1
|
Seglab F, Abou Assali M, AlYafei T, Hassan H, Pinto DCGA, Baydoun S, Al Thani AA, Shaito AA. Chemical Composition, Antioxidant Capacity, and Anticancerous Effects against Human Lung Cancer Cells of a Terpenoid-Rich Fraction of Inula viscosa. BIOLOGY 2024; 13:687. [PMID: 39336114 PMCID: PMC11429348 DOI: 10.3390/biology13090687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024]
Abstract
Inula viscosa is a widely used plant in traditional Mediterranean and Middle Eastern medicine for various illnesses. I. viscosa has been shown to have anticancer effects against various cancers, but its effects against lung cancer have been under limited investigation. At the same time, I. viscosa is rich in terpenoids whose anti-lung cancer effects have been poorly investigated. This study aimed to examine the potential anticancer properties of methanolic and aqueous extracts of stems and leaves of I. viscosa and its terpenoid-rich fraction against human lung cancer A549 cells. Results showed that the methanolic extracts of I. viscosa had significantly higher polyphenol and flavonoid content and radical scavenging capacity than the aqueous extracts. In addition, leaves methanolic extracts (IVLM) caused the highest reduction in viability of A549 cells among all the extracts. IVLM also reduced the viability of human ovarian SK-OV-3, breast MCF-7, liver HepG2, and colorectal HCT116 cancer cells. A terpenoid-rich I. viscosa fraction (IVL DCM), prepared by liquid-liquid separation of IVLM in dichloromethane (DCM), displayed a substantial reduction in the viability of A549 cells (IC50 = 27.8 ± 1.5 µg/mL at 48 h) and the panel of tested cancerous cell lines but was not cytotoxic to normal human embryonic fibroblasts (HDFn). The assessment of IVL DCM phytochemical constituents using GC-MS analysis revealed 21 metabolites, highlighting an enrichment in terpenoids, such as lupeol and its derivatives, caryophyllene oxide, betulin, and isopulegol, known to exhibit proapoptotic and antimetastatic functions. IVL DCM also showed robust antioxidant capacity and decent polyphenol and flavonoid contents. Furthermore, Western blotting analysis indicated that IVL DCM reduced proliferation (reduction of proliferation marker Ki67 and induction of proliferation inhibitor proteins P21 and P27), contaminant with P38 MAP kinase activation, and induced the intrinsic apoptotic pathway (P53/BCL2/BAX/Caspase3/PARP) in A549 cells. IVL DCM also reduced the migration of A549 cells, potentially by reducing FAK activation. Future identification of anticancer metabolites of IVL DCM, especially terpenoids, is recommended. These data place I. viscosa as a new resource of herbal anticancer agents.
Collapse
Affiliation(s)
- Fatiha Seglab
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mazen Abou Assali
- Environmental Science Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Thoraya AlYafei
- Environmental Science Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hassan Hassan
- Environmental Science Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Diana C G A Pinto
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Safaa Baydoun
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Abdullah A Shaito
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Sciences, College of Health Sciences and Basic Medical Sciences, College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Wang X, Li X, Niu L, Lv F, Guo T, Gao Y, Ran Y, Huang W, Wang B. FAK-LINC01089 negative regulatory loop controls chemoresistance and progression of small cell lung cancer. Oncogene 2024; 43:1669-1687. [PMID: 38594505 DOI: 10.1038/s41388-024-03027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The focal adhesion kinase (FAK) tyrosine kinase is activated and upregulated in multiple cancer types including small cell lung cancer (SCLC). However, FAK inhibitors have shown limited efficacy in clinical trials for cancer treatment. With the aim of identifying potential therapeutic strategies to inhibit FAK for cancer treatment, we investigated long non-coding RNAs (lncRNAs) that potentially regulate FAK in SCLC. In this study, we identified a long non-coding RNA LINC01089 that binds and inhibits FAK phosphorylation (activation). Expression analysis revealed that LINC01089 was downregulated in SCLC tissues and negatively correlated with chemoresistance and survival in SCLC patients. Functionally, LINC01089 inhibited chemoresistance and progression of SCLC in vitro and in vivo. Mechanistically, LINC01089 inhibits FAK activation by blocking binding with Src and talin kinases, while FAK negatively regulates LINC01089 transcription by activating the ERK signaling pathway to recruit the REST transcription factor. Furthermore, LINC01089-FAK axis mediates the expression of drug resist-related genes by modulating YBX1 phosphorylation, leading to drug resistance in SCLC. Intriguingly, the FAK-LINC01089 interaction depends on the co-occurrence of the novel FAK variant and the non-conserved region of LINC01089 in primates. In Conclusion, our results indicated that LINC01089 may serve as a novel high-efficiency FAK inhibitor and the FAK-LINC01089 axis represents a valuable prognostic biomarker and potential therapeutic target in SCLC.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liman Niu
- Chongqing Key Laboratory of Sichuan-Chongging Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Guo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Bing Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Lu MK, Lee MH, Chao CH, Hsu YC. Sodium sulfate addition increases the bioresource of biologically active sulfated polysaccharides from Antrodia cinnamomea. Int J Biol Macromol 2024; 257:128699. [PMID: 38092106 DOI: 10.1016/j.ijbiomac.2023.128699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Fungal sulfated polysaccharides (SPS) have been used in the pharmaceutical industry. In this study, sodium sulfate was employed as an elicitor to induce stress on the mycelia of Antrodia cinnamomea for the biosynthesis of SPS with high sulfate content. Sodium sulfate treatments increased the yield of SPS to 4.46 % and increased the sulfate content to 6.8 mmol/g of SPS. SPS were extracted from A. cinnamomea cultured with 500 mM sodium sulfate; these SPSs are denoted as Na500. Na500 exhibited the highest sulfate content and dose-dependent inhibitory activity against LPS-induced production of macrophage interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin 1β (IL-1β). Mechanistically, Na500 hindered the phosphorylation of transforming growth factor-β receptor II (TGFRII), extracellular signal-regulated kinases (ERK), and protein kinase B (AKT) expression. A purified 7.79 kDa galactoglucan, Na500 F3, augmented the anti-inflammation activity by inhibiting LPS-induced TGFβ release. Additionally, Na500 F3 restrained the LPS-induced phosphorylation of p-38, ERK, AKT, and TGFRII in RAW264.7 cells. Na500 F3 impeded the proliferation of lung cancer H1975 cells by inhibiting the phosphorylation of focal adhesion kinase, ERK, and Slug. The anti-inflammation and anticancer properties of Antrodia SPS contribute to its health benefits, suggesting its utility in functional foods.
