1
|
Chen Q, Pan Y, Hu Y, Chen G, Chen X, Xie Y, Wang M, Li Z, Huang J, Shi Y, Huang H, Zhang T, Wang M, Zeng P, Wang S, Chen R, Zheng Y, Zhong L, Yang H, Liang D. An L-type calcium channel blocker nimodipine exerts anti-fibrotic effects by attenuating TGF-β1 induced calcium response in an in vitro model of thyroid eye disease. EYE AND VISION (LONDON, ENGLAND) 2024; 11:37. [PMID: 39237996 PMCID: PMC11378575 DOI: 10.1186/s40662-024-00401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Thyroid eye disease (TED) is a vision-threatening autoimmune disorder. Orbital tissue fibrosis leading to intractable complications remains a troublesome issue in TED management. Exploration of novel therapeutic targets and agents to ameliorate tissue fibrosis is crucial for TED. Recent work suggests that Ca2+ signaling participates in tissue fibrosis. However, whether an alteration of Ca2+ signaling has a role in fibrogenesis during TED remains unclear. In this study, we aimed to investigate the role of Ca2+ signaling in the fibrogenesis process during TED and the potential therapeutic effects of a highly selective inhibitor of the L-type calcium channel (LTCC), nimodipine, through a TGF-β1 induced in vitro TED model. METHODS Primary culture of orbital fibroblasts (OFs) were established from orbital adipose connective tissues of patients with TED and healthy control donors. Real-time quantitative polymerase chain reaction (RT-qPCR) and RNA sequencing were used to assess the genes expression associated with LTCC in OFs. Flow cytometry, RT-qPCR, 5-ethynyl-2'-deoxyuridine (EdU) proliferation assay, wound healing assay and Western blot (WB) were used to assess the intracellular Ca2+ response on TGF-β1 stimulation, and to evaluate the potential therapeutic effects of nimodipine in the TGF-β1 induced in vitro TED model. The roles of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and signal transducer and activator of transcription 1 (STAT1) in fibrogenesis during TED were determined by immunohistochemistry, WB, flow cytometry and co-immunoprecipitation assay. Selective inhibitors were used to explore the downstream signaling pathways. RESULTS LTCC inhibitor nimodipine blocked the TGF-β1 induced intracellular Ca2+ response and further reduced the expression of alpha-smooth muscle actin (α-SMA), collagen type I alpha 1 (Col1A1) and collagen type I alpha 2 (Col1A2) in OFs. Besides, nimodipine inhibited cell proliferation and migration of OFs. Moreover, our results provided evidence that activation of the CaMKII/STAT1 signaling pathway was involved in fibrogenesis during TED, and nimodipine inhibited the pro-fibrotic functions of OFs by down-regulating the CaMKII/STAT1 signaling pathway. CONCLUSIONS TGF-β1 induces an LTCC-mediated Ca2+ response, followed by activation of CaMKII/STAT1 signaling pathway, which promotes the pro-fibrotic functions of OFs and participates in fibrogenesis during TED. Nimodipine exerts potent anti-fibrotic benefits in vitro by suppressing the CaMKII/STAT1 signaling pathway. Our work deepens our understanding of the fibrogenesis process during TED and provides potential therapeutic targets and alternative candidate for TED.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Minzhen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Jun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Te Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Mei Wang
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Peng Zeng
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Sha Wang
- Eye Center of Xiangya Hospital, Central South University, Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China
| | - Rongxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Yongxin Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Liuxueying Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Kim JH, Kim K, Kim I, Seong S, Koh JT, Kim N. Nodal negatively regulates osteoclast differentiation by inducing STAT1 phosphorylation. J Cell Physiol 2024; 239:e31268. [PMID: 38577903 DOI: 10.1002/jcp.31268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Several members of the transforming growth factor beta (TGF-β) superfamily regulate the proliferation, differentiation, and function of bone-forming osteoblasts and bone-resorbing osteoclasts. However, it is still unknown whether Nodal, a member of the TGF-β superfamily, serves a function in bone cells. In this study, we found that Nodal did not have any function in osteoblasts but instead negatively regulated osteoclast differentiation. Nodal inhibited RANKL-induced osteoclast differentiation by downregulating the expression of pro-osteoclastogenic genes, including c-fos, Nfatc1, and Blimp1, and upregulating the expression of antiosteoclastogenic genes, including Bcl6 and Irf8. Nodal activated STAT1 in osteoclast precursor cells, and STAT1 downregulation significantly reduced the inhibitory effect of Nodal on osteoclast differentiation. These findings indicate that Nodal activates STAT1 to downregulate or upregulate the expression of pro-osteoclastogenic or antiosteoclastogenic genes, respectively, leading to the inhibition of osteoclast differentiation. Moreover, the inhibitory effect of Nodal on osteoclast differentiation contributed to the reduction of RANKL-induced bone loss in vivo.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, South Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, South Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, South Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, South Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, South Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, South Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
3
|
Li W, Zhuang Y, Shao SJ, Trivedi P, Zheng B, Huang GL, He Z, Zhang X. Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review). Mol Med Rep 2024; 29:39. [PMID: 38240082 PMCID: PMC10828999 DOI: 10.3892/mmr.2024.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
The intracellular pathway of Janus kinase/signal transducer and activator of transcription (JAK/STAT) and modification of nucleosome histone marks regulate the expression of proinflammatory mediators, playing an essential role in carcinogenesis, antiviral immunity and the interaction of host proteins with Herpesviral particles. The pathway has also been suggested to play a vital role in the clinical course of the acute infection caused by severe acute respiratory syndrome coronavirus type 2 (SARS‑CoV‑2; known as coronavirus infection‑2019), a novel human coronavirus initially identified in the central Chinese city Wuhan towards the end of 2019, which evolved into a pandemic affecting nearly two million people worldwide. The infection mainly manifests as fever, cough, myalgia and pulmonary involvement, while it also attacks multiple viscera, such as the liver. The pathogenesis is characterized by a cytokine storm, with an overproduction of proinflammatory mediators. Innate and adaptive host immunity against the viral pathogen is exerted by various effectors and is regulated by different signaling pathways notably the JAK/STAT. The elucidation of the underlying mechanism of the regulation of mediating factors expressed in the viral infection would assist diagnosis and antiviral targeting therapy, which will help overcome the infection caused by SARS‑CoV‑2.
