1
|
Hao J, Fan W, Li Y, Tang R, Tian C, Yang Q, Zhu T, Diao C, Hu S, Chen M, Guo P, Long Q, Zhang C, Qin G, Yu W, Chen M, Li L, Qin L, Wang J, Zhang X, Ren Y, Zhou P, Zou L, Jiang K, Guo W, Deng W. Correction: Melatonin synergizes BRAF-targeting agent vemurafenib in melanoma treatment by inhibiting iNOS/hTERT signaling and cancer-stem cell traits. J Exp Clin Cancer Res 2024; 43:178. [PMID: 38926774 PMCID: PMC11201031 DOI: 10.1186/s13046-024-03104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Affiliation(s)
- Jiaojiao Hao
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenhua Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Yizhuo Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Ranran Tang
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunfang Tian
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Yang
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tianhua Zhu
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chaoliang Diao
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Manyu Chen
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Long
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Changlin Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Ge Qin
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Wendan Yu
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miao Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Liren Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Lijun Qin
- Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingshu Wang
- Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | | | - Penghui Zhou
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Lijuan Zou
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kui Jiang
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Wei Guo
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Centre, Guangzhou, China.
| |
Collapse
|
2
|
Zhao Q, Gu N, Li Y, Wu X, Ouyang Q, Deng L, Ma H, Zhu Y, Fang F, Ye H, Wu K. Self-assembled gel microneedle formed by MS deep eutectic solvent as a transdermal delivery system for hyperpigmentation treatment. Mater Today Bio 2024; 26:101090. [PMID: 38800564 PMCID: PMC11127278 DOI: 10.1016/j.mtbio.2024.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Hyperpigmentation (HP) is an unfavorable skin disease that typically caused by injury, inflammation, or photoaging and leads to numerous physical and psychological issues in patients. Recently, development and application of natural whitening substances, particularly compound curcumin (CUR), is one of the most prevalent treatments for HP. However, it is still a formidable challenge to improve the percutaneous delivery of CUR due to its inadequate solubility in water and excellent barrier function of skin. To overcome the limitations of conventional delivery and increase the percutaneous absorption of CUR, the efficient delivery of CUR is urgently required. Herein, we developed a new malic acid-sorbitol deep eutectic solvent (MS/DES) gel microneedle loaded with CUR as a transdermal delivery system for HP treatment. The MS/DES gel produces three-dimensional (3D) network structure by self-assembly of hydrogen bond interactions, which conferred the CUR-MS/DES-GMN with sufficient mechanical properties to successfully penetrate skin tissue while also helping to enhance the drug's release rate. The CUR-MS/DES-GMN exhibit high biocompatibility and mechanical property in vivo of mice. The zebrafish experiments also show that CUR-MS/DES gel has significant effect of anti-pigmentation. Therefore, the designed CUR-MS/DES-GMN system provides a novel strategy for HP treatment based on self-assembly of naturally molecules.
Collapse
Affiliation(s)
- Qi Zhao
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Na Gu
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Yier Li
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Xia Wu
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Qianqian Ouyang
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Luming Deng
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Hui Ma
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Yuzhen Zhu
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Fang Fang
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
| | - Hua Ye
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Kefeng Wu
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| |
Collapse
|
3
|
Lin X, Qureshi MZ, Tahir F, Yilmaz S, Romero MA, Attar R, Farooqi AA. Role of melatonin in carcinogenesis and metastasis: From mechanistic insights to intermeshed networks of noncoding RNAs. Cell Biochem Funct 2024; 42:e3995. [PMID: 38751103 DOI: 10.1002/cbf.3995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 05/26/2024]
Abstract
In recent years, seminal studies have been devoted to unraveling the puzzling mysteries associated with the cancer preventive/inhibitory role of melatonin. Our current knowledge of the translational mechanisms and the detailed structural insights have highlighted the characteristically exclusive role of melatonin in the inhibition of carcinogenesis and metastatic dissemination. This mini-review outlines recent discoveries related to mechanistic role of melatonin in prevention of carcinogenesis and metastasis. Moreover, another exciting facet of this mini-review is related to phenomenal breakthroughs linked with regulation of noncoding RNAs by melatonin in wide variety of cancers.
