CI: 0.736, 0.866). Conclusion Our study developed a prediction model based on the gene expression and clinical characteristics to predict the DFS rate of DTC patients, which may be applied to more accurately assess patient prognosis and individualized treatment.
Collapse
|
11
|
Knott EL, Leidenheimer NJ. A Targeted Bioinformatics Assessment of Adrenocortical Carcinoma Reveals Prognostic Implications of GABA System Gene Expression. Int J Mol Sci 2020; 21:ijms21228485. [PMID: 33187258 PMCID: PMC7697095 DOI: 10.3390/ijms21228485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but deadly cancer for which few treatments exist. Here, we have undertaken a targeted bioinformatics study of The Cancer Genome Atlas (TCGA) ACC dataset focusing on the 30 genes encoding the γ-aminobutyric acid (GABA) system—an under-studied, evolutionarily-conserved system that is an emerging potential player in cancer progression. Our analysis identified a subset of ACC patients whose tumors expressed a distinct GABA system transcriptome. Transcript levels of ABAT (encoding a key GABA shunt enzyme), were upregulated in over 40% of tumors, and this correlated with several favorable clinical outcomes including patient survival; while enrichment and ontology analysis implicated two cancer-related biological pathways involved in metastasis and immune response. The phenotype associated with ABAT upregulation revealed a potential metabolic heterogeneity among ACC tumors associated with enhanced mitochondrial metabolism. Furthermore, many GABAA receptor subunit-encoding transcripts were expressed, including two (GABRB2 and GABRD) prognostic for patient survival. Transcripts encoding GABAB receptor subunits and GABA transporters were also ubiquitously expressed. The GABA system transcriptome of ACC tumors is largely mirrored in the ACC NCI-H295R cell line, suggesting that this cell line may be appropriate for future functional studies investigating the role of the GABA system in ACC cell growth phenotypes and metabolism.
Collapse
|
12
|
Lin BY, Wen JL, Zheng C, Lin LZ, Chen CZ, Qu JM. Eva-1 homolog A promotes papillary thyroid cancer progression and epithelial-mesenchymal transition via the Hippo signalling pathway. J Cell Mol Med 2020; 24:13070-13080. [PMID: 32969138 PMCID: PMC7701523 DOI: 10.1111/jcmm.15909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Recently, the incidence of thyroid cancer is increasing worldwide. Papillary thyroid cancer (PTC) is the most common histological type of thyroid cancer. Whole-transcriptome sequence analysis was performed to further understand the primary molecular mechanisms of the occurrence and progression of PTC. Results showed that Eva-1 homolog A (EVA1A) may be a potential gene for the PTC-associated gene in thyroid cancer. In this work, the role of EVA1A expression in thyroid cancer was investigated. Real-time PCR was performed to detect the expression level of EVA1A in 43 pairs of PTC and four thyroid cancer cell lines. The Cancer Genome Atlas (TCGA) database was used to evaluate the relationship between the expression level of EVA1A and the pathological feature of PTC. The logistic regression analysis of the TCGA data set indicated that the expression of EVA1A was an independent risk factor for tumour, nde and metastasis (TNM) in PTC. This study shows the down-regulation of EVA1A inhibited the colony formation, proliferation, migration and invasion of PTC cell lines. In the protein level, knockdown of EVA1A can regulate the expression of N-cadherin, vimentin, Bcl-xL, Bax, YAP and TAZ. This study indicated that EVA1A was an oncogene associated with PTC.
Collapse
Affiliation(s)
- Bang-Yi Lin
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Liang Wen
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chen Zheng
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Zhi Lin
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng-Ze Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jin-Miao Qu
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Kong L, Bhandari A, Zhang X, Wang O. Proto-oncogene RTL4 promotes tumorigenesis and invasiveness of papillary thyroid cancer. Am J Transl Res 2020; 12:3023-3032. [PMID: 32655827 PMCID: PMC7344053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Although the prognosis of papillary thyroid carcinoma (PTC) is good, its widespread prevalence still degrades the quality of life of tens of thousands of patients. PTC can even be life-threatening as a result of its aggressiveness and metastasis. METHODS Using complete transcriptome sequence analysis, cutting-edge research has revealed many tumor-associated genes. These related genes help us better understand the tumorigenesis and progression of PTC. We discovered that retrotransposon Gag like 4 (RTL4) is a novel potential PTC-associated gene. By Quantitative real-time polymerase chain reaction (qRT-PCR), we observed an obvious upregulation of RTL4 in PTC tissue. And, we validated the expression characteristics of RTL4 using data from the Cancer Genome Atlas (TCGA). Furthermore, we down-regulated RTL4 expression levels in relevant cell lines and studied the biological function of the RTL4 line in PTC by cell proliferation, colony formation, migration and invasion assays. RESULTS In the present study, high expression of RTL4 suggested lymph node metastasis (P = 0.028) and was associated with the pathological type (P = 0.001). RTL4 had the validity of distinguishing PTC tissues and normal tissues showed an AUC of 87.53% for the TCGA data set. The downregulation of RTL4 in the PTC cell lines distinctly inhibited cell colony formation, proliferation, migration, and invasion. CONCLUSIONS The result revealed RTL4 is closely related to the occurrence and development of PTC. RTL4 may participate in the HOTAIR-miR-206-ZCCHC16 ceRNA regulatory network and be regulated and play a role in the ceRNA regulatory network. It may be used as a target or indicator for the treatment and prognosis of PTC.