Collapse
Affiliation(s)
- Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, 252 Wu-Hsing St., Taipei 110, Taiwan; Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan.
| | - Meng-Hsin Lee
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| | - Yu-Chi Hsu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| |
Collapse
|
4
|
Wang Y, Shen N, Yang Y, Xia Y, Zhang W, Lu Y, Wang Z, Yang Z, Wang Z. ZDHHC5-mediated S-palmitoylation of FAK promotes its membrane localization and epithelial-mesenchymal transition in glioma. Cell Commun Signal 2024; 22:46. [PMID: 38233791 PMCID: PMC10795333 DOI: 10.1186/s12964-023-01366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/26/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Abnormal activation of FAK is associated with tumor development and metastasis. Through interactions with other intracellular signalling molecules, FAK influences cytoskeletal remodelling, modulation of adhesion signalling, and activation of transcription factors, promoting migration and invasion of tumor cells. However, the exact mechanism that regulates these processes remains unresolved. Herein, our findings indicate that the S-palmitoylation of FAK is crucial for both its membrane localization and activation. METHODS The palmitoylation of FAK in U251 and T98G cells was assessed by an acyl-PEG exchange (APE) assay and a metabolic incorporation assay. Cellular palmitoylation was inhibited using 2-bromopalmitate, and the palmitoylation status and cellular localization of FAK were determined. A metabolic incorporation assay was used to identify the potential palmitoyl acyltransferase and the palmitoylation site of FAK. Cell Counting Kit-8 (CCK8) assays, colony formation assays, and Transwell assays were conducted to assess the impact of ZDHHC5 in GBM. Additionally, intracranial GBM xenografts were utilized to investigate the effects of genetically silencing ZDHHC5 on tumor growth. RESULTS Inhibiting FAK palmitoylation leads to its redistribution from the membrane to the cytoplasm and a decrease in its phosphorylation. Moreover, ZDHHC5, a protein-acyl-transferase (PAT), catalyzes this key modification of FAK at C456. Knockdown of ZDHHC5 abrogates the S-palmitoylation and membrane distribution of FAK and impairs cell proliferation, invasion, and epithelial-mesenchymal transition (EMT). Taken together, our research reveals the crucial role of ZDHHC5 as a PAT responsible for FAK S-palmitoylation, membrane localization, and activation. CONCLUSIONS These results imply that targeting the ZDHHC5/FAK axis has the potential to be a promising strategy for therapeutic interventions for glioblastoma (GBM). Video Abstract.
Collapse
Affiliation(s)
- Yang Wang
- Center for Clinical Medical Research, the Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Na Shen
- Center for Clinical Medical Research, the Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yang Yang
- Department of Pediatric Surgery, the Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yuan Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenhao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yu Lu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233099, China
| | - Zhicheng Wang
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233099, China
| | - Ze Yang
- Department of Pediatric Surgery, the Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Zhangjie Wang
- Center for Clinical Medical Research, the Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
5
|
He L, Shi M, Ren S, Zhang J, Tian Y, Yang X, Liu H. Jun-APOE-LRP1 axis promotes tumor metastasis in colorectal cancer. BIOMOLECULES & BIOMEDICINE 2023; 23:1026-1037. [PMID: 37310025 PMCID: PMC10655886 DOI: 10.17305/bb.2023.9248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/03/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Apolipoprotein E (apoE) has previously been reported to play vital roles in tumor progression. However, the impact of apoE on colorectal cancer (CRC) metastasis remains largely unexplored. This study aimed to investigate the role of apoE in CRC metastasis and to identify the transcription factor and receptor of apoE involved in regulation of CRC metastasis. Bioinformatic analyses were conducted to examine the expression pattern and prognosis of apolipoproteins. APOE-overexpressing cell lines were utilized to explore the effects of apoE on proliferation, migration and invasion of CRC cells. Additionally, the transcription factor and receptor of apoE were screened via bioinformatics, and further validated through knockdown experiments. We discovered that the mRNA levels of APOC1, APOC2, APOD and APOE were higher in lymphatic invasion group, and a higher apoE level indicated poorer overall survival and progression-free interval. In vitro studies demonstrated that APOE-overexpression did not affect proliferation but promoted the migration and invasion of CRC cells. We also reported that APOE-expression was modulated by the transcription factor Jun by activating the proximal promoter region of APOE, and APOE-overexpression reversed the metastasis suppression of JUN knockdown. Furthermore, bioinformatics analysis suggested an interaction between apoE and low-density lipoprotein receptor-related protein 1 (LRP1). LRP1 was highly expressed in both the lymphatic invasion group and the APOEHigh group. Additionally, we found that APOE-overexpression upregulated LRP1 protein levels, and LRP1 knockdown attenuated the metastasis-promoting function of APOE. Overall, our study suggests that the Jun-APOE-LRP1 axis contributes to tumor metastasis in CRC.