Collapse
Affiliation(s)
- Wenkai Li
- Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yunjing Zhuang
- Department of Clinical Microbiology, School of Medical Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Song-Jun Shao
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University of Rome, Rome I-00158, Italy
| | - Biying Zheng
- Department of Clinical Microbiology, School of Medical Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Guo-Liang Huang
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
4
|
Alzahrani AA, Almajidi YQ, Jasim SA, Hjazi A, Olegovich BD, Alkhafaji AT, Abdulridui HA, Ahmed BA, Alawadi A, Alsalamy A. Getting to know ovarian cancer: Focusing on the effect of LncRNAs in this cancer and the effective signaling pathways. Pathol Res Pract 2024; 254:155084. [PMID: 38244434 DOI: 10.1016/j.prp.2023.155084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024]
Abstract
This article undertakes a comprehensive investigation of ovarian cancer, examining the complex nature of this challenging disease. The main focus is on understanding the role of long non-coding RNAs (lncRNAs) in the context of ovarian cancer (OC), and their regulatory functions in disease progression. Through extensive research, the article identifies specific lncRNAs that play significant roles in the intricate molecular processes of OC. Furthermore, the study examines the signaling pathways involved in the development of OC, providing a detailed comprehension of the underlying molecular mechanisms. By connecting lncRNA dynamics with signaling pathways, this exploration not only advances our understanding of ovarian cancer but also reveals potential targets for therapeutic interventions. The findings open up opportunities for targeted treatments, highlighting the importance of personalized approaches in addressing this complex disease and driving progress in ovarian cancer research and treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia
| | - Bokov Dmitry Olegovich
- Institute of Pharmacy, Moscow Medical University, Moscow, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | | | | | - Batool Ali Ahmed
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Iraq
| |
Collapse
|
5
|
Yu X, Zhao P, Luo Q, Wu X, Wang Y, Nan Y, Liu S, Gao W, Li B, Liu Z, Cui Z. RUNX1-IT1 acts as a scaffold of STAT1 and NuRD complex to promote ROS-mediated NF-κB activation and ovarian cancer progression. Oncogene 2024; 43:420-433. [PMID: 38092960 DOI: 10.1038/s41388-023-02910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 02/04/2024]
Abstract
Dysregulated expression of long-stranded non-coding RNAs is strongly associated with carcinogenesis. However, the precise mechanisms underlying their involvement in ovarian cancer pathogenesis remain poorly defined. Here, we found that lncRNA RUNX1-IT1 plays a crucial role in the progression of ovarian cancer. Patients with high RUNX1-IT1 expression had shorter survival and poorer outcomes. Notably, knockdown of RUNX1-IT1 suppressed the proliferation, migration and invasion of ovarian cancer cells in vitro, and reduced the formation of peritoneum metastasis in vivo. Mechanistically, RUNX1-IT1 bound to HDAC1, the core component of the NuRD complex, and STAT1, acting as a molecular scaffold of the STAT1 and NuRD complex to regulate intracellular reactive oxygen homeostasis by altering the histone modification status of downstream targets including GPX1. Consequently, RUNX1-IT1 activated NF-κB signaling and altered the biology of ovarian cancer cells. In conclusion, our findings demonstrate that RUNX1-IT1 promotes ovarian malignancy and suggest that targeting RUNX1-IT1 represents a promising therapeutic strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Yating Wang
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenyan Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bin Li
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
6
|
Yuan J, Li X, Wang F, Liu H, Guan W, Xu G. Insulin-like growth factor 2 mRNA-binding protein 2 is a therapeutic target in ovarian cancer. Exp Biol Med (Maywood) 2023; 248:2198-2209. [PMID: 38084732 PMCID: PMC10903241 DOI: 10.1177/15353702231214268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/03/2023] [Indexed: 01/23/2024] Open
Abstract
Ovarian cancer (OC) is a fatal gynecologic disease. The most common treatment for OC patients is surgery combined with chemotherapy but most patients at advanced stages eventually develop relapse due to chemoresistance. This study examined the role and function of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) in OC. We observed that the expression of IGF2BP2 mRNA and protein was up-regulated in OC cells and tissues using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. An increase in IGF2BP2 expression at mRNA and protein levels was verified by the analyses of The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), respectively. Gene Expression Omnibus (GEO) and Cancer Cell Line Encyclopedia (CCLE) databases were applied to analyze the expression and clinical value of IGF2BP2. Gene set enrichment analysis (GSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) analyses explored biological functions and the involvement of IGF2BP2 in cell growth. Indeed, the knockdown of IGF2BP2 resulted in the inhibition of OC cell proliferation evaluated by the Cell Counting Kit-8 assay. Genomic amplification of IGF2BP2 partly accounted for its overexpression. High expression of IGF2BP2 was associated with signal transducer and activator of transcription 1 (STAT1) and drug sensitivity and was correlated with an unfavorable survival outcome in OC patients. Furthermore, the responsiveness of chemotherapy and immunotherapy were analyzed using the "pRRophetic" R package and The Cancer Immune Atlas (TCIA) database, respectively. The low expression of IGF2BP2 was associated with chemoresistance but with high tumor microenvironment scores and tumor-infiltrating immune cells, suggesting that immunotherapy may apply in chemoresistant patients. The alteration of IGF2BP2 expression may respond to chemotherapy and immunotherapy. Thus, IGF2BP2 shows potential as a therapeutic target and diagnostic biomarker for OC.
Collapse
Affiliation(s)
- Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huiqiang Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| |
Collapse
|
7
|
Huo C, Gu Y, Wang D, Zhang X, Tang F, Zhao B, Liu T, He W, Li Y. STAT1 suppresses the transcriptional activity of TRIM21 in gastric cancer. J Cancer Res Clin Oncol 2023; 149:15335-15348. [PMID: 37639009 DOI: 10.1007/s00432-023-05307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE Tripartite motif-containing protein 21 (TRIM21) has E3 ubiquitin ligase activity and is involved in the regulation of various biological processes in vivo. TRIM21 has been found to have strong associations with various cancers. However, its role in gastric cancer is unclear. METHODS The TCGA database was screened to obtain TRIM21 using WGCNA and PPI analyses. The TCGA database was used to evaluate the correlation of TRIM21 expression with patients' clinical characteristics, prognosis, functional enrichment and immune cell infiltration. The role of TRIM21 in cell proliferation, apoptosis and invasion was verified by in vivo and in vitro assays. The UCSC and JASPAR databases were used to evaluate the regulatory role of STAT1 on TRIM21 transcription. Finally, dual-luciferase reporter assay was used to confirm the regulation of TRIM21 transcriptional activity by STAT1. RESULTS As a key gene, high expression of TRIM21 inhibited the gastric cancer growth and was significantly enriched in apoptosis, cell proliferation, and JAK/STAT signaling pathways. TRIM21 expression was positively correlated with a variety of TICs, including T cells, NK cells, and DCs. In vivo assays, TRIM21 inhibited functions in gastric cancer cell lines, including inhibition of proliferation and migration, and promotion of apoptosis. Database analysis and dual-luciferase reporter assay showed that STAT1 inhibited the transcriptional activity of TRIM21. In vivo assays confirmed that TRIM21 inhibited tumor growth, and STAT1 expression was negatively correlated with STAT1. CONCLUSION TRIM21 is a tumor-suppressive gene in gastric cancer, and its transcriptional activity is inhibited by STAT1.
Collapse
Affiliation(s)
- Chengdong Huo
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanmei Gu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Daijun Wang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Xiaoxia Zhang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Futian Tang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Bin Zhao
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Tao Liu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Wenting He
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China.
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China.
| | - Yumin Li
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China.
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China.
| |
Collapse
|
8
|
Li F, Hao S, Gao J, Jiang P. EGCG alleviates obesity-exacerbated lung cancer progression by STAT1/SLC7A11 pathway and gut microbiota. J Nutr Biochem 2023; 120:109416. [PMID: 37451475 DOI: 10.1016/j.jnutbio.2023.109416] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Leptin is a nutritional cytokine, and it is closely related to the progression of cancer. However, the detailed effect of leptin in lung cancer remains poorly known. We found leptin-induced A549 cell proliferation, migration, and invasion, which was reversed by epigallocatechin gallate (EGCG) from green tea. Currently, we found that leptin-triggered M2 polarization of tumor-associated macrophages was inhibited by EGCG. Then, to investigate the underlying mechanism effect of leptin on A549 cells was studied. Aberrant activities of STAT1 are implicated in cancer development. Based on the cancer genome atlas data, STAT1 acted as an oncogene in lung cancer and EGCG greatly reduced STAT1 expression in A549 cells. Ferroptosis is an iron-dependent nonapoptotic cell death. STAT1 served as a transcriptional activator for SLC7A11. EGCG restrained lung cancer cell growth induced by leptin via targeting STAT1-SLC7A11 mediated ferroptosis. A high-fat diet (HFD) feeding condition was combined with a multi-dose urethane-induced lung tumorigenesis model using C57BL/6J mice. Obesity was induced with a 60 kcal% HFD feeding. Serum leptin levels increased in urethane-administered and HFD-fed mice. Compared to the control diet-fed mice, the HFD-fed mice exhibited increased lung tumor burden and typical pro-tumorigenic STAT1 activation in lung tissues after urethane administration. In addition, HFD alters the gut microbiome by decreasing the abundance of Clostridia and by increasing the abundance of Deltaproteobacteria and Epsilonproteobacteria while EGCG exhibited a reversed effect. These findings suggested that leptin promoted the development of lung tumorigenesis in vitro and in vivo via mediating activation of the STAT-SLC7A11 pathway and gut microbiota.