Collapse
Affiliation(s)
- Lingguo Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, PR China
| | - Adheesh Bhandari
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, PR China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, PR China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, PR China
| |
Collapse
|
14
|
Adashek JJ, Kato S, Lippman SM, Kurzrock R. The paradox of cancer genes in non-malignant conditions: implications for precision medicine. Genome Med 2020; 12:16. [PMID: 32066498 PMCID: PMC7027240 DOI: 10.1186/s13073-020-0714-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing has enabled patient selection for targeted drugs, some of which have shown remarkable efficacy in cancers that have the cognate molecular signatures. Intriguingly, rapidly emerging data indicate that altered genes representing oncogenic drivers can also be found in sporadic non-malignant conditions, some of which have negligible and/or low potential for transformation to cancer. For instance, activating KRAS mutations are discerned in endometriosis and in brain arteriovenous malformations, inactivating TP53 tumor suppressor mutations in rheumatoid arthritis synovium, and AKT, MAPK, and AMPK pathway gene alterations in the brains of Alzheimer's disease patients. Furthermore, these types of alterations may also characterize hereditary conditions that result in diverse disabilities and that are associated with a range of lifetime susceptibility to the development of cancer, varying from near universal to no elevated risk. Very recently, the repurposing of targeted cancer drugs for non-malignant conditions that are associated with these genomic alterations has yielded therapeutic successes. For instance, the phenotypic manifestations of CLOVES syndrome, which is characterized by tissue overgrowth and complex vascular anomalies that result from the activation of PIK3CA mutations, can be ameliorated by the PIK3CA inhibitor alpelisib, which was developed and approved for breast cancer. In this review, we discuss the profound implications of finding molecular alterations in non-malignant conditions that are indistinguishable from those driving cancers, with respect to our understanding of the genomic basis of medicine, the potential confounding effects in early cancer detection that relies on sensitive blood tests for oncogenic mutations, and the possibility of reverse repurposing drugs that are used in oncology in order to ameliorate non-malignant illnesses and/or to prevent the emergence of cancer.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, Health Sciences Drive, La Jolla, CA, 92093, USA
| | - Scott M Lippman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, Health Sciences Drive, La Jolla, CA, 92093, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, Health Sciences Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Zheng C, Xia E, Quan R, Bhandari A, Wang O, Hao R. Scavenger receptor class A, member 5 is associated with thyroid cancer cell lines progression via epithelial-mesenchymal transition. Cell Biochem Funct 2020; 38:158-166. [PMID: 31989658 PMCID: PMC7216911 DOI: 10.1002/cbf.3455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022]
Abstract
Thyroid cancer (TC) has become one of most common endocrine malignancies in recent decades. Due to gene background polymorphism, it's outcome goes quite differently in each patient. For exploring the mechanism, we performed whole transcriptome sequencing of paired papillary thyroid carcinoma (PTC) and adjacent thyroid tissues. As a result, scavenger receptor class A member 5 (SCARA5) might be a crucial anti-oncogene associated with PTC. By RT-qPCR, we first detected the expression of SCARA5 in PTC tissue and three type of TC cell lines. Besides, The Cancer Genome Atlas (TCGA) data were gathered to analysis the relationship between SCARA5 and clinical feature. A series of loss-function experiments in TC cell lines (KTC-1 and BCPAP) to investigate the function of SCARA5 in PTC. The results showed that SCARA5 expression in PTC was lower than adjacent normal tissue. And, it's consistent with the TCGA database. After analyse the correlation between SCARA5 expression and clinicopathological features in TCGA database, we discovered that downregulated SCARA5 is significantly connected age (P = .04) and tumour size (P = .032). Knockdown of SCARA5 in TC cell line could significantly increase the function of cells proliferation, colony formation, migration, and invasion. Furthermore, we also proved that SCARA5 could modulate the expression of epithelial-mesenchymal transition-related proteins, which influence invasion and migration. To best of our knowledge, SCARA5 is a suppressor gene which was associated with PTC and might be a potential therapeutic target in the future. SIGNIFICANCE OF THE STUDY: Thyroid cancer (TC) has become one of most common endocrine malignancies in recent decades. By whole transcriptome sequencing of paired papillary thyroid carcinoma (PTC) and adjacent thyroid tissues, author discovered that scavenger receptor class A member 5 (SCARA5) might be crucial anti-oncogene associated with PTC. Furthermore, knocking-down of SCARA5 in TC cell line can increase the function of cells proliferation, colony formation, migration, and invasion. Author also proved that SCARA5 could modulate the expression of epithelial-mesenchymal transition-related proteins.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Er‐Jie Xia