Collapse
Affiliation(s)
- Lingyuan He
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengchen Shi
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuwei Ren
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Tian
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Ajnakina O, Shamsutdinova D, Stahl D, Steptoe A. Polygenic Propensity for Longevity, APOE-ε4 Status, Dementia Diagnosis, and Risk for Cause-Specific Mortality: A Large Population-Based Longitudinal Study of Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:1973-1982. [PMID: 37434484 PMCID: PMC10613005 DOI: 10.1093/gerona/glad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 07/13/2023] Open
Abstract
To deepen the understanding of genetic mechanisms influencing mortality risk, we investigated the impact of genetic predisposition to longevity and APOE-ε4, on all-cause mortality and specific causes of mortality. We further investigated the mediating effects of dementia on these relationships. Using data on 7 131 adults aged ≥50 years (mean = 64.7 years, standard deviation [SD] = 9.5) from the English Longitudinal Study of Aging, genetic predisposition to longevity was calculated using the polygenic score approach (PGSlongevity). APOE-ε4 status was defined according to the absence or presence of ε4 alleles. The causes of death were ascertained from the National Health Service central register, which was classified into cardiovascular diseases, cancers, respiratory illness, and all other causes of mortality. Of the entire sample, 1 234 (17.3%) died during an average 10-year follow-up. One-SD increase in PGSlongevity was associated with a reduced risk for all-cause mortality (hazard ratio [HR] = 0.93, 95% confidence interval [CI]: 0.88-0.98, p = .010) and mortalities due to other causes (HR = 0.81, 95% CI: 0.71-0.93, p = .002) in the following 10 years. In gender-stratified analyses, APOE-ε4 status was associated with a reduced risk for all-cause mortality and mortalities related to cancers in women. Mediation analyses estimated that the percent excess risk of APOE-ε4 on other causes of mortality risk explained by the dementia diagnosis was 24%, which increased to 34% when the sample was restricted to adults who were aged ≤75 years old. To reduce the mortality rate in adults who are aged ≥50 years old, it is essential to prevent dementia onset in the general population.
Collapse
Affiliation(s)
- Olesya Ajnakina
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Diana Shamsutdinova
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Daniel Stahl
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, UK
| |
Collapse
|
7
|
Fard D, Testa E, Panzeri V, Rizzolio S, Bianchetti G, Napolitano V, Masciarelli S, Fazi F, Maulucci G, Scicchitano BM, Sette C, Viscomi MT, Tamagnone L. SEMA6C: a novel adhesion-independent FAK and YAP activator, required for cancer cell viability and growth. Cell Mol Life Sci 2023; 80:111. [PMID: 37002363 PMCID: PMC10066115 DOI: 10.1007/s00018-023-04756-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
Transmembrane semaphorins are signaling molecules, controlling axonal wiring and embryo development, which are increasingly implicated in human diseases. Semaphorin 6C (Sema6C) is a poorly understood family member and its functional role is still unclear. Upon targeting Sema6C expression in a range of cancer cells, we observed dramatic growth suppression, decreased ERK phosphorylation, upregulation of cell cycle inhibitor proteins p21, p27 and p53, and the onset of cell senescence, associated with activation of autophagy. These data are consistent with a fundamental requirement for Sema6C to support viability and growth in cancer cells. Mechanistically, we unveiled a novel signaling pathway elicited by Sema6C, and dependent on its intracellular domain, mediated by tyrosine kinases c-Abl and Focal Adhesion Kinase (FAK). Sema6C was found in complex with c-Abl, and induced its phosphorylation, which in turn led to FAK activation, independent of cell-matrix adhesion. Sema6C-induced FAK activity was furthermore responsible for increased nuclear localization of YAP transcriptional regulator. Moreover, Sema6C conferred YAP signaling-dependent long-term cancer cell survival upon nutrient deprivation. In conclusion, our findings demonstrate that Sema6C elicits a cancer promoting-signaling pathway sustaining cell viability and self-renewal, independent of growth factors and nutrients availability.