Collapse
Affiliation(s)
- Fan Li
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengyu Hao
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Pan Jiang
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Nutrition, QingPu District Central Hospital, Shanghai, China.
| |
Collapse
|
9
|
Standing D, Feess E, Kodiyalam S, Kuehn M, Hamel Z, Johnson J, Thomas SM, Anant S. The Role of STATs in Ovarian Cancer: Exploring Their Potential for Therapy. Cancers (Basel) 2023; 15:cancers15092485. [PMID: 37173951 PMCID: PMC10177275 DOI: 10.3390/cancers15092485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer (OvCa) is a deadly gynecologic malignancy that presents many clinical challenges due to late-stage diagnoses and the development of acquired resistance to standard-of-care treatment protocols. There is an increasing body of evidence suggesting that STATs may play a critical role in OvCa progression, resistance, and disease recurrence, and thus we sought to compile a comprehensive review to summarize the current state of knowledge on the topic. We have examined peer reviewed literature to delineate the role of STATs in both cancer cells and cells within the tumor microenvironment. In addition to summarizing the current knowledge of STAT biology in OvCa, we have also examined the capacity of small molecule inhibitor development to target specific STATs and progress toward clinical applications. From our research, the best studied and targeted factors are STAT3 and STAT5, which has resulted in the development of several inhibitors that are under current evaluation in clinical trials. There remain gaps in understanding the role of STAT1, STAT2, STAT4, and STAT6, due to limited reports in the current literature; as such, further studies to establish their implications in OvCa are necessitated. Moreover, due to the deficiency in our understanding of these STATs, selective inhibitors also remain elusive, and therefore present opportunities for discovery.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Emma Feess
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Satvik Kodiyalam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael Kuehn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaimie Johnson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
10
|
Liu S, Chen X, Huang K, Xiong X, Shi Y, Wang X, Pan X, Cong Y, Sun Y, Ge L, Xu J, Jia X. Long noncoding RNA RFPL1S-202 inhibits ovarian cancer progression by downregulating the IFN-β/STAT1 signaling. Exp Cell Res 2023; 422:113438. [PMID: 36435219 DOI: 10.1016/j.yexcr.2022.113438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND RFPL1S was first identified as one of the pseudogenes located in the intrachromosomal duplications within 22q12-13. Our previous study found that one of the predicted transcripts of lncRNA RFPL1S, ENST00000419368.1 (GRCh37/hg19), also named as RFPL1S-202 in Ensembl website, is significantly downregulated in the chemoresistant ovarian cancer cells. However, its function and underlying mechanism have not been studied. METHODS Quantitative Real-time PCR was used to analyze the expression. Cell Counting Kit-8, transwell, flow cytometry analysis and tail vein injected mouse model were used to test the function. RNA-sequencing, RNA pull down, western blot, ELISA and RNA-Binding Protein Immunoprecipitation were performed for studying the mechanism. 5' and 3' rapid amplification of complementary DNA ends were performed to analyze the full length of RFPL1S-202. RESULTS RFPL1S-202 is significantly downregulated in epithelial ovarian cancer tissues and cell lines. Gain- and loss-of-function study indicated that RFPL1S-202 could enhance cisplatin or paclitaxel in cytotoxicity, inhibit cell proliferation, invasion and migration of ovarian cancer cells in vitro, and inhibit the liver metastasis of ovarian cancer cells in vivo. Mechanistically, RFPL1S-202 could physically interact with DEAD-Box Helicase 3 X-linked (DDX3X) protein, and decrease the expression of p-STAT1 and the IFN inducible genes by increasing the m6A modification of IFNB1. RFPL1S-202 is a spliced and polyadenylated non-coding RNA with a full length of 1071 bp. CONCLUSIONS Our study suggested that the predicted lncRNA RFPL1S-202 exerts a tumor- suppressive function in oarian cancer chemoresistance and progression by interacting with DDX3X and down-regulating the IFN-β-STAT1 signaling pathway.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| | - Xiyi Chen
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Ke Huang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Xueyou Xiong
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Yaqian Shi
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Xusu Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Yu Cong
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Yu Sun
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Lili Ge
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| |
Collapse
|
11
|
Gong X, Liu X. In-depth analysis of the expression and functions of signal transducers and activators of transcription in human ovarian cancer. Front Oncol 2022; 12:1054647. [DOI: 10.3389/fonc.2022.1054647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
BackgroundSignal transducers and activators of transcription (STAT) transcription factors, a family of genes encoding transcription factors, have been linked to the development of numerous types of tumors. However, there is a relative paucity of a comprehensive investigation of the expression and functional analysis of STATs in ovarian cancer (OV).MethodGene expression profile interaction analysis (GEPI2A), Metascape, The Cancer Genome Atlas (TCGA), Kaplan-Meier Plotter, Linkedomics, and CancerSEA databases were used for expression analysis and functional enrichment of STATs in ovarian cancer patients. We screened potential predictive genes and evaluated their prognostic value by constructing the minor absolute shrinkage and selection operator (LASSO) Cox proportional risk regression model. We explored STAT5A expression and its effects on cell invasion using ovarian cancer cells and a tissue microarray.ResultsThe expression level of STAT1 was higher, but that of STAT2-6 was lower in cancerous ovarian tissues compared to normal tissues, which were closely associated with the clinicopathological features. Low STAT1, high STAT4, and 6 mRNA levels indicated high overall survival. STAT1, 3, 4, and 5A were collectively constructed as prognostic risk models. STAT3, and 5A, up-regulating in the high-risk group, were regarded as risk genes. In subsequent validation, OV patients with a low level of P-STAT5A but not low STAT5A had a longer survival time (P=0.0042). Besides, a negative correlation was found between the expression of STAT5A and invasion of ovarian cancer cells (R= -0.38, p < 0.01), as well as DNA repair function (R= -0.36, p < 0.01). Furthermore, transient overexpression of STAT5A inhibited wound healing (21.8%, P<0.0001) and cell migration to the lower chamber of the Transwell system (29.3%, P<0.0001), which may be achieved by regulating the expression of MMP2.ConclusionIt is suggested that STAT1, STAT4, and STAT6 may be potential targets for the proper treatment of ovarian cancer. STAT5A and P-STAT5A, biomarkers identified in ovarian cancer, may offer new perspectives for predicting prognosis and assessing therapeutic effects.
Collapse
|
12
|
Padmanabhan S, Gaire B, Zou Y, Uddin MM, Vancurova I. IFNγ-induced PD-L1 expression in ovarian cancer cells is regulated by JAK1, STAT1 and IRF1 signaling. Cell Signal 2022; 97:110400. [PMID: 35820543 PMCID: PMC9357219 DOI: 10.1016/j.cellsig.2022.110400] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
Expression of the immune checkpoint programmed death ligand-1 (PD-L1) is increased in ovarian cancer (OC) and correlates with poor prognosis. Interferon-γ (IFNγ) induces PD-L1 expression in OC cells, resulting in their increased proliferation and tumor growth, but the mechanisms that regulate the PD-L1 expression in OC remain unclear. Here, we show that the IFNγ-induced PD-L1 expression in OC cells is associated with increased levels of STAT1, Tyr-701 pSTAT1 and Ser-727 pSTAT1. Suppression of JAK1 and STAT1 significantly decreases the IFNγ-induced PD-L1 expression in OC cells, and STAT1 overexpression increases the IFNγ-induced PD-L1 expression. In addition, IFNγ induces expression of the transcription factor interferon regulatory factor 1 (IRF1) and IRF1 suppression attenuates the IFNγ-induced gene and protein levels of PD-L1. Chromatin immunoprecipitation results show that IFNγ induces PD-L1 promoter acetylation and recruitment of STAT1, Ser-727 pSTAT1 and IRF1 in OC cells. Together, these findings demonstrate that the IFNγ-induced PD-L1 expression in OC cells is regulated by JAK1, STAT1, and IRF1 signaling, and suggest that targeting the JAK1/ STAT1/IRF1 pathway may provide a leverage to regulate the PD-L1 levels in ovarian cancer.
Collapse
Affiliation(s)
- Sveta Padmanabhan
- Department of Biological Sciences, St. John's University, New York 11439, USA
| | - Bijaya Gaire
- Department of Biological Sciences, St. John's University, New York 11439, USA
| | - Yue Zou
- Department of Biological Sciences, St. John's University, New York 11439, USA
| | - Mohammad M Uddin
- Department of Biological Sciences, St. John's University, New York 11439, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, New York 11439, USA.
| |
Collapse
|
13
|
Wang C, Wang F, Wang Y, Fu L. D-tryptophan triggered epithelial-mesenchymal transition by activating TGF-β signaling pathway. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Zhu S, Bao H, Zhang MC, Liu H, Wang Y, Lin C, Zhao X, Liu SL. KAZN as a diagnostic marker in ovarian cancer: a comprehensive analysis based on microarray, mRNA-sequencing, and methylation data. BMC Cancer 2022; 22:662. [PMID: 35710397 PMCID: PMC9204993 DOI: 10.1186/s12885-022-09747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background Ovarian cancer (OC) is among the deadliest malignancies in women and the lack of appropriate markers for early diagnosis leads to poor prognosis in most cases. Previous studies have shown that KAZN is involved in multiple biological processes during development, such as cell proliferation, differentiation, and apoptosis, so defects or aberrant expression of KAZN might cause queer cell behaviors such as malignancy. Here we evaluated the KAZN expression and methylation levels for possible use as an early diagnosis marker for OC. Methods We used data from Gene Expression Omnibus (GEO) microarrays, The Cancer Genome Atlas (TCGA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) to investigate the correlations between KAZN expression and clinical characteristics of OC by comparing methylation levels of normal and OC samples. The relationships among differentially methylated sites in the KAZN gene, corresponding KAZN mRNA expression levels and prognosis were analyzed. Results KAZN was up-regulated in ovarian epithelial tumors and the expression of KAZN was correlated with the patients’ survival time. KAZN CpG site cg17657618 was positively correlated with the expression of mRNA and the methylation levels were significantly differential between the group of stage “I and II” and the group of stage “III and IV”. This study also presents a new method to classify tumor and normal tissue in OC using DNA methylation pattern in the KAZN gene body region. Conclusions KAZN was involved in ovarian cancer pathogenesis. Our results demonstrate a new direction for ovarian cancer research and provide a potential diagnostic biomarker as well as a novel therapeutic target for clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09747-2.