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Rui‐Da Quan
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Adheesh Bhandari
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Ou‐Chen Wang
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Ru‐Tian Hao
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| |
Collapse
|
16
|
Wu CY, Zheng C, Xia EJ, Quan RD, Hu J, Zhang XH, Hao RT. Lysophosphatidic Acid Receptor 5 (LPAR5) Plays a Significance Role in Papillary Thyroid Cancer via Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin (mTOR) Pathway. Med Sci Monit 2020; 26:e919820. [PMID: 31902939 PMCID: PMC6977615 DOI: 10.12659/msm.919820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Thyroid cancer is the most common endocrine system malignancy. Scientists have done considerable research into the molecular mechanisms involved, but many mechanisms remain undiscovered. Material/Methods We performed a comprehensive analysis of the whole-transcriptome resequencing derived from thyroid tissues and paired papillary thyroid cancer (PTC) and showed that lysophosphatidic acid receptor 5 (LPAR5) is strongly overexpressed in thyroid carcinoma. Then, we used TPC-1 and KTC-1 to explore the effect of LPAR5 knockdown on colony formation, migration, proliferation, invasion, and apoptosis of PTC cell line cells. AKT activator was used for the recovery test. Finally, we designed proteomic experiments to explore the role of LPAR5 in the AKT pathway and the EMT process. Results Cell function experiments showed that LPAR5 knockdown can significantly induce apoptosis of KTC-1 and TPC-1 cells. Furthermore, LPAR5 can promote PTC metastasis and tumorigenesis by activating the PI3K/AKT pathway and decreasing its cancer-promoting effect when using AKT agonist. We also found that LPAR5 can regulate the expression of EMT-related proteins, which affect invasion and migration. Conclusions In summary, downregulation of LPAR5 expression can inhibit the physiological process of PTC, and this phenomenon is related to the PI3K/AKT pathway and EMT.
Collapse
Affiliation(s)
- Cheng-Yong Wu
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Chen Zheng
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Er-Jie Xia
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Rui-Da Quan
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Jing Hu
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Xiao-Hua Zhang
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Ru-Tian Hao
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
17
|
Nagayama Y, Mishima H. Heterogenous nature of gene expression patterns in BRAF-like papillary thyroid carcinomas with BRAF V600E. Endocrine 2019; 66:607-613. [PMID: 31478162 DOI: 10.1007/s12020-019-02063-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Papillary thyroid cancers (PTCs) are the most common type of thyroid cancers, in which BRAFV600E is the most prevalent driver mutation. It is known that BRAFV600E-positive PTCs are clinically and molecularly heterogenous in terms of aggressiveness and prognosis. The molecular mechanisms of this heterogeneity were evaluated. METHODS The publicly available RNA-seq data for 26 classical (c) and 5 follicular variant (fv) PTCs with BRAFV600E mutation and the BRAF-like expression signature in the BRAFV600E-RAS score (BRS) and their respective normal adjacent tissues were downloaded, and analyzed for differentially expressed genes (DEGs). The DEGs were then analyzed with the Gene Ontology annotation and the KEGG pathway dataset. RESULTS We found four lines of evidence for heterogeneity of cPTCs. First, the cluster dendrogram and principle component analyses could not completely distinguish the cancer tissues from normal tissues. Second, the DEGs identified in each sample were highly diverse from one another. Third, although the DEGs were enriched in many terms containing the word "extracellular" ("extracellular region", "extracellular space", and so on) when analyzed as groups, the degree of this enrichment was variable when analyzed individually. Fourth, there are only a few intersections in the over-/underexpressed genes annotated with the terms containing the word "extracellular" among the samples examined. Essentially same results were obtained with BRAF-like, fvPTCs with BRAFV600E. Nevertheless, some frequently over-/underexpressed genes were detected, of which LIPH (lipase H) expression was found to be prognostic and its high expression was favorable for PTCs. CONCLUSION Groups of BRAF-like, BRAFV600E-positive cPTCs and fvPTCs that are homogenous in regard to histopathology, driver mutation and BRS were found to be highly heterogenous in terms of gene expression patterns. Yet, among the genes that were annotated with the terms containing the word "extracellular" and frequently over-/underexpressed, LIPH is a favorable prognostic marker for PTCs.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