Collapse
Affiliation(s)
- Damon Fard
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Erika Testa
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giada Bianchetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Virginia Napolitano
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Masciarelli
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Maulucci
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy.
| |
Collapse
|
8
|
Miao G, Zhuo D, Han X, Yao W, Liu C, Liu H, Cao H, Sun Y, Chen Z, Feng T. From degenerative disease to malignant tumors: Insight to the function of ApoE. Biomed Pharmacother 2023; 158:114127. [PMID: 36516696 DOI: 10.1016/j.biopha.2022.114127] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein involved in lipid transport and lipoprotein metabolism, mediating lipid distribution/redistribution in tissues and cells. It can also regulate inflammation and immune function, maintain cytoskeleton stability, and improve neural tissue Function. Due to genetic polymorphisms of ApoE (ε2, ε3, and ε4), its three common structural isoforms (ApoE2, ApoE3, ApoE4) are also associated with the risk of many diseases, especially degenerative diseases, such as vascular degenerative diseases including atherosclerosis (AS), coronary heart disease (CHD), and neurodegenerative disease like Alzheimer's disease (AD). The frequency of the ε4 allele and APOE variants were significantly higher than that of the ε2 and ε3 alleles in the patients with CHD or AD. In recent years, ApoE has frequently appeared in tumor research and become a tumor biomarker gradually. It has been found that ApoE is highly expressed in most solid tumor tissues, such as glioblastoma, gastric cancer, pancreatic ductal cell carcinoma, etc. Studies illustrated that ApoE could regulate the polarization changes of macrophages, participate in the construction of tumor immune microenvironment, regulate tumor inflammation and immune response and play a role in tumor progression, invasion, and metastasis. Of course, many functions of ApoE and its relationship with diseases are still under research. By reviewing the structure and function of ApoE from degeneration diseases to tumor neoplasms, we hope to better understand such a biomarker and further explore the value of ApoE in later studies.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China; Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Han
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Chuan Liu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hanyuan Liu
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Yang L, Li J, Zang G, Song S, Sun Z, Li X, Li Y, Xie Z, Zhang G, Gui N, Zhu S, Chen T, Cai Y, Zhao Y. Pin1/YAP pathway mediates matrix stiffness-induced epithelial-mesenchymal transition driving cervical cancer metastasis via a non-Hippo mechanism. Bioeng Transl Med 2023; 8:e10375. [PMID: 36684109 PMCID: PMC9842039 DOI: 10.1002/btm2.10375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Cervical cancer metastasis is an important cause of death in cervical cancer. Previous studies have shown that epithelial-mesenchymal transition (EMT) of tumors promotes its invasive and metastatic capacity. Alterations in the extracellular matrix (ECM) and mechanical signaling are closely associated with cancer cell metastasis. However, it is unclear how matrix stiffness as an independent cue triggers EMT and promotes cervical cancer metastasis. Using collagen-coated polyacrylamide hydrogel models and animal models, we investigated the effect of matrix stiffness on EMT and metastasis in cervical cancer. Our data showed that high matrix stiffness promotes EMT and migration of cervical cancer hela cell lines in vitro and in vivo. Notably, we found that matrix stiffness regulates yes-associated protein (YAP) activity via PPIase non-mitotic a-interaction 1 (Pin1) with a non-Hippo mechanism. These data indicate that matrix stiffness of the tumor microenvironment positively regulates EMT in cervical cancer through the Pin1/YAP pathway, and this study deepens our understanding of cervical cancer biomechanics and may provide new ideas for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Long Yang
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Jingwen Li
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Guangchao Zang
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Sijie Song
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Zhengwen Sun
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Xinyue Li
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Yuanzhu Li
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Zhenhong Xie
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Guangyuan Zhang
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Ni Gui
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Shu Zhu
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Tingting Chen
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Yikui Cai
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Yinping Zhao
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| |
Collapse
|
10
|
He Y, Chen J, Ma Y, Chen H. Apolipoproteins: New players in cancers. Front Pharmacol 2022; 13:1051280. [PMID: 36506554 PMCID: PMC9732396 DOI: 10.3389/fphar.2022.1051280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoproteins (APOs), the primary protein moiety of lipoproteins, are known for their crucial role in lipid traffic and metabolism. Despite extensive exploration of APOs in cardiovascular diseases, their roles in cancers did not attract enough attention. Recently, research focusing on the roles of APOs in cancers has flourished. Multiple studies demonstrate the interaction of APOs with classical pathways of tumorigenesis. Besides, the dysregulation of APOs may indicate cancer occurrence and progression, thus serving as potential biomarkers for cancer patients. Herein, we summarize the mechanisms of APOs involved in the development of various cancers, their applications as cancer biomarkers and their genetic polymorphism associated with cancer risk. Additionally, we also discuss the potential anti-cancer therapies by virtue of APOs. The comprehensive review of APOs in cancers may advance the understanding of the roles of APOs in cancers and their potential mechanisms. We hope that it will provide novel clues and new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yingcheng He
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jianrui Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yanbing Ma
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Hongping Chen,
| |
Collapse
|
11
|