Collapse
Affiliation(s)
- Songling Zhu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Hongxia Bao
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Meng-Chun Zhang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Huidi Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yao Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Caiji Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xingjuan Zhao
- Physical Examination Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China. .,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China. .,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
15
|
Munir H, Rana AT, Faheem M, Almutairi SM, Siddique T, Asghar S, Abdel-Maksoud MA, Mubarak A, Elkhamisy FAA, Studenik CR, Yaz H. Decoding signal transducer and activator of transcription 1 across various cancers through data mining and integrative analysis. Am J Transl Res 2022; 14:3638-3657. [PMID: 35836889 PMCID: PMC9274611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/25/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Using different online available databases and Bioinformatics tools, we extensively studied the role STAT1 across different cancers. METHODS STAT1 mRNA, protein expression, and promoter methylation were analyzed and validated using UALCAN, GENT2, Human Protein Atlas (HPA), and MEXPRESS. Furthermore, the potential prognostic values were evaluated through KM plotter. Then, cBioPortal was utilized to examine the STAT1-related genetic mutations, while pathway enrichment analysis was performed using DAVID. To identify STAT1 targeted microRNAs (miRNAs) and transcription factors (TFs) we used Enricher. Moreover, a correlational analysis between STAT1 expression tumor purity and CD8+ T immune cells and a gene-drug interaction network analysis was performed using TIMER, CTD, and Cytoscape. RESULTS In 23 major human cancers, STAT1 expression was notably up-regulated relative to corresponding controls. As well, the elevated expression of STAT1 was exclusively found to be associated with the reduced overall survival (OS) of Esophageal Carcinoma (ESCA), Kidney Renal Clear Cell Carcinoma (KIRC), and Lung adenocarcinoma (LUAD) patients. This implies that STAT1 plays a significant role in the development and progression of these three cancers. Further pathway analysis indicated that STAT1 enriched genes were involved in six critical pathways, while a few interesting correlations were also documented between STAT1 expression and promoter methylation level, tumor purity, CD8+ T immune cells infiltration, and genetic alteration. In addition, we have also predicted a few miRNAs, TFs, and chemotherapeutic drugs that could regulate the STAT1 expression. CONCLUSION The current study revealed the shared oncogenic, diagnostic, and prognostic role of STAT1 in ESCA, KIRC, and LUAD.
Collapse
Affiliation(s)
- Hadia Munir
- Akhtar Saeed Medical and Dental CollegePakistan
| | | | - Muhammad Faheem
- District Head Quarter Hospital FaisalabadFaisalabad, Pakistan
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Tehmina Siddique
- Department of Biotechnology, Faculty of Life Sciences, University of OkaraOkara, Pakistan
| | - Samra Asghar
- Department of Medical Laboratory Technology, Faculty of Rehablitation and Allied Health Sciences, Riphah International UniversityFaisalabad, Pakistan
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Fatma Alzahraa A Elkhamisy
- Pathology Department, Faculty of Medicine, Helwan UniversityCairo, Egypt
- Basic Medical Sciences Department, Faculty of Medicine, King Salman International UniversitySouth Sinai, Egypt
| | - Christian R Studenik
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of ViennaVienna, Austria
| | - Hamid Yaz
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Unveiling the Molecular Mechanisms Driving the Capsaicin-Induced Immunomodulatory Effects on PD-L1 Expression in Bladder and Renal Cancer Cell Lines. Cancers (Basel) 2022; 14:cancers14112644. [PMID: 35681623 PMCID: PMC9179445 DOI: 10.3390/cancers14112644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Over time, capsaicin (CPS) has been considered both a potential anti-cancer and pro-cancer molecule. Hence, the diversity of CPS functioning has already been established. Now, exploration of its application with immunotherapies might open up a new avenue in cancer therapy. Herein, the application of CPS as an immunoadjuvant to overcome the tumor’s immune-escaping mechanisms or to increase immune checkpoint therapy has been approached. In bladder cancer, the interaction of CPS with its receptor TRPV1 increases PD-L1 expression, promoting a tumorigenic effect and also providing a target for anti-PD-1/PD-L1 immunotherapy. On the contrary, in renal cell carcinoma, CPS downregulates PD-L1 expression in a TRPV1-independent manner, suggesting a potential application of CPS as an immune-adjuvant in this type of cancer. Abstract The blockade of the PD-L1/PD-1 immune checkpoint has promising efficacy in cancer treatment. However, few patients with bladder cancer (BC) or renal cell carcinoma (RCC) respond to this approach. Thus, it is important to implement a strategy to stimulate the immune anti-tumor response. In this scenario, our study evaluated the effects of a low capsaicin (CPS) dose in BC and RCC cell lines. Western blot, qRT-PCR and confocal microscopy were used to assess PD-L1 mRNA and protein expression. Alterations to the cellular oxidative status and changes to the antioxidant NME4 levels, mRNA modulation of cytokines, growth factors, transcriptional factors and oncogene, and the activation of Stat1/Stat3 pathways were examined using Western blot, cytofluorimetry and qRT-PCR profiling assays. In BC, CPS triggers an altered stress oxidative-mediated DNA double-strand break response and increases the PD-L1 expression. On the contrary, in RCC, CPS, by stimulating an efficient DNA damage repair response, thus triggering protein carbonylation, reduces the PD-L1 expression. Overall, our results show that CPS mediates a multi-faceted approach. In modulating PD-L1 expression, there is a rationale for CPS exploitation as a stimulus that increases BC cells’ response to immunotherapy or as an immune adjuvant to improve the efficacy of the conventional therapy in RCC patients.
Collapse
|
17
|
Inflammation, Fibrosis and Cancer: Mechanisms, Therapeutic Options and Challenges. Cancers (Basel) 2022; 14:cancers14030552. [PMID: 35158821 PMCID: PMC8833582 DOI: 10.3390/cancers14030552] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Uncontrolled inflammation is a salient factor in multiple chronic inflammatory diseases and cancers. In this review, we provided an in-depth analysis of the relationships and distinctions between uncontrolled inflammation, fibrosis and cancers, while emphasizing the challenges and opportunities of developing novel therapies for the treatment and/or management of these diseases. We described how drug delivery systems, combination therapy and the integration of tissue-targeted and/or pathways selective strategies could overcome the challenges of current agents for managing and/or treating chronic inflammatory diseases and cancers. We also recognized the value of the re-evaluation of the disease-specific roles of multiple pathways implicated in the pathophysiology of chronic inflammatory diseases and cancers-as well as the application of data from single-cell RNA sequencing in the success of future drug discovery endeavors.
Collapse
|
18
|
Zeng T, Yuan P, Liang L, Zhang X, Zhang H, Wu W. Cartilaginous Extracellular Matrix Enriched with Human Gingival Mesenchymal Stem Cells Derived "Matrix Bound Extracellular Vesicles" Enabled Functional Reconstruction of Tracheal Defect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102735. [PMID: 34841733 PMCID: PMC8805569 DOI: 10.1002/advs.202102735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/14/2021] [Indexed: 05/27/2023]
Abstract
Stem cells derived extracellular vesicles (EVs) conceive cues essential for tissue repair. Mammalian cartilaginous extracellular matrix (cECM) may not be optimally inductive for tracheal regeneration because of the granulomatous, instead of regenerative, responses in injured adult mammalian tracheas. Given the high regenerative capacity of gingiva, it is hypothesized human gingival mesenchymal stem cells derived EVs (gEVs) can induce mammalian tracheal epithelia regeneration. Coculturing chondrocytes with GMSCs produce abundant "matrix bound gEVs (gMVs)" in forming cartilaginous ECM, which are further preserved in acellular cECM (cACM) following mild, short-period decellularization. The results show that gMVs-cACM could be well anchored on polyglycerol sebacate microporous patch thus enforce the surgical suturability and mechanical strength. In rabbit tracheal defect, the gMVs-cACM patch induces rapid regeneration of vascularized ciliated columnar epithelium, which supports long-term survival of animals. gMVs-cACM treated groups exhibit proliferation of tracheal progenitors-basal epithelial cells, as well as, activation of JAK2/STAT1 pathway in reparative cells. This study departs from conventional focuses on tissue derived ECM and introduces a new approach for tracheal tissue regeneration.