Zheng C, Quan RD, Wu CY, Hu J, Lin BY, Dong XB, Xia EJ, Bhandari A, Zhang XH, Wang OC. Growth-associated protein 43 promotes thyroid cancer cell lines progression via epithelial-mesenchymal transition. J Cell Mol Med 2019; 23:7974-7984. [PMID: 31568662 PMCID: PMC6850924 DOI: 10.1111/jcmm.14460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022] Open
Abstract
Thyroid cancer is maintaining at a high incidence level and its carcinogenesis is mainly affected by a complex gene interaction. By analysis of the next‐generation resequencing of paired papillary thyroid cancer (PTC) and adjacent thyroid tissues, we found that Growth Associated Protein 43 (GAP43), a phosphoprotein activated by protein kinase C, might be novel markers associated with PTC. However, its function in thyroid carcinoma has been poorly understood. We discovered that GAP43 was significantly overexpressed in thyroid carcinoma and these results were consistent with that in The Cancer Genome Atlas (TCGA) cohort. In addition, some clinicopathological features of GAP43 in TCGA database showed that up‐regulated GAP43 is significantly connected to lymph node metastasis (P < 0.001) and tumour size (P = 0.038). In vitro experiments, loss of function experiments was performed to investigate GAP43 in PTC cell lines (TPC‐1 and BCPAP). The results proved that GAP43 knockdown in PTC cell significantly decreased the function of cell proliferation, colony formation, migration, and invasion and induced cell apoptosis. Furthermore, we also indicated that GAP43 could modulate the expression of epithelial‐mesenchymal transition‐related proteins, which could influence invasion and migration. Put those results together, GAP43 is a gene which was associated with PTC and might be a potential therapeutic target.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Rui-Da Quan
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Cheng-Yong Wu
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jing Hu
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Bang-Yi Lin
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xu-Bing Dong
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Er-Jie Xia
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Adheesh Bhandari
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiao-Hua Zhang
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ou-Chen Wang
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
19
|
Zheng C, Quan R, Xia EJ, Bhandari A, Zhang X. Original tumour suppressor gene polycystic kidney and hepatic disease 1-like 1 is associated with thyroid cancer cell progression. Oncol Lett 2019; 18:3227-3235. [PMID: 31452800 PMCID: PMC6676403 DOI: 10.3892/ol.2019.10632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/13/2019] [Indexed: 02/03/2023] Open
Abstract
In recent decades, thyroid cancer (TC) has become one of the most common endocrine malignancies. Next-generation sequencing of paired TC and adjacent healthy thyroid tissues demonstrated that polycystic kidney and hepatic disease 1-like 1 (PKHD1L1) may serve as a tumour suppressor gene in thyroid cancer. However, the function of PKHD1L1 in thyroid cancer is still unknown. To validate the results of whole-transcriptome resequencing, the expression levels of PKHD1L1 were evaluated in 58 pairs of papillary thyroid cancer (PTC) tissue samples and three thyroid cancer cell lines. In addition, The Cancer Genome Atlas (TCGA) data were used to analyse the relationship between PKHD1L1 and patient clinicopathological features. Cell Counting Kit-8, colony formation, migration and invasion assays were performed to assess the effects of PKHD1L1 knockdown in three TC cell lines. PKHD1L1 expression was significantly lower in thyroid carcinoma compared with that in matched normal tissue, and this result was consistent with that in TCGA cohort. TCGA data demonstrated that PKHD1L1 downregulation was associated with a number of aggressive clinicopathological features, such as histological type, lymph node metastasis (LNM), distant metastasis, tumour size and clinical stage. Logistic regression analysis of data from patients with PTC revealed that PKHD1L1 expression, histological type, age and tumour size were independent high-risk factors for LNM. The PKHD1L1 biological function was investigated in the three TC cell lines: TPC-1, KTC1 and BCPAP. A loss of function experiment demonstrated that PKHD1L1 knockdown promoted cell proliferation, colony formation and cell invasion in TC cell lines. In conclusion, PKHD1L1 may be a tumour suppressor gene associated with PC, and may be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ruida Quan
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Er-Jie Xia
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Adheesh Bhandari
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
20
|
Yu X, Zhong P, Han Y, Huang Q, Wang J, Jia C, Lv Z. Key candidate genes associated with BRAF
V600E
in papillary thyroid carcinoma on microarray analysis. J Cell Physiol 2019; 234:23369-23378. [PMID: 31161615 DOI: 10.1002/jcp.28906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaqing Yu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, School of Medicine Tongji University Shanghai China