Mesmar J, Abdallah R, Hamade K, Baydoun S, Al-Thani N, Shaito A, Maresca M, Badran A, Baydoun E. Ethanolic extract of Origanum syriacum L. leaves exhibits potent anti-breast cancer potential and robust antioxidant properties. Front Pharmacol 2022; 13:994025. [PMID: 36299882 PMCID: PMC9589507 DOI: 10.3389/fphar.2022.994025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Breast cancer (BC) is the second most common cancer overall. In women, BC is the most prevalent cancer and the leading cause of cancer-related mortality. Triple-negative BC (TNBC) is the most aggressive BC, being resistant to hormonal and targeted therapies. Hypothesis/Purpose: The medicinal plant Origanum syriacum L. is a shrubby plant rich in bioactive compounds and widely used in traditional medicine to treat various diseases. However, its therapeutic potential against BC remains poorly investigated. In the present study, we screened the phytochemical content of an ethanolic extract of O. syriacum (OSEE) and investigated its anticancer effects and possible underlying mechanisms of action against the aggressive and highly metastatic human TNBC cell line MDA-MB-231. Methods: MTT, trans-well migration, and scratch assays were used to assess cell viability, invasion, or migration, respectively. Antioxidant potential was evaluated in vitro using the DPPH radical-scavenging assay and levels of reactive oxygen species (ROS) were assessed in cells in culture using DHE staining. Aggregation assays were used to determine cell-cell adhesion. Flow cytometry was used to analyze cell cycle progression. Protein levels of markers of apoptosis (BCL-2, pro-Caspase3, p53), proliferation (p21, Ki67), cell migration, invasion, or adhesion (FAK, E-cadherin), angiogenesis (iNOS), and cell signaling (STAT3, p38) were determined by immunoblotting. A chorioallantoic Membrane (CAM) assay evaluated in ovo angiogenesis. Results: We demonstrated that OSEE had potent radical scavenging activity in vitro and induced the generation of ROS in MDA-MB-231 cells, especially at higher OSEE concentrations. Non-cytotoxic concentrations of OSEE attenuated cell proliferation and induced G0/G1 cell cycle arrest, which was associated with phosphorylation of p38 MAPK, an increase in the levels of tumor suppressor protein p21, and a decrease of proliferation marker protein Ki67. Additionally, only higher concentrations of OSEE were able to attenuate inhibition of proliferation induced by the ROS scavenger N-acetyl cysteine (NAC), indicating that the anti-proliferative effects of OSEE could be ROS-dependent. OSEE stimulated apoptosis and its effector Caspase-3 in MDA-MB-231 cells, in correlation with activation of the STAT3/p53 pathway. Furthermore, the extract reduced the migration and invasive properties of MDA-MB-231 cells through the deactivation of focal adhesion kinase (FAK). OSEE also reduced the production of inducible nitric oxide synthase (iNOS) and inhibited in ovo angiogenesis. Conclusion: Our findings reveal that OSEE is a rich source of phytochemicals and has robust anti-breast cancer properties that significantly attenuate the malignant phenotype of MD-MB-231 cells, suggesting that O. syriacum may not only act as a rich source of potential TNBC therapeutics but may also provide new avenues for the design of novel TNBC drugs.
Collapse
Affiliation(s)
- Joelle Mesmar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Rola Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Kamar Hamade
- UMRT INRE 1158 BioEcoAgro, Laboratorie BIOPI, University of Picardie Jules Verne, Amiens, France
| | - Serine Baydoun
- Breast Imaging Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Najlaa Al-Thani
- Research and Development Department, Barzan Holdings, Doha, Qatar
| | - Abdullah Shaito
- Biomedical Research Center, College of Medicine, and Department of Biomedical Sciences at College of Health Sciences, Qatar University, Doha, Qatar
- *Correspondence: Abdullah Shaito, ; Marc Maresca, ; Elias Baydoun,
| | - Marc Maresca
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
- *Correspondence: Abdullah Shaito, ; Marc Maresca, ; Elias Baydoun,
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman, Jordan
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
- *Correspondence: Abdullah Shaito, ; Marc Maresca, ; Elias Baydoun,
| |
Collapse
|
12
|
Pu C, Biyuan, Xu K, Zhao Y. Glycosylation and its research progress in endometrial cancer. Clin Transl Oncol 2022; 24:1865-1880. [PMID: 35752750 PMCID: PMC9418304 DOI: 10.1007/s12094-022-02858-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Endometrial cancer (EC) is one of the most common tumors in the female reproductive system, which seriously threatens women's health, particularly in developed countries. 13% of the patients with EC have a poor prognosis due to recurrence and metastasis. Therefore, identifying good predictive biomarkers and therapeutic targets is critical to enable the early detection of metastasis and improve the prognosis. For decades, extensive studies had focused on glycans and glycoproteins in the progression of cancer. The types of glycans that are covalently attached to the polypeptide backbone, usually via nitrogen or oxygen linkages, are known as N‑glycans or O‑glycans, respectively. The degree of protein glycosylation and the aberrant changes in the carbohydrate structures have been implicated in the extent of tumorigenesis and reported to play a critical role in regulating tumor invasion, metabolism, and immunity. This review summarizes the essential biological role of glycosylation in EC, with a focus on the recent advances in glycomics and glycosylation markers, highlighting their implications in the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Congli Pu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Biyuan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Huo X, Zhang W, Zhao G, Chen Z, Dong P, Watari H, Narayanan R, Tillmanns TD, Pfeffer LM, Yue J. FAK PROTAC Inhibits Ovarian Tumor Growth and Metastasis by Disrupting Kinase Dependent and Independent Pathways. Front Oncol 2022; 12:851065. [PMID: 35574330 PMCID: PMC9095959 DOI: 10.3389/fonc.2022.851065] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Focal adhesion kinase (FAK) is highly expressed in a variety of human cancers and is a target for cancer therapy. Since FAK kinase inhibitors only block the kinase activity of FAK, they are not highly effective in clinical trials. FAK also functions as a scaffold protein in a kinase-independent pathway. To effectively target FAK, it is required to block both FAK kinase-dependent and FAK-independent pathways. Thus, we tested a new generation drug FAK PROTAC for ovarian cancer therapy, which blocks both kinase and scaffold activity. We tested the efficacy of FAK PROTAC and its parent kinase inhibitor (VS-6063) in ovarian cancer cell lines in vitro by performing cell functional assays including cell proliferation, migration, invasion. We also tested in vivo activity in orthotopic ovarian cancer mouse models. In addition, we assessed whether FAK PROTAC disrupts kinase-dependent and kinase-independent pathways. We demonstrated that FAK PROTAC is highly effective as compared to its parent FAK kinase inhibitor VS-6063 in inhibiting cell proliferation, survival, migration, and invasion. FAK PROTAC not only inhibits the FAK kinase activity but also FAK scaffold function by disrupting the interaction between FAK and its interaction protein ASAP1. We further showed that FAK PROTAC effectively inhibits ovarian tumor growth and metastasis. Taken together, FAK PROTAC inhibits both FAK kinase activity and its scaffold protein activity by disrupting the interaction between FAK and ASAP1 and is highly effective in inhibiting ovarian tumor growth and metastasis.