Collapse
Affiliation(s)
- Tian Zeng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Anesthesiologyand Department of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
- Department of Anesthesiologythe 986th Air Force Hospital, Xijing hospitalthe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Pingping Yuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Lirong Liang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of AnesthesiologySchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Xinchi Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Hui Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of AnesthesiologySchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Wei Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
| |
Collapse
|
19
|
Chen S, Liu Y, Zhang Y, Wierbowski SD, Lipkin SM, Wei X, Yu H. A full-proteome, interaction-specific characterization of mutational hotspots across human cancers. Genome Res 2022; 32:135-149. [PMID: 34963661 PMCID: PMC8744679 DOI: 10.1101/gr.275437.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
Rapid accumulation of cancer genomic data has led to the identification of an increasing number of mutational hotspots with uncharacterized significance. Here we present a biologically informed computational framework that characterizes the functional relevance of all 1107 published mutational hotspots identified in approximately 25,000 tumor samples across 41 cancer types in the context of a human 3D interactome network, in which the interface of each interaction is mapped at residue resolution. Hotspots reside in network hub proteins and are enriched on protein interaction interfaces, suggesting that alteration of specific protein-protein interactions is critical for the oncogenicity of many hotspot mutations. Our framework enables, for the first time, systematic identification of specific protein interactions affected by hotspot mutations at the full proteome scale. Furthermore, by constructing a hotspot-affected network that connects all hotspot-affected interactions throughout the whole-human interactome, we uncover genome-wide relationships among hotspots and implicate novel cancer proteins that do not harbor hotspot mutations themselves. Moreover, applying our network-based framework to specific cancer types identifies clinically significant hotspots that can be used for prognosis and therapy targets. Overall, we show that our framework bridges the gap between the statistical significance of mutational hotspots and their biological and clinical significance in human cancers.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Yuan Liu
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Yingying Zhang
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Shayne D Wierbowski
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Steven M Lipkin
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Xiaomu Wei
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
20
|
Asgari A, Lesyk G, Poitras E, Govindasamy N, Terry K, To R, Back V, Rudzinski JK, Lewis JD, Jurasz P. Platelets stimulate programmed death-ligand 1 expression by cancer cells: Inhibition by anti-platelet drugs. J Thromb Haemost 2021; 19:2862-2872. [PMID: 34333838 DOI: 10.1111/jth.15478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelets facilitate hematogenous metastasis in part by promoting cancer cell immunoevasion, although our understanding of platelet function in modulating the adaptive immune system in cancer is limited. A major negative regulator of the adaptive response is the immune checkpoint protein Programmed Death Ligand 1 (PD-L1). OBJECTIVES As platelets secrete factors that may increase PD-L1 expression, we investigated whether they up-regulate cancer cell PD-L1, thus promoting immunoevasion, and whether common anti-platelet drugs inhibit this process. METHODS Platelets were isolated from human volunteers. A549 lung, PD-L1 null A549, and 786-O renal cancer cells were incubated with and without platelets, and cancer cell PD-L1 expression was measured by qPCR and flow cytometry. Additionally, platelet-cancer cell incubations were performed in the presence of common anti-platelet drugs, and with growth factor neutralizing antibodies. Following incubation with platelets, A549 were co-cultured with T-cells and interleukin-2 (IL-2) levels were measured by flow cytometry as a marker of T-cell activation. RESULTS Platelets increased PD-L1 mRNA and surface protein expression by A549 and 786-0 cells. Combined neutralization of VEGF and PDGF prevented the platelet-induced up-regulation of PD-L1 by A549, as did the anti-platelet drug eptifibatide. A549 incubated with platelets demonstrated a reduced ability to activate human T-cells, an effect reversed by eptifibatide. CONCLUSIONS As platelets promote immunoevasion of the adaptive immune response by increasing cancer cell PD-L1 expression and as anti-platelet drugs prevent this immunoevasive response, the investigation of anti-platelet drugs as adjuvant therapy to immune checkpoint inhibitors may be warranted in the treatment of cancer.
Collapse
Affiliation(s)
- Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Gabriela Lesyk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Erika Poitras
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Kara Terry
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel To
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Valentina Back
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jan K Rudzinski
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Identification of Specific Cell Subpopulations and Marker Genes in Ovarian Cancer Using Single-Cell RNA Sequencing. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1005793. [PMID: 34660776 PMCID: PMC8517627 DOI: 10.1155/2021/1005793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023]
Abstract
Objective Ovarian cancer is the deadliest gynaecological cancer globally. In our study, we aimed to analyze specific cell subpopulations and marker genes among ovarian cancer cells by single-cell RNA sequencing (RNA-seq). Methods Single-cell RNA-seq data of 66 high-grade serous ovarian cancer cells were employed from the Gene Expression Omnibus (GEO). Using the Seurat package, we performed quality control to remove cells with low quality. After normalization, we detected highly variable genes across the single cells. Then, principal component analysis (PCA) and cell clustering were performed. The marker genes in different cell clusters were detected. A total of 568 ovarian cancer samples and 8 normal ovarian samples were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes were identified according to ∣log2fold change (FC) | >1 and adjusted p value <0.05. To explore potential biological processes and pathways, functional enrichment analyses were performed. Furthermore, survival analyses of differentially expressed marker genes were performed. Results After normalization, 6000 highly variable genes were identified across the single cells. The cells were divided into 3 cell populations, including G1, G2M, and S cell cycles. A total of 1,124 differentially expressed genes were identified in ovarian cancer samples. These differentially expressed genes were enriched in several pathways associated with cancer, such as metabolic pathways, pathways in cancer, and PI3K-Akt signaling pathway. Furthermore, marker genes, STAT1, ANP32E, GPRC5A, and EGFL6, were highly expressed in ovarian cancer, while PMP22, FBXO21, and CYB5R3 were lowly expressed in ovarian cancer. These marker genes were positively associated with prognosis of ovarian cancer. Conclusion Our findings revealed specific cell subpopulations and marker genes in ovarian cancer using single-cell RNA-seq, which provided a novel insight into the heterogeneity of ovarian cancer.
Collapse
|
22
|
PD-L1 Dependent Immunogenic Landscape in Hot Lung Adenocarcinomas Identified by Transcriptome Analysis. Cancers (Basel) 2021; 13:cancers13184562. [PMID: 34572789 PMCID: PMC8469831 DOI: 10.3390/cancers13184562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Lung cancer, with non-small-cell lung cancer as its most common form, is the leading cause of cancer-related mortality and shows a poor prognosis. Despite recent advantages in the field of immunotherapy, there is still a great need for an improved understanding of PD-1/PD-L1 checkpoint blockade-responsive biology. Since immune cell infiltration is regarded as an important parameter in this field, we aimed to identify the immunogenic landscape in primary lung adenocarcinoma on the transcriptomic level in context with tumoral PD-L1 expression (positive vs. negative) and extent of immune infiltration (“hot” vs. “cold” phenotype). Our results reveal that genes that are related to the tumor microenvironment are differentially expressed based on tumoral PD-L1 expression indicating novel aspects of PD-L1 regulation, with potential biological relevance, as well as relevance for immunotherapy response stratification. Abstract Background: Lung cancer is the most frequent cause of cancer-related deaths worldwide. The clinical development of immune checkpoint blockade has dramatically changed the treatment paradigm for patients with lung cancer. Yet, an improved understanding of PD-1/PD-L1 checkpoint blockade-responsive biology is warranted. Methods: We aimed to identify the landscape of immune cell infiltration in primary lung adenocarcinoma (LUAD) in the context of tumoral PD-L1 expression and the extent of immune infiltration (“hot” vs. “cold” phenotype). The study comprises LUAD cases (n = 138) with “hot” (≥150 lymphocytes/HPF) and “cold” (<150 lymphocytes/HPF) tumor immune phenotype and positive (>50%) and negative (<1%) tumor PD-L1 expression, respectively. Tumor samples were immunohistochemically analyzed for expression of PD-L1, CD4, and CD8, and further investigated by transcriptome analysis. Results: Gene set enrichment analysis defined complement, IL-JAK-STAT signaling, KRAS signaling, inflammatory response, TNF-alpha signaling, interferon-gamma response, interferon-alpha response, and allograft rejection as significantly upregulated pathways in the PD-L1-positive hot subgroup. Additionally, we demonstrated that STAT1 is upregulated in the PD-L1-positive hot subgroup and KIT in the PD-L1-negative hot subgroup. Conclusion: The presented study illustrates novel aspects of PD-L1 regulation, with potential biological relevance, as well as relevance for immunotherapy response stratification.