Collapse
Affiliation(s)
- Xiukun Lin
- College of Marine Sciences, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Muhammad Zahid Qureshi
- Department of Environment and Natural Resources, College of Agriculture and Food, Qassim University, Buraidah, Saudi Arabia
| | - Fatima Tahir
- Rashid Latif Medical University, Lahore, Pakistan
| | - Seher Yilmaz
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Mirna Azalea Romero
- Facultad de Medicina, Universidad Autónoma de Guerrero, Laboratorio de Investigación Clínica, Acapulco, Guerrero, México
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University Hospital, Istanbul, Turkey
| | - Ammad A Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
4
|
Dehghanzad M, Mohammadi M, Nejati M, Pouremamali F, Maroufi NF, Akbarzadeh M, Samadi N, Nouri M. The potential therapeutic effect of melatonin in oxaliplatin combination therapy against chemoresistant colorectal cancer cells. Mol Biol Rep 2024; 51:348. [PMID: 38401018 DOI: 10.1007/s11033-024-09316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/02/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Oxaliplatin is one of the main therapeutics in colorectal cancer (CRC) chemotherapy. However, in light of multidrug resistance (MDR) phenotype development, the efficacy of oxaliplatin has decreased. This study aimed to assess the potential therapeutic effect of melatonin in oxaliplatin combination therapy for drug-resistant colorectal cancer cells. METHODS AND RESULTS Initially, the oxaliplatin-resistant cell line was created of LS174T (LS174T/DR) by using the oxaliplatin IC50 concentration and resting cycles. MTT assays and flow cytometry were applied for assessing cell viability and apoptotic cells. The mRNA expression level of Bax, Bcl2, MT1, MT2, and ABCB1 as well as protein levels of ABCB1, Bcl2, BAX were measured by the qRT-PCR and western blot techniques respectively. P-gp activity was assessed by Rho123 staining. The IC50 concentration of oxaliplatin in resistant cells was increased from 500.7 ± 0.2 nM to 7119 ± 0.1 nM. Bcl2, MT1, MT2, and ABCB1 mRNA plus protein expression levels of Bcl2 and ABCB1 were significantly reduced in resistant cells, along with a marked increase in Bax mRNA and protein levels compared to parental cells. Rho 123 staining revealed a marked reduction in P-gp activities in the combination-treated group compared to the oxaliplatin-treated group. CONCLUSIONS The results of cytotoxicity assays, MTT, and flow cytometry revealed that the combination of melatonin and oxaliplatin exerts synergistic effects on induction of oxaliplatin's cytotoxicity in CRC. Our research suggests that combining the treatments of melatonin and oxaliplatin may be considered as a new approach to overcoming oxaliplatin resistance in CRC patients.
Collapse
Affiliation(s)
- Masoumeh Dehghanzad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran
| | - Mohammad Mohammadi
- Department of Medical Laboratory Science, Faculty of Medicine, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Mohaddeseh Nejati
- Department of Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farhad Pouremamali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran
- Department of Human Genetics, McGill University, Montreal, Canada
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Canada
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Naser Samadi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran
| | - Mohammad Nouri
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran.
| |
Collapse
|
5
|
Yi YJ, Tang H, Pi PL, Zhang HW, Du SY, Ge WY, Dai Q, Zhao ZY, Li J, Sun Z. Melatonin in cancer biology: pathways, derivatives, and the promise of targeted delivery. Drug Metab Rev 2024; 56:62-79. [PMID: 38226647 DOI: 10.1080/03602532.2024.2305764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Melatonin, historically recognized for its primary role in regulating circadian rhythms, has expanded its influence particularly due to its wide range of biological activities. It has firmly established itself in cancer research. To highlight its versatility, we delved into how melatonin interacts with key signaling pathways, such as the Wnt/β-Catenin, PI3K, and NF-κB pathways, which play foundational roles in tumor development and progression. Notably, melatonin can intricately modulate these pathways, potentially affecting various cellular functions such as apoptosis, metastasis, and immunity. Additionally, a comprehensive review of current clinical studies provides a dual perspective. These studies confirm melatonin's potential in cancer management but also underscore its inherent limitations, particularly its limited bioavailability, which often relegates it to a supplementary role in treatments. Despite this limitation, there is an ongoing quest for innovative solutions and current advancements include the development of melatonin derivatives and cutting-edge delivery systems. By synthesizing the past, present, and future, this review provides a detailed overview of melatonin's evolving role in oncology, positioning it as a potential cornerstone in future cancer therapeutics.