| | - Peng Zhong
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, School of Medicine Tongji University Shanghai China
| | - Yali Han
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital School of Medicine, Tongji University Shanghai China
| | - Qingqing Huang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, School of Medicine Tongji University Shanghai China
| | - Jian Wang
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, School of Medicine Zhejiang University Hangzhou China
| | - Chengyou Jia
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital School of Medicine, Tongji University Shanghai China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, School of Medicine Tongji University Shanghai China
| |
Collapse
|
21
|
Hao RT, Zheng C, Wu CY, Xia EJ, Zhou XF, Quan RD, Zhang XH. NECTIN4 promotes papillary thyroid cancer cell proliferation, migration, and invasion and triggers EMT by activating AKT. Cancer Manag Res 2019; 11:2565-2578. [PMID: 31114323 PMCID: PMC6497891 DOI: 10.2147/cmar.s190332] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most frequent type of malignant thyroid cancer, but its molecular mechanisms remain unknown. To better understand the tumorigenesis and progression of PTC, we conducted a comprehensive analysis of the whole-transcriptome resequencing of paired PTC and normal thyroid tissues. Nectin cell adhesion molecule 4 (NECTIN4) was significantly overexpressed in thyroid carcinoma compared with that in matched normal tissue. We also assessed the relation between the expression level of NECTIN4 and the clinicopathological features of PTC in The Cancer Genome Atlas database, and results showed that upregulated NECTIN4 is associated with lymph node metastasis (P<0.001) and tumor size (P=0.017). The biological function of NECTIN4 was also investigated by using the PTC cell lines TPC-1 and KTC-1. In vitro experiments demonstrated that NECTIN4 downregulation significantly inhibits the colony formation, proliferation, migration, and invasion of PTC cell lines. NECTIN4 could modulate the expression of epithelial-mesenchymal transition-related proteins via the PI3K/AKT pathway, and SC79, an AKT phosphorylation activator, could reverse the si-RNA knockdown effect. In addition, after the use of AKT inhibitors (LY 294,002), we found that SiRNA have similar effect with AKT inhibitors. Taking the results together, the current study shows that NECTIN4 has important biological implications in the tumorigenesis and metastasis of PTC and may be a potential therapeutic target for the disease.
Collapse
Affiliation(s)
- Ru-Tian Hao
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chen Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chen-Yong Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Er-Jie Xia
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiao-Fen Zhou
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Rui-Da Quan
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiao-Hua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
22
|
The lncRNA UNC5B-AS1 promotes proliferation, migration, and invasion in papillary thyroid cancer cell lines. Hum Cell 2019; 32:334-342. [PMID: 30805847 DOI: 10.1007/s13577-019-00242-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
The incidence of thyroid cancer detection is continually improving worldwide with the spread of diagnostic imaging and surveillance. Although we have made great progress, there are still unknown mechanisms of papillary thyroid cancer. We found that UNC5B-AS1 is a potential oncogene in thyroid cancer. Therefore, our study aimed to investigate the biological functions of the lncRNA UNC5B-AS1 in papillary thyroid cancer. As a result, RNA-seq data on primary papillary thyroid cancer (PTC) in the TCGA database were obtained. RT-qPCR was performed to evaluate the expression levels in thyroid tissue. We then analysed the expression level of UNC5B-AS1 and its association with clinicopathologic characteristics in the TCGA database. We downregulated UNC5B-AS1 using small interfering RNA and carried out assays of cell proliferation, colony formation, migration and invasion to explore the function of UNC5B-AS1 in PTC cell lines (TPC1 and BCPAP). These results suggested that the lncRNA UNC5B-AS1 was significantly upregulated in both the TCGA cohort and our tissue cohort. Upregulated UNC5B-AS1 correlated with lymph node metastasis (P < 0.001), tumor size (P = 0.002) and histological type (P = 0.013). We also achieved an area under the ROC curve (AUC) of 93.2% for our validated cohort, which was consistent with the AUC of 94.5% for the TCGA cohort, for differentiating between PTC tissues and normal tissues. Downregulating UNC5B-AS1 expression at the RNA level significantly inhibited cell proliferation, colony formation, migration, and invasion in PTC cell lines (TPC1 and BCPAP). This study demonstrated that the lncRNA UNC5B-AS1 plays an important role in tumourigenesis and metastasis of PTC and may be a potential therapeutic target for PTC.