Collapse
|
23
|
Yan W, Zhang B, Wang H, Mo R, Jiang X, Qin W, Ma L, Lin Z. Somatic frameshift mutation in PIK3CA causes CLOVES syndrome by provoking PI3K/AKT/mTOR pathway. Hereditas 2021; 158:18. [PMID: 34074347 PMCID: PMC8170820 DOI: 10.1186/s41065-021-00184-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/14/2021] [Indexed: 01/05/2023] Open
Abstract
Background CLOVES syndrome (OMIM# 612918) is a rare overgrowth disorder resulted from mosaic gain-of-function mutations in the PIK3CA gene. All the reported CLOVES-associated PIK3CA mutations are missense mutations affecting certain residues. We aim to investigate underlying mutation and its pathogenicity in a patient with CLOVES syndrome and to evaluate the inhibitory effects of the PI3K/AKT/mTOR pathway inhibitors. Results We performed whole-exome sequencing (WES) and Sanger sequencing to detect underlying somatic mutations in the skin lesion of the patient. Quantitative real-time PCR (qRT-PCR) was employed to evaluate the mRNA abundance of PIK3CA in the patient’s skin lesion. AKT phosphorylation level assessed by immunoblotting of lysates from transiently transfected cells was performed to evaluate the PIK3CA mutations and inhibitory effects of PI3K/AKT/mTOR pathway inhibitors. A somatic frameshift mutation c.3206_3207insG (p.X1069Trpfs*4) in PIK3CA was identified in the genomic DNA extracted from the vascular malformation sample of the patient. This mutation affects the canonical stop codon of PIK3CA (NM_006218.4) and is predicted to produce a prolonged protein with four additional residues. qRT-PCR demonstrated that the mRNA expression levels of the patient’s affected skin tissue were comparable compared to the normal control. In vitro studies revealed that p.X1069Trpfs*4 mutant exhibited increased AKT phosphorylation significantly to that of the wildtype, which could be inhibited by PI3K/AKT/mTOR pathway inhibitors. Conclusions We have identified the first frameshift mutation in PIK3CA that causes CLOVES syndrome, which was confirmed to overactive PI3K/AKT/mTOR pathway by transient transfection assays. We also provided more evidence of ARQ092 to be a potential therapeutic option for PROS in vitro.
Collapse
Affiliation(s)
- Wei Yan
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, 8 Xishiku St, Beijing, 100034, China
| | - Bin Zhang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nanlishi Road, Xicheng District, Beijing, 100045, China.,Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China
| | - Huijun Wang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, 8 Xishiku St, Beijing, 100034, China
| | - Ran Mo
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, 8 Xishiku St, Beijing, 100034, China
| | - Xingyuan Jiang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, 8 Xishiku St, Beijing, 100034, China
| | - Wen Qin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, 8 Xishiku St, Beijing, 100034, China
| | - Lin Ma
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nanlishi Road, Xicheng District, Beijing, 100045, China. .,Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China.
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, 8 Xishiku St, Beijing, 100034, China.
| |
Collapse
|
24
|
Li X, Wang F, Xu X, Zhang J, Xu G. The Dual Role of STAT1 in Ovarian Cancer: Insight Into Molecular Mechanisms and Application Potentials. Front Cell Dev Biol 2021; 9:636595. [PMID: 33834023 PMCID: PMC8021797 DOI: 10.3389/fcell.2021.636595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 01/06/2023] Open
Abstract
The signal transducer and activator of transcription 1 (STAT1) is a transducer protein and acts as a transcription factor but its role in ovarian cancer (OC) is not completely understood. Practically, there are two-faced effects of STAT1 on tumorigenesis in different kinds of cancers. Existing evidence reveals that STAT1 has both tumor-suppressing and tumor-promoting functions involved in angiogenesis, cell proliferation, migration, invasion, apoptosis, drug resistance, stemness, and immune responses mainly through interacting and regulating target genes at multiple levels. The canonical STAT1 signaling pathway shows that STAT1 is phosphorylated and activated by the receptor-activated kinases such as Janus kinase in response to interferon stimulation. The STAT1 signaling can also be crosstalk with other signaling such as transforming growth factor-β signaling involved in cancer cell behavior. OC is often diagnosed at an advanced stage due to symptomless or atypical symptoms and the lack of effective detection at an early stage. Furthermore, patients with OC often develop chemoresistance and recurrence. This review focuses on the multi-faced role of STAT1 and highlights the molecular mechanisms and biological functions of STAT1 in OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Gómez-Gil V. Therapeutic Implications of TGFβ in Cancer Treatment: A Systematic Review. Cancers (Basel) 2021; 13:379. [PMID: 33498521 PMCID: PMC7864190 DOI: 10.3390/cancers13030379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGFβ) is a pleiotropic cytokine that participates in a wide range of biological functions. The alterations in the expression levels of this factor, or the deregulation of its signaling cascade, can lead to different pathologies, including cancer. A great variety of therapeutic strategies targeting TGFβ, or the members included in its signaling pathway, are currently being researched in cancer treatment. However, the dual role of TGFβ, as a tumor suppressor or a tumor-promoter, together with its crosstalk with other signaling pathways, has hampered the development of safe and effective treatments aimed at halting the cancer progression. This systematic literature review aims to provide insight into the different approaches available to regulate TGFβ and/or the molecules involved in its synthesis, activation, or signaling, as a cancer treatment. The therapeutic strategies most commonly investigated include antisense oligonucleotides, which prevent TGFβ synthesis, to molecules that block the interaction between TGFβ and its signaling receptors, together with inhibitors of the TGFβ signaling cascade-effectors. The effectiveness and possible complications of the different potential therapies available are also discussed.
Collapse
Affiliation(s)
- Verónica Gómez-Gil
- Department of Biomedical Sciences (Area of Pharmacology), School of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
26
|
LncRNAs in Ovarian Cancer Progression, Metastasis, and Main Pathways: ceRNA and Alternative Mechanisms. Int J Mol Sci 2020; 21:ijms21228855. [PMID: 33238475 PMCID: PMC7700431 DOI: 10.3390/ijms21228855] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OvCa) develops asymptomatically until it reaches the advanced stages with metastasis, chemoresistance, and poor prognosis. Our review focuses on the analysis of regulatory long non-coding RNAs (lncRNAs) competing with protein-coding mRNAs for binding to miRNAs according to the model of competitive endogenous RNA (ceRNA) in OvCa. Analysis of publications showed that most lncRNAs acting as ceRNAs participate in OvCa progression: migration, invasion, epithelial-mesenchymal transition (EMT), and metastasis. More than 30 lncRNAs turned out to be predictors of survival and/or response to therapy in patients with OvCa. For a number of oncogenic (CCAT1, HOTAIR, NEAT1, and TUG1 among others) and some suppressive lncRNAs, several lncRNA/miRNA/mRNA axes were identified, which revealed various functions for each of them. Our review also considers examples of alternative mechanisms of actions for lncRNAs besides being ceRNAs, including binding directly to mRNA or protein, and some of them (DANCR, GAS5, MALAT1, and UCA1 among others) act by both mechanisms depending on the target protein. A systematic analysis based on the data from literature and Panther or KEGG (Kyoto Encyclopedia of Genes and Genomes) databases showed that a significant part of lncRNAs affects the key pathways involved in OvCa metastasis, EMT, and chemoresistance.