Collapse
Affiliation(s)
- Yu-Juan Yi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hong Tang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peng-Lai Pi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | | | - Si-Yu Du
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wei-Ye Ge
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qi Dai
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zi-Yan Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jia Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zheng Sun
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Li L, Lin M, Luo J, Sun H, Zhang Z, Lin D, Chen L, Feng S, Lin X, Zhou R, Song J. Loss of keratin 23 enhances growth inhibitory effect of melatonin in gastric cancer. Mol Med Rep 2024; 29:22. [PMID: 38099343 PMCID: PMC10784722 DOI: 10.3892/mmr.2023.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
To investigate the effect of keratin 23 (KRT23) on the anticancer activity of melatonin (MLT) against gastric cancer (GC) cells, microarray analysis was applied to screen differentially expressed genes in AGS GC cells following MLT treatment. Western blotting was used to detect the expression of KRT23 in GC cells and normal gastric epithelial cell line GES‑1. KRT23 knockout was achieved by CRISPR/Cas9. Assays of cell viability, colony formation, cell cycle, electric cell‑substrate impedance sensing and western blotting were conducted to reveal the biological functions of KRT23‑knockout cells without or with MLT treatment. Genes downregulated by MLT were enriched in purine metabolism, pyrimidine metabolism, genetic information processing and cell cycle pathway. Expression levels of KRT23 were downregulated by MLT treatment. Expression levels of KRT23 in AGS and SNU‑216 GC cell lines were significantly higher compared with normal gastric epithelial cell line GES‑1. KRT23 knockout led to reduced phosphorylation of ERK1/2 and p38, arrest of the cell cycle and inhibition of GC cell proliferation. Moreover, KRT23 knockout further enhanced the inhibitory activity of MLT on the tumor cell proliferation by inhibiting the phosphorylation of p38/ERK. KRT23 knockout contributes to the antitumor effects of MLT in GC via suppressing p38/ERK phosphorylation. In the future, KRT23 might be a potential prognostic biomarker and a novel molecular target for GC.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Meifang Lin
- Department of Pathology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jianhua Luo
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Huaqin Sun
- Center of Translational Hematology, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhiguang Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Dacen Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Lushan Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Sisi Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Xiuping Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Ruixiang Zhou
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Histology and Embryology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jun Song
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
7
|
Liao Y, Li R, Pei J, Zhang J, Chen B, Dong H, Feng X, Zhang H, Shang Y, Sui L, Kong Y. Melatonin suppresses tumor proliferation and metastasis by targeting GATA2 in endometrial cancer. J Pineal Res 2024; 76:e12918. [PMID: 37814536 DOI: 10.1111/jpi.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Endometrial cancer (EC) is a reproductive system disease that occurs in perimenopausal and postmenopausal women. However, its etiology is unclear. Melatonin (MT) has been identified as a therapeutic agent for EC; however, its exact mechanism remains unclear. In the present study, we determined that GATA-binding protein 2 (GATA2) is expressed at low levels in EC and regulated by MT. MT upregulates the expression of GATA2 through MT receptor 1A (MTNR1A), whereas GATA2 can promote the expression of MTNR1A by binding to its promoter region. In addition, in vivo and in vitro experiments showed that MT inhibited the proliferation and metastasis of EC cells by upregulating GATA2 expression. The protein kinase B (AKT) pathway was also affected. In conclusion, these findings suggest that MT and GATA2 play significant roles in EC development.