Collapse
|
23
|
Li Y, Zhou X, Zhang Q, Chen E, Sun Y, Ye D, Wang O, Zhang X, Lyu J. Lipase member H is a downstream molecular target of hypoxia inducible factor-1α and promotes papillary thyroid carcinoma cell migration in BCPAP and KTC-1 cell lines. Cancer Manag Res 2019; 11:931-941. [PMID: 30774423 PMCID: PMC6349079 DOI: 10.2147/cmar.s183355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Papillary thyroid carcinoma (PTC) is the most common type of thyroid carcinoma, which is associated with a high incidence of lymph-node metastasis. Multiple biomarkers have been identified for the precise diagnosis of PTC at an early stage. However, their role in PTC remains poorly elucidated. Previously, we reported that lipase H (LIPH), a membrane-bound protein, was highly expressed in PTC. This study aimed to fully elucidate the causal role of LIPH in the development of PTC and investigated its relationship with lymph-node metastasis in PTC. Materials and methods Quantitative reverse transcription PCR and immunohistochemistry were used to measure the mRNA and protein expression levels of LIPH in 45 and 6 pairs of PTC tissues and adjacent normal tissues, respectively. Clinical tissue data of 504 PTC tissues and 60 normal thyroid tissues from The Cancer Genome Atlas database were used to analyze the correlation between LIPH expression level and clinical features in PTC. siRNAs were used to knock down genes, while plasmids were used to overexpress genes. Two PTC cell lines (KTC-1 and BCPAP) were used in subsequent cytological function studies. In addition, a hypoxia stress model was constructed using cobaltous chloride hexahydrate reagent, and the protein expression level of the corresponding biomarkers was measured by Western blotting. Results This study revealed that high expression of LIPH in PTC was closely associated with lymph-node metastasis. Our cellular function experiments indicated that LIPH positively correlated with the malignant behavior of PTC cell lines. We further confirmed the role of LIPH in hypoxia and its relationship with the epithelial–mesenchymal transition pathway in PTC. Conclusion LIPH plays an important role in PTC oncogenesis and development, especially in lymph-node metastasis. It can be regarded as a biomarker for the diagnosis and treatment of PTC in the near future.
Collapse
Affiliation(s)
- Yuefeng Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China, .,Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Xiaofen Zhou
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Qiongying Zhang
- Pathology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Endong Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Yihan Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Danrong Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,
| |
Collapse
|
24
|
Zhou YL, Zheng C, Chen YT, Chen XM. Underexpression of INPPL1 is associated with aggressive clinicopathologic characteristics in papillary thyroid carcinoma. Onco Targets Ther 2018; 11:7725-7731. [PMID: 30464521 PMCID: PMC6219113 DOI: 10.2147/ott.s185803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose To study the relationship between INPPL1 gene and clinicopathologic characteristics of papillary thyroid carcinoma (PTC). Patients and methods INPPL1 expression in PTCs was tested by quantitative real-time reverse transcription PCR. The Cancer Genome Atlas (TCGA) RNA-seq data and our mRNA data were used to analyze and reveal the relationship between INPPL1 and aggressive clinicopathologic characteristics of PTC. Results When compared to normal thyroid tissues, INPPL1 was significantly downregulated in PTC tissues, as revealed by our data and TCGA data. INPPL1 underexpression was remarkably related to aggressive clinicopathologic characteristics such as lymph node metastasis (LNM), histological type, tumor size, mulitifocality, and disease stage in TCGA data. Meanwhile, LNM was confirmed to be associated with underexpression of INPPL1 in our data. In addition, logistic analysis clearly showed that underexpression of INPPL1 was an independent factor for LNM in PTC. Conclusion INPPL1 may be a novel tumor suppressor gene in PTC, which was significantly correlated with aggressive clinicopathologic characteristics, especially LNM.