Collapse
|
27
|
Shang H, Zheng J, Tong J. Integrated analysis of transcriptomic and metabolomic data demonstrates the significant role of pyruvate carboxylase in the progression of ovarian cancer. Aging (Albany NY) 2020; 12:21874-21889. [PMID: 33177242 PMCID: PMC7695408 DOI: 10.18632/aging.104004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to explore prognosis-related biomarkers and underlying mechanisms during ovarian carcinoma progression and development. mRNA expression profiles and GSE49997 dataset were downloaded. Survival analyses were performed for genes with high expression levels. Expression level of candidate genes was explored in four ovarian cancer cells lines. Pyruvate carboxylase (PC) was found to be one of significantly differentially expressed gene (DEG). The role of PC knockdown was analyzed in SKOV cells using cell proliferation, flow cytometric, and Transwell migration and invasion assays. DEGs and metabolites in PC-shRNA (shPC)-treated samples vs. control groups were identified. PC was a prognosis-related gene and related to metabolic pathway. Knockdown of PC regulated cell proliferation, cell cycle progression, and migration and invasion of SKOV-3 cells. Transcriptome sequencing analyses showed STAT1 and TP53 gained higher degrees in PPI network. A total of 44 metabolites were identified. These DEGs and metabolites in PC samples were related with neuroactive ligands receptor interaction, glycine, serine and threonine metabolism, and ABC transporter pathways. PC may affect the tumor biology of ovarian cancer through the dysregulation of glycine, serine, and threonine metabolism, and ABC transporter pathways, as well as STAT1 and TP53 expression.
Collapse
Affiliation(s)
- Hongkai Shang
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| | - Jianfeng Zheng
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Jinyi Tong
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China.,Department of Gynecology, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
28
|
Liu F, Liu J, Zhang J, Shi J, Gui L, Xu G. Expression of STAT1 is positively correlated with PD-L1 in human ovarian cancer. Cancer Biol Ther 2020; 21:963-971. [PMID: 33043814 DOI: 10.1080/15384047.2020.1824479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) is related to the immune microenvironment of tumorigenesis. The programmed cell death 1 (PD-1) and its ligand (PD-L1) have been reported to be important in immunotherapy by mediating tumor immune evasion. Blocking the PD-1/PD-L1 pathway can restore the endogenous anti-tumor immune response. This study aimed to examine the expression of STAT1, PD-1, and PD-L1 and the correlation between selected markers in human epithelial ovarian cancer (EOC). The results showed that malignant tumors contained more STAT1, PD-1, and PD-L1 positive cells. The expression of STAT1 and PD-L1 was associated with age, whereas PD-1 and PD-L1 associated with histopathological type, in patients with ovarian tumors. Moreover, the expression of STAT1 was found to be associated with disease stages and the grade of serous carcinoma. STAT1 expression was higher in OC cells than normal ovarian surface epithelial cells and was positively correlated with PD-L1 expression. The knockdown of STAT1 decreased PD-L1 expression, whereas overexpression of STAT1 increased PD-L1 expression. Furthermore, the expression of STAT1, PD-1, and PD-L1 was lower in paclitaxel-resistant cells than sensitive cells. Finally, STAT1 affected the overall survival and progression-free survival of patients with EOC. These findings suggest that STAT1, PD-1, and PD-L1 are the tissue markers of EOC and imply the possibility that the high level of STAT1, PD-1, and PD-L1 may favor the checkpoint immunotherapy in patients with EOC, but may have a limit in paclitaxel-resistant patients because of the low expression of STAT1, PD-1, and PD-L1 in paclitaxel-resistant cells.
Collapse
Affiliation(s)
- Fangran Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University , Shanghai, P.R. China.,Department of Pathology, Jinshan Hospital, Fudan University , Shanghai, China
| | - Jiao Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University , Shanghai, P.R. China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University , Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University , Shanghai, China
| | - Jimin Shi
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University , Shanghai, P.R. China
| | - Lu Gui
- Department of Pathology, Jinshan Hospital, Fudan University , Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University , Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University , Shanghai, China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University , Shanghai, China
| |
Collapse
|
29
|
Ding H, Fan GL, Yi YX, Zhang W, Xiong XX, Mahgoub OK. Prognostic Implications of Immune-Related Genes' (IRGs) Signature Models in Cervical Cancer and Endometrial Cancer. Front Genet 2020; 11:725. [PMID: 32793281 PMCID: PMC7385326 DOI: 10.3389/fgene.2020.00725] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 01/30/2023] Open
Abstract
Cervical cancer and endometrial cancer remain serious threats to women's health. Even though some patients can be treated with surgery plus chemoradiotherapy as a conventional option, the overall efficacy is deemed unsatisfactory. As such, the development for new treatment approaches is truly necessary. In recent years, immunotherapy has been widely used in clinical practice and it is an area of great interest that researchers are keeping attention on. However, a thorough immune-related genes (IRGs) study for cervical cancer and endometrial cancer is still lacking. We therefore aim to make a comprehensive evaluation of IRGs through bioinformatics and large databases, and also investigate the relationship between the two types of cancer. We reviewed the transcriptome RNAs of IRGs and clinical data based on the TCGA database. Survival-associated IRGs in cervical/endometrial cancer were identified using univariable and multivariable Cox proportional-hazard regression analysis for developing an IRG signature model to evaluate the risk of patients. In the end, this model was validated based on the enrichment analyses through GO, KEGG, and GSEA pathways, Kaplan-Meier survival curve, ROC curves, and immune cell infiltration. Our results showed that out of 25/23 survival-associated IRGs for cervical/endometrial cancer, 13/12 warranted further examination by multivariate Cox proportional-hazard regression analysis and were selected to develop an IRGs signature model. As a result, enrichment analyses for high-risk groups indicated main enriched pathways were associated with tumor development and progression, and statistical differences were found between high-risk and low-risk groups as shown by Kaplan-Meier survival curve. This model could be used as an independent measure for risk assessment and was considered relevant to immune cell infiltration, but it had nothing to do with clinicopathological characteristics. In summary, based on comprehensive analysis, we obtained the IRGs signature model in cervical cancer (LTA, TFRC, TYK2, DLL4, CSK, JUND, NFATC4, SBDS, FLT1, IL17RD, IL3RA, SDC1, PLAU) and endometrial cancer (LTA, PSMC4, KAL1, TNF, SBDS, HDGF, LTB, HTR3E, NR2F1, NR3C1, PGR, CBLC), which can effectively evaluate the prognosis and risk of patients and provide justification in immunology for further researches.
Collapse
Affiliation(s)
- Hao Ding
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guan-Lan Fan
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue-Xiong Yi
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhang
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Xing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | | |
Collapse
|
30
|
Farmer SM, Andl CD. Computational modeling of transforming growth factor β and activin a receptor complex formation in the context of promiscuous signaling regulation. J Biomol Struct Dyn 2020; 39:5166-5181. [PMID: 32597324 DOI: 10.1080/07391102.2020.1785330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Transforming growth factor-beta (TGFβ) superfamily is a group of multipotent growth factors that control proliferation, quiescence and differentiation. Aberrant signal transduction and downstream target activation contribute to tumorigenesis and targeted therapy has therefore been considered a promising avenue. Using various modeling pipelines, we analyzed the structure-function relationship between ligand and receptor molecules of the TGFβ family. We further simulated the molecular docking of Galunisertib, a small molecule inhibitor targeting TGFβ signaling in cancer, which is currently undergoing FDA-approved clinical trials. We found that proprotein dimers of Activin isoforms differ at intrachain disulfide bonds, which support prior evidence of varying pro-domain stability and isoform preference. Further, mature proteins possess flexibility around conserved cystine knots to functionally interact with receptors or regulatory molecules in similar but distinct ways to TGFβ. We show that all Activin isoforms are capable of assuming a closed- or open-dimer state, revealing structural promiscuity of their open forms for receptor binding. We propose the first structural landscape for Activin receptor complexes containing a type I receptor (ACVR1B), which shares a pre-helix extension with TGFβ type I receptor (TGFβR1). Here, we artificially demonstrate that Activin can bind TGFβR1 in a TGFβ-like manner and that TGFβ1 can form signaling complexes with ACVR1B. Interestingly, Galunisertib was found to form stable inhibitory structures within the homologous kinase domains of both TGFβR1 and ACVR1B, thus halting receptor-promiscuous signaling. Overall, these observations highlight the challenges of specific TGFβ cascade targeting in the context of cancer therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Stephen M Farmer
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
31
|
Wang F, Zhang L, Liu J, Zhang J, Xu G. Highly expressed STAT1 contributes to the suppression of stemness properties in human paclitaxel-resistant ovarian cancer cells. Aging (Albany NY) 2020; 12:11042-11060. [PMID: 32516753 PMCID: PMC7346083 DOI: 10.18632/aging.103317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Signal transducer and activator of transcription-1 (STAT1) is an important factor in various cellular processes. The cancer stem cell (CSC) is considered as a tumor-initiating cell that drives the inner hierarchy in many cancers including epithelial ovarian cancer (EOC). Here, we explored for the first time the regulation of STAT1 on stemness properties in chemoresistant EOC cells. The paclitaxel (PTX)-resistant EOC cell line (OV3R-PTX) was derived from PTX-sensitive OVCAR-3 cells treated by the PTX regimen. A single cell clone OV3R-PTX-B4 was selected by fluorescence-activated cell sorting. PTX-resistant cells grew slowly in conventional 2D and 3D cultures, but tumor xenograft with PTX-resistant cells grew fast in nude mice. Interestingly, OV3R-PTX-B4 cells shared the characteristics of CSCs and stemness properties were found to be increased in the non-adherent spheroid culture system. The PTX-resistant cells had a high expression of CSC-related markers and low expression of STAT1 that had a high methylation level of CpG in its promoter region. Overexpressed STAT1 suppressed stemness properties, cell proliferation, and colony formation and favored the overall survival of patients with EOC. In summary, these data indicate a regulatory mechanism of STAT1 underlying drug resistance and provide a potential therapeutic application for EOC patients with PTX resistance.