Collapse
Affiliation(s)
- Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Pathology and Laboratory Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenjing Zhang
- Department of Genetics, Genomics & Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peixin Dong
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidemichi Watari
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ramesh Narayanan
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Todd D Tillmanns
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, West Cancer Center, Germantown, TN, United States
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
14
|
Chen R, Cao J, Jiang W, Wang S, Cheng J. Upregulated Expression of CYBRD1 Predicts Poor Prognosis of Patients with Ovarian Cancer. JOURNAL OF ONCOLOGY 2021; 2021:7548406. [PMID: 34594380 PMCID: PMC8478559 DOI: 10.1155/2021/7548406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 01/21/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
Cytochrome b reductase 1 (CYBRD1) promotes the development of ovarian serous cystadenocarcinoma (OV). We assessed the function of CYBRD1 in OV underlying The Cancer Genome Atlas (TCGA) database. The correlation between clinicopathological characteristics and CYBRD1 expression was estimated. The Cox proportional hazards regression model and the Kaplan-Meier method were applied to identify clinical features related to overall survival and disease-specific survival. Gene set enrichment analysis (GSEA) was applied to identify the relationship between CYBRD1 expression and immune infiltration. CYBRD1 expression in OV was significantly associated with poor outcomes of primary therapy and FIGO stage. Patients with high levels of CYBRD1 expression were prone to the development of a poorly differentiated tumor and experience of an unfavorable outcome. CYBRD1 expression had significant association with shorter OS and acts as an independent predictor of poor outcome. Moreover, enhanced CYBRD1 expression was positively associated with Tem, NK cells, and mast cells but negatively associated with CD56 bright NK cells and Th2 cells. CYBRD1 expression may serve as a diagnostic and prognostic indicator of OV patients. The mechanisms of poor prognosis of CYBRD1-mediated OV may include increased iron uptake, regulation of immune microenvironment, ferroptosis related pathway, and ERK signaling pathway, among which ferroptosis and ERK signaling pathway may be important pathways of CYBRD1-mediated OV. Furthermore, we verified that CYBRD1 was upregulated in OV and significant correlated with lymph nodes metastasis, advanced stage, poor-differentiated tumor, and poor clinical prognosis in East Hospital cohort. The results of this study may provide guidance for the development of optimal treatment strategies for OV.
Collapse
Affiliation(s)
- Rui Chen
- Department of Gynecology, East Hospital Affiliated to Tongji University, Shanghai 200012, China
| | - Jianhong Cao
- Department of Heart Failure, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Wei Jiang
- Department of Gynecology, East Hospital Affiliated to Tongji University, Shanghai 200012, China
| | - Shunli Wang
- Department of Pathology, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Jingxin Cheng
- Department of Gynecology, East Hospital Affiliated to Tongji University, Shanghai 200012, China
| |
Collapse
|
15
|
Kacperczyk M, Kmieciak A, Kratz EM. The Role of ApoE Expression and Variability of Its Glycosylation in Human Reproductive Health in the Light of Current Information. Int J Mol Sci 2021; 22:ijms22137197. [PMID: 34281251 PMCID: PMC8268793 DOI: 10.3390/ijms22137197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Apolipoprotein E (ApoE), a 34-kDa glycoprotein, as part of the high-density lipoprotein (HDL), has antioxidant, anti-inflammatory and antiatherogenic properties. The variability of ApoE expression in the course of some female fertility disorders (endometriosis, POCS), and other gynecological pathologies such as breast cancer, choriocarcinoma, endometrial adenocarcinoma/hyperplasia and ovarian cancer confirm the multidirectional biological function of ApoE, but the mechanisms of its action are not fully understood. It is also worth taking a closer look at the associations between ApoE expression, the type of its genotype and male fertility disorders. Another important issue is the variability of ApoE glycosylation. It is documented that the profile and degree of ApoE glycosylation varies depending on where it occurs, the type of body fluid and the place of its synthesis in the human body. Alterations in ApoE glycosylation have been observed in the course of diseases such as preeclampsia or breast cancer, but little is known about the characteristics of ApoE glycans analyzed in human seminal and blood serum/plasma in the context of male reproductive health. A deeper analysis of ApoE glycosylation in the context of female and male fertility will both enable us to broaden our knowledge of the biochemical and cellular mechanisms in which glycans participate, having a direct or indirect relationship with the fertilization process, and also give us a chance of contributing to the enrichment of the diagnostic panel in infertile women and men, which is particularly important in procedures involved in assisted reproductive techniques. Moreover, understanding the mechanisms of glycoprotein glycosylation related to the course of various diseases and conditions, including infertility, and the interactions between glycans and their specific ligands may provide us with an opportunity to interfere with their course and thus develop new therapeutic strategies. This brief overview details some of the recent advances, mainly from the last decade, in understanding the associations between ApoE expression and some female and male fertility problems, as well as selected female gynecological diseases and male reproductive tract disorders. We were also interested in how ApoE glycosylation changes influence biological processes in the human body, with special attention to human fertility.