Collapse
Affiliation(s)
- Yi-Li Zhou
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Chen Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Yi-Tong Chen
- Department of Clinical Medicine, Tai Zhou University Medical School, Taizhou, Zhejiang, China
| | - Xue-Min Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| |
Collapse
|
25
|
Cai WY, Chen X, Chen LP, Li Q, Du XJ, Zhou YY. Role of differentially expressed genes and long non-coding RNAs in papillary thyroid carcinoma diagnosis, progression, and prognosis. J Cell Biochem 2018; 119:8249-8259. [PMID: 29968931 DOI: 10.1002/jcb.26836] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/09/2018] [Indexed: 12/27/2022]
Abstract
Currently, the combination of ultrasonography and fine-needle aspiration biopsy (FNAB) can not discriminate between benign and malignant tumor of thyroid in some cases. The main issue in assessing the patients with thyroid nodules is to distinguish thyroid cancer from benign nodules, and reduce diagnostic surgery. To identify potential molecular biomarkers for patients with indeterminate FNAB, we explored the differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElncRNAs) in TCGA database between 318 papillary thyroid carcinoma (PTC) tissues and 35 normal thyroid gland tissues by DESeq R. Furthermore, DEGs were verified by gene expression profile GSE33630. Ten top DEGs and DElncRNAs were identified as candidate biomarkers for diagnosis and Lasso (Least Absolute Shrinkage and Selection Operator) logistic regression analysis were performed to improve the diagnostic accuracy of them. Besides, partial molecular biomarkers of top DEGs and DElncRNAs were closely related to the tumor stage (T), lymph node metastasis (N), metastasis (M) and pathological stage of PTC, which could reflect behavior of tumor progression. According to multivariate Cox analysis, the combination of two DEGs (METTL7B and KCTD16) and two DElncRNAs (LINC02454 and LINC02471) could predict the outcome in a more exact way. In conclusion, top DEGs and DElncRNAs could raise diagnosis of PTC in indeterminate FNAB specimens, and some could function as molecule biomarkers for tumor progression and prognosis.
Collapse
Affiliation(s)
- Wei-Yang Cai
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Ping Chen
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Li
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Jing Du
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang-Yang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
26
|
Xia E, Wang Y, Bhandari A, Niu J, Yang F, Yao Z, Wang O. CITED1 gene promotes proliferation, migration and invasion in papillary thyroid cancer. Oncol Lett 2018; 16:105-112. [PMID: 29928391 PMCID: PMC6006398 DOI: 10.3892/ol.2018.8653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022] Open
Abstract
Thyroid cancer is the most common malignancy of the endocrine organs. In order to further understand the tumorigenesis and progression of papillary thyroid carcinoma (PTC), the present study performed whole transcriptome sequence analysis. It was found that Cbp/p300-interacting transactivators with glutamic acid [E] and aspartic acid [D]-rich C-terminal domain 1 (CITED1) was a novel potential PTC-associated gene in thyroid cancer. The expression level and clinicopathological features of CITED1 were then assessed in The Cancer Genome Atlas (TCGA) database. The expression of CITED1 was knocked down and the biological function of CITED1 in PTC cell lines was examined. The results showed that upregulated CITED1 was associated with lymph node metastasis (P=0.006) and clinical stage (P=0.003). In order to differentiate PTC tissues and normal tissues, an area under the curve was constructed of a receiver operating characteristic of 91.3% for the TCGA cohort and 85.3% for a validated cohort. The downregulated expression of CITED1 significantly inhibited cell proliferation, colony formation, migration and invasion in the PTC cell lines. The present study demonstrated that CITED1 is important in the tumorigenesis and metastasis of PTC and may be a potential therapeutic target in PTC.