Collapse
Affiliation(s)
- Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lingyun Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jiao Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| |
Collapse
|
32
|
Zhang J, Wang F, Liu F, Xu G. Predicting STAT1 as a prognostic marker in patients with solid cancer. Ther Adv Med Oncol 2020; 12:1758835920917558. [PMID: 32426049 PMCID: PMC7222261 DOI: 10.1177/1758835920917558] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Aberrant activities of signal transducer and activator of transcription 1 (STAT1) have been implicated in cancer development. However, the prognostic value of STAT1 remains unclear. This report identified the role of STAT1 in prognosis in patients with solid cancer through open literature and The Cancer Genome Atlas (TCGA) database. Methods: Published articles were obtained from PubMed, Web of Science, and Embase databases according to a search strategy up to October 2019. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were extracted to assess the prognostic factors of patients. TCGA datasets were used to explore the prognostic value of STAT1 in various cancers. Results: A total of 15 studies incorporating 2839 patients with solid cancers were included. Pooled data showed that overexpressed STAT1 favored long overall survival (OS) (HR = 0.604, 95% CI = 0.431–0.846, p = 0.003) and disease-specific survival (DSS) (HR = 0.650, 95% CI = 0.512–0.825, p = 0.000). In subgroup analyses, highly expressed STAT1 was correlated with long OS of patients with high-grade serous ovarian cancer and oral squamous cell carcinoma. Data extracted from TCGA datasets unveiled that STAT1 expression was significantly higher in 12 cancers (e.g. bladder and breast) than their adjacent normal tissues. Again, highly expressed STAT1 favored long OS of patients with ovarian cancer as well as rectum adenocarcinoma, sarcoma, and skin cutaneous melanoma. However, in renal carcinoma, brain lower grade glioma, lung adenocarcinoma, and pancreatic cancer, highly expressed STAT1 was correlated with poor OS of patients. Particularly in renal carcinoma, increased STAT1 expression was associated with high grade, later stage, large tumor size, and lymph node and distant metastasis. Conclusion: STAT1 has been identified to have prognostic value in patients with solid cancer. Highly expressed STAT1 may predict prognosis in cancer patients based on their tumor types.
Collapse
Affiliation(s)
- Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fangran Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, P.R. China
| |
Collapse
|
33
|
Pan F, Wang Q, Li S, Huang R, Wang X, Liao X, Mo H, Zhang L, Zhou X. Prognostic value of key genes of the JAK-STAT signaling pathway in patients with cutaneous melanoma. Oncol Lett 2020; 19:1928-1946. [PMID: 32194688 PMCID: PMC7039088 DOI: 10.3892/ol.2020.11287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway is involved in cell immunity, division and death, as well as in tumor formation. The expression of key genes in the JAK-STAT signaling pathway in different types of cancer serves different roles. However, few reports are available on the prognostic value of the genes of the JAK-STAT signaling pathway in skin cutaneous melanoma (SKCM). The potential prognostic value of gene expression in the JAK-STAT signaling pathway in patients with SKCM was analyzed in the present study using data obtained from The Cancer Genome Atlas. To predict the potential functions and mechanisms of these genes in SKCM, gene set enrichment analysis (GSEA) and bioinformatics analysis were performed. A nomogram model including gene expression level and high risk factors was used to predict the risk level of prognostic. High expression levels of STAT1, STAT3, STAT4 and STAT5B, and low expression levels of STAT6 were associated with favorable prognosis [adjusted P<0.001; hazard ratio (HR), 0.595; 95% confidence interval (CI), 0.455–0.778; adjusted P=0.018; HR, 0.725; 95% CI, 0.555–0.947; adjusted P<0.001; HR, 0.590; 95% CI, 0.450–0.773; adjusted P=0.007; HR, 0.690; 95% CI, 0.526–0.940; and adjusted P=0.026; HR, 0.737, 95% CI, 0.563–0.964, respectively]. GSEA results demonstrated that these genes were involved in cell differentiation, invasion, adhesion, migration, cycle, colony formation and mitogen-activated protein kinase signaling. The combination of genes with favorable prognosis had a better effect on the overall survival (univariate survival analysis, P<0.05). The results of the present study suggest that STAT1, STAT3, STAT4, STAT5B and STAT6 gene expression may be used as a potential prognostic biomarker of SKCM, and the combined outcomes may exhibit a stronger interaction and higher survival time for SKCM.
Collapse
Affiliation(s)
- Fuqiang Pan
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Qiaoqi Wang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Sizhu Li
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Haiyan Mo
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Liming Zhang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Xiang Zhou
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530000, P.R. China
| |
Collapse
|
34
|
Transforming growth factor β1 promotes fibroblast-like synoviocytes migration and invasion via TGF-β1/Smad signaling in rheumatoid arthritis. Mol Cell Biochem 2019; 459:141-150. [DOI: 10.1007/s11010-019-03557-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/16/2019] [Indexed: 01/17/2023]
|
35
|
Zare H, Shafabakhsh R, Reiter RJ, Asemi Z. Melatonin is a potential inhibitor of ovarian cancer: molecular aspects. J Ovarian Res 2019; 12:26. [PMID: 30914056 PMCID: PMC6434863 DOI: 10.1186/s13048-019-0502-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is one of the most common causes of morbidity related to gynecologic malignancies. Possible risk factors are including hereditary ovarian cancer, obesity, diabetes mellitus, alcohol consumption, aging, and smoking. Various molecular signaling pathways including inflammation, oxidative stress, apoptosis and angiogenesis are involved in this progression of ovarian cancer. Standard treatments for recently diagnosed patients are Surgery and chemotherapy such as co-treatment with other drugs such that the exploitation of neoadjuvant chemotherapy is expanding. Melatonin (N-acetyl-5-methoxy-tryptamine), an endogenous agent secreted from the pineal gland, has anti-carcinogenic features, such as regulation of estradiol production, cell cycle modulation, stimulation of apoptosis as well as anti-angiogenetic properties, anti-inflammatory activities, significant antioxidant effects and modulation of various immune system cells and cytokines. Multiple studies have shown the significant beneficial roles of melatonin in various types of cancers including ovarian cancer. This paper aims to shed light on the roles of melatonin in ovarian cancer treatment from the standpoint of the molecular aspects.
Collapse
Affiliation(s)
- Hadis Zare
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science, Center, San Antonio, TX, USA
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| |
Collapse
|
36
|
Ahmadi A, Najafi M, Farhood B, Mortezaee K. Transforming growth factor-β signaling: Tumorigenesis and targeting for cancer therapy. J Cell Physiol 2018; 234:12173-12187. [PMID: 30537043 DOI: 10.1002/jcp.27955] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
Transforming growth factor (TGF)-β is a multitasking cytokine such that its aberrant expression is related to cancer progression and metastasis. TGF-β is produced by a variety of cells within the tumor microenvironment (TME), and it is responsible for regulation of the activity of cells within this milieu. TGF-β is a main inducer of epithelial-mesenchymal transition (EMT), immune evasion, and metastasis during cancer progression. TGF-β exerts most of its functions by acting on TβRI and TβRII receptors in canonical (Smad-dependent) or noncanonical (Smad-independent) pathways. Members of mitogen-activated protein kinase, phosphatidylinositol 3-kinase/protein kinase B, and nuclear factor κβ are involved in the non-Smad TGF-β pathway. TGF-β acts by complex signaling, and deletion in one of the effectors in this pathway may influence the outcome in a diverse way by taking even an antitumor role. The stage and the type of tumor (contextual cues from cancer cells and/or the TME) and the concentration of TGF-β are other important factors determining the fate of cancer (progression or repression). There are a number of ways for targeting TGF-β signaling in cancer, among them the special focus is on TβRII suppression.
Collapse
Affiliation(s)
- Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|