Collapse
|
16
|
Cho E, Kwon YJ, Ye DJ, Baek HS, Kwon TU, Choi HK, Chun YJ. G0/G1 Switch 2 Induces Cell Survival and Metastasis through Integrin-Mediated Signal Transduction in Human Invasive Breast Cancer Cells. Biomol Ther (Seoul) 2019; 27:591-602. [PMID: 31272137 PMCID: PMC6824625 DOI: 10.4062/biomolther.2019.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022] Open
Abstract
Human breast cancer cell line, MDA-MB-231, is highly invasive and aggressive, compared to less invasive cell line, MCF-7. To explore the genes that might influence the malignancy of MDA-MB-231, DNA microarray analysis was performed. The results showed that G0/G1 switch 2 (G0S2) was one of the most highly expressed genes among the genes upregulated in MDA-MB-231. Although G0S2 acts as a direct inhibitor of adipose triglyceride lipase, action of G0S2 in cancer progression is not yet understood. To investigate whether G0S2 affects invasiveness of MDA-MB-231 cells, G0S2 expression was inhibited using siRNA, which led to decreased cell proliferation, migration, and invasion of MDA-MB-231 cells. Consequently, G0S2 inhibition inactivated integrinregulated FAK-Src signaling, which promoted Hippo signaling and inactivated ERK1/2 signaling. In addition, G0S2 downregulation decreased β-catenin expression, while E-cadherin expression was increased. It was demonstrated for the first time that G0S2 mediates the Hippo pathway and induces epithelial to mesenchymal transition (EMT). Taken together, our results suggest that G0S2 is a major factor contributing to cell survival and metastasis of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Eunah Cho
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Dong-Jin Ye
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| |
Collapse
|
17
|
Lai H, Zhao X, Qin Y, Ding Y, Chen R, Li G, Labrie M, Ding Z, Zhou J, Hu J, Ma D, Fang Y, Gao Q. Correction to: FAK-ERK activation in cell/matrix adhesion induced by the loss of apolipoprotein E stimulates the malignant progression of ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:415. [PMID: 31615580 PMCID: PMC6792231 DOI: 10.1186/s13046-019-1422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the original publication of this manuscript [1], Fig. 5E lower panel was incorrect due to an error in the preparation of these figures for publication. It was noticed that in the lower panel of Fig. 5E, one mouse image of ApoE-/- + PBS group (upper) was a photograph coming from ApoE-/- + BAPN pre-treatment group (lower). The corrected figure appears below. We apologize for any confusion this may have caused.
Collapse
Affiliation(s)
- Huiling Lai
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xuejiao Zhao
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yu Qin
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yi Ding
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ruqi Chen
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Guannan Li
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Marilyne Labrie
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhiyong Ding
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianfeng Zhou
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Junbo Hu
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ding Ma
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yong Fang
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Qinglei Gao
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
18
|
Hexokinase 2 Regulates Ovarian Cancer Cell Migration, Invasion and Stemness via FAK/ERK1/2/MMP9/NANOG/SOX9 Signaling Cascades. Cancers (Basel) 2019; 11:cancers11060813. [PMID: 31212816 PMCID: PMC6627345 DOI: 10.3390/cancers11060813] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 01/10/2023] Open
Abstract
Metabolic reprogramming is a common phenomenon in cancers. Thus, glycolytic enzymes could be exploited to selectively target cancer cells in cancer therapy. Hexokinase 2 (HK2) converts glucose to glucose-6-phosphate, the first committed step in glucose metabolism. Here, we demonstrated that HK2 was overexpressed in ovarian cancer and displayed significantly higher expression in ascites and metastatic foci. HK2 expression was significantly associated with advanced stage and high-grade cancers, and was an independent prognostic factor. Functionally, knockdown of HK2 in ovarian cancer cell lines and ascites-derived tumor cells hindered lactate production, cell migration and invasion, and cell stemness properties, along with reduced FAK/ERK1/2 activation and metastasis- and stemness-related genes. 2-DG, a glycolysis inhibitor, retarded cell migration and invasion and reduced stemness properties. Inversely, overexpression of HK2 promoted cell migration and invasion through the FAK/ERK1/2/MMP9 pathway, and enhanced stemness properties via the FAK/ERK1/2/NANOG/SOX9 cascade. HK2 abrogation impeded in vivo tumor growth and dissemination. Notably, ovarian cancer-associated fibroblast-derived IL-6 contributed to its up-regulation. In conclusion, HK2, which is regulated by the tumor microenvironment, controls lactate production and contributes to ovarian cancer metastasis and stemness regulation via FAK/ERK1/2 signaling pathway-mediated MMP9/NANOG/SOX9 expression. HK2 could be a potential prognostic marker and therapeutic target for ovarian cancer.