Collapse
Affiliation(s)
- Erjie Xia
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yinghao Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Adheesh Bhandari
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jizhao Niu
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fan Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhihan Yao
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ouchen Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
27
|
HMGA2 Gene Expression in Fine-needle Aspiration Samples of Thyroid Nodules as a Marker for Preoperative Diagnosis of Thyroid Cancer. Appl Immunohistochem Mol Morphol 2018; 27:471-476. [PMID: 29406334 DOI: 10.1097/pai.0000000000000637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is a great interest in molecular markers that would help in the preoperative diagnosis of malignant thyroid nodules in cases of indeterminate fine-needle aspiration cytology. The aim of this study was to determine the diagnostic accuracy of HMGA2 gene expression in discriminating benign from malignant thyroid nodules. In this study, 237 preoperative thyroid fine-needle aspiration samples were analyzed prospectively for the expression of the HMGA2 gene by real-time reverse transcription polymerase chain reaction. The results were evaluated against the postoperative histopathologic diagnosis or definitive cytologic diagnosis in cases of nodular goiter and Hashimoto thyroiditis. Among 237 samples from patients with thyroid nodules that were analyzed, 231 were adequate for real-time reverse transcription polymerase chain reaction analysis. With a cutoff value of 8.71 for relative gene expression, HMGA2 was positive in 19 (16.4%) of 116 nodular goiter, 1 (2.6%) of 39 Hashimoto thyroiditis, 9 (28.1%) of 32 follicular adenoma, 0 (0%) of 5 Hurthle cell adenoma, 32 (88.9%) of 36 papillary carcinoma, and 3 (100%) of 3 follicular carcinoma samples. In discriminating between malignant and benign thyroid nodules, HMGA2 has shown specificity of 84.5%, sensitivity of 91.9%, positive predictive value of 53.1%, and negative predictive value of 98.2%. High sensitivity and negative predictive value of HMGA2 for preoperative detection of malignant thyroid nodules shown in this study indicate that it may have a role as an ancillary marker in cytology in the management of patients with thyroid nodules.
Collapse
|
28
|
Jin Y, Jin W, Zheng Z, Chen E, Wang Q, Wang Y, Wang O, Zhang X. GABRB2 plays an important role in the lymph node metastasis of papillary thyroid cancer. Biochem Biophys Res Commun 2017; 492:323-330. [PMID: 28859983 DOI: 10.1016/j.bbrc.2017.08.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thyroid cancer is a common malignant tumor of the endocrine system. Its incidence has increased continuously worldwide for the past three decades. With advanced sequencing technology, we discovered that GABRB2 gene is overexpressed in tumor tissues and closely associated with vertebrate nervous systems. However, its role in cancer remains unclear. METHODS We conducted a massively parallel whole transcriptome resequencing and a comprehensive analysis of matched papillary thyroid carcinoma (PTC) tumors and normal tissues in 19 patients. Results showed that GABRB2 expression was significantly upregulated in thyroid cancer. Forty-five pairs of tumors and normal tissues were subjected to reverse transcription polymerase chain reaction to validate previous findings. The specific functions of GABRB2 in PTC cell lines (BCPAP, TPC1, and KTC-1) transfected with small interfering RNA were determined through cell colony formation, Cell Counting Kit-8, Transwell migration, Transwell invasion, and apoptosis assays. The effect of DNA demethylation on this gene was also examined. RESULTS GABRB2 was remarkably overexpressed in primarily sequenced PTC tumors and validation cohort (T: N = 4.94 ± 3.43:0.83 ± 1.71, P < 0.001), and this observation was consistent with that in the TCGA cohort (T: N = 38.92 ± 35.53:0.30 ± 0.55, P < 0.001). GABRB2 overexpression was correlated with lymph node metastasis in both cohorts (P < 0.01). In vitro experiments revealed that GABRB2 downregulation significantly inhibited the colony formation, migration, and invasion of the three PTC cell lines. CONCLUSION GABRB2 plays important tumorigenic functions and acts as a novel oncogene in PTC.
Collapse
Affiliation(s)
- Yixiang Jin
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wenxu Jin
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouci Zheng
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Endong Chen
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingxuan Wang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinghao Wang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ouchen Wang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohua Zhang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
29
|
Wang QX, Wang OC, Chen ED, Cai YF, Li Q, Jin YX, Jin WX, Wang YH, Zheng ZC, Xue L, Wang OC, Zhang XH. Erratum to: A panel of four genes accurately differentiates benign from malignant thyroid nodules. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:18. [PMID: 28118854 PMCID: PMC5260047 DOI: 10.1186/s13046-017-0488-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/06/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Qing-Xuan Wang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Province, 325000, China
| | - Ou-Chen Wang
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200000, China.
| | - En-Dong Chen
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Province, 325000, China
| | - Ye-Feng Cai
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Province, 325000, China
| | - Quan Li
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Province, 325000, China
| | - Yi-Xiang Jin
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Province, 325000, China
| | - Wen-Xu Jin
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Province, 325000, China
| | - Ying-Hao Wang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Province, 325000, China
| | - Zhou-Ci Zheng
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Province, 325000, China
| | - Lu Xue
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200000, China
| | - Ou-Chen Wang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Province, 325000, China
| | - Xiao-Hua Zhang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Province, 325000, China.
| |
Collapse
|