Collapse
|
19
|
Rigiracciolo DC, Santolla MF, Lappano R, Vivacqua A, Cirillo F, Galli GR, Talia M, Muglia L, Pellegrino M, Nohata N, Di Martino MT, Maggiolini M. Focal adhesion kinase (FAK) activation by estrogens involves GPER in triple-negative breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:58. [PMID: 30728047 PMCID: PMC6364402 DOI: 10.1186/s13046-019-1056-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Focal adhesion kinase (FAK) is a cytoplasmatic protein tyrosine kinase that associates with both integrins and growth factor receptors toward the adhesion, migration and invasion of cancer cells. The G-protein coupled estrogen receptor (GPER) has been involved in the stimulatory action of estrogens in breast tumor. In this study, we have investigated the engagement of FAK by GPER signaling in triple negative breast cancer (TNBC) cells. METHODS Publicly available large-scale database and patient data sets derived from "The Cancer Genome Atlas" (TCGA; www.cbioportal.org ) were used to assess FAK expression in TNBC, non-TNBC tumors and normal breast tissues. MDA-MB 231 and SUM159 TNBC cells were used as model system. The levels of phosphorylated FAK, other transduction mediators and target genes were detected by western blotting analysis. Focal adhesion assay was carried out in order to determine the focal adhesion points and the formation of focal adhesions (FAs). Luciferase assays were performed to evaluate the promoters activity of c-FOS, EGR1 and CTGF upon GPER activation. The mRNA expression of the aforementioned genes was measured by real time-PCR. Boyden chamber and wound healing assays were used in order to evaluate cell migration. The statistical analysis was performed by ANOVA. RESULTS We first determined by bioinformatic analysis that the mRNA expression levels of the gene encoding FAK, namely PTK2, is higher in TNBC respect to non-TNBC and normal breast tissues. Next, we found that estrogenic GPER signaling triggers Y397 FAK phosphorylation as well as the increase of focal adhesion points (FAs) in TNBC cells. Besides, we ascertained that GPER and FAK activation are involved in the STAT3 nuclear accumulation and gene expression changes. As biological counterpart, we show that FAK inhibition prevents the migration of TNBC cells upon GPER activation. CONCLUSIONS The present data provide novel insights regarding the action of FAK in TNBC. Moreover, on the basis of our findings estrogenic GPER signaling may be considered among the transduction mechanisms engaging FAK toward breast cancer progression.
Collapse
Affiliation(s)
| | - Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Giulia Raffaella Galli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
20
|
Zhao Y, Zhou X, He Y, Liao C. SLC6A1-miR133a-CDX2 loop regulates SK-OV-3 ovarian cancer cell proliferation, migration and invasion. Oncol Lett 2018; 16:4977-4983. [PMID: 30250563 PMCID: PMC6144910 DOI: 10.3892/ol.2018.9273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/05/2018] [Indexed: 02/07/2023] Open
Abstract
The present study assessed the expression of solute carrier 6 member 1 (SLC6A1) in ovarian cancer (OC) tissues and evaluated the effect of silencing SLC6A1 or caudal type homeobox 2 (CDX2) on the proliferation, migration, and invasion of SK-OV-3 OC cells. The levels of caudal type homeobox 2 (CDX2) and SLC6A1 mRNA were also examined in OC SK-OV-3, OVCAR3 and A2780 cell lines. The mRNA levels of CDX2 and SLC6A1 in SK-OV-3 OC cells were assessed following transection with microRNA (miR) 133a mimics; the mRNA and protein levels of SLC6A1 were determined following the silencing of CDX2, and the mRNA expression of CDX2 was gauged following the silencing of SLC6A1. A luciferase reporter assay was performed to assess the effect of miR133a on the CDX2 and SLC6A1 3′-untranslated regions (3′UTRs). The proliferation, migration and invasion rate of SK-OV-3 cells were then examined following the silencing of CDX2 or SLC6A1. The expression of SLC6A1 was increased in OC compared with adjacent tissue. The expression of CDX2 and SLC6A1 in SK-OV-3 and OVCAR3 cells was increased compared with A2780 cells (P<0.05). The level of CDX2 and SLC6A1 mRNA in SK-OV-3 cells decreased when the cells were transected with the miR133a mimics, compared with a negative control (P<0.05). Transfection with the miR133a mimics significantly reduced the luciferase activity of reporter plasmids with the SLC6A1 or CDX2 3′UTRs (P<0.05). The mRNA level of CDX2 was decreased subsequent to the silencing of SLC6A1; the mRNA and protein level of SLC6A1 were decreased when CDX2 was silenced (P<0.05). The proliferation, migration, and invasion of SK-OV-3 cells were significantly reduced following the silencing of CDX2 or SLC6A1 (P<0.05). CDX2 may therefore be inferred to promote the proliferation, migration and invasion in SK-OV-3 OC cells, acting as a competing endogenous RNA.
Collapse
Affiliation(s)
- Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| | - Xiaokui Zhou
- Department of Gynecology and Obstetrics, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yangyan He
- Department of Gynecology and Obstetrics, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Changjun Liao
- College of Medicine, Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|