Collapse
Affiliation(s)
- Yangyou Liao
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ruiling Li
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jingyuan Pei
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Juan Zhang
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bo Chen
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haojie Dong
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaoyu Feng
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hongshuo Zhang
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yuhong Shang
- Department of Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Linlin Sui
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Kong
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Mousavi SM, Etemad L, Yari D, Hashemi M, Salmasi Z. Evaluation of Melatonin and its Nanostructures Effects on Skin Disorders Focused on Wound Healing. Mini Rev Med Chem 2024; 24:1856-1881. [PMID: 38685805 DOI: 10.2174/0113895575299255240422055203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
Skin is the largest organ of the human body functioning as a great primitive defensive barrier against different harmful environmental factors. However, it is damaged through varying injuries such as different wounds, burns, and skin cancers that cause disruption in internal organs and essential mechanisms of the body through inflammation, oxidation, coagulation problems, infection, etc. Melatonin is the major hormone of the pineal gland that is also effective in skin disorders due to strong antioxidant and anti-inflammatory features with additional desirable antiapoptotic, anti-cancer, and antibiotic properties. However, melatonin characteristics require improvements due to its limited water solubility, halflife and stability. The application of nanocarrier systems can improve its solubility, permeability, and efficiency, as well as inhibit its degradation and promote photostability. Our main purpose in the current review is to explore the possible role of melatonin and melatonin-containing nanocarriers in skin disorders focused on wounds. Additionally, melatonin's effect in regenerative medicine and its structures as a wound dressing in skin damage has been considered.
Collapse
Affiliation(s)
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davood Yari
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Zhang S, Yao X. Mechanism of action and promising clinical application of melatonin from a dermatological perspective. J Transl Autoimmun 2023; 6:100192. [PMID: 36860771 PMCID: PMC9969269 DOI: 10.1016/j.jtauto.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/28/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Melatonin is the main neuroendocrine product in the pineal gland. Melatonin can regulate circadian rhythm-related physiological processes. Evidence indicates an important role of melatonin in hair follicles, skin, and gut. There appears to be a close association between melatonin and skin disorders. In this review, we focus on the latest research of the biochemical activities of melatonin (especially in the skin) and its promising clinical applications.
Collapse
Key Words
- 5HT, Serotonin
- AAD, Aromatic amino acid decarboxylase
- AANAT/NAT, serotonin-N-acetyltransferase(s)
- Anti-Inflammation
- Antioxidation
- CAT, catalase
- COX-2, Cyclooxygenase-2
- CYP450, cytochrome P450
- Casp-1/3, caspase 1/3
- DNCB, 2,4-dinitrochlorobenzene
- GPx, Glutathione peroxidase
- GSH, Glutathione
- HIOMT, 4-hydroxyindole-O-methyl transferase
- HO-1, heme oxygenase-1
- HSP 70, Heat Shock Protein 70
- IKK-α, IkB kinase-α
- IL-1β, interleukin-1 β
- IL-6, interleukin- 6
- IkB, NF-κ-B inhibitor
- Immunoregulation
- MT, Melatonin
- MT1/2, Melatonin receptor
- Melatonin
- NF-κB, Nuclear factor kappa-B
- NQO1, NAD(P), quinone oxidoreductase 1
- NQO2, NRH, Quinone oxidoreductase 2
- Nrf2, Nuclear erythroid 2-related factor
- Oncostatic mechanism
- PEPT1/2, oligopeptide transporter 1/2
- RNS, Reactive nitrogen species
- ROS, Reactive oxygen species
- RZR-α, Retinoid Z receptor α
- SOD, superoxide dismutase
- Skin barrier
- TPH, tryptophan5-hydroxylase enzymes, including dominant TPH1 and TPH2
- Trp, Tryptophan
- iNOS, Inducible nitric oxide synthase
- γ-GCS, c-glutamylcysteine synthetase
Collapse
Affiliation(s)
| | - Xu Yao
- Corresponding author. Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
10
|
Pathipaka R, Thyagarajan A, Sahu RP. Melatonin as a Repurposed Drug for Melanoma Treatment. Med Sci (Basel) 2023; 11:medsci11010009. [PMID: 36649046 PMCID: PMC9844458 DOI: 10.3390/medsci11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer, with a greater risk of metastasis and a higher prevalence and mortality rate. This cancer type has been demonstrated to develop resistance to the known treatment options such as conventional therapeutic agents and targeted therapy that are currently being used as the standard of care. Drug repurposing has been explored as a potential alternative treatment strategy against disease pathophysiologies, including melanoma. To that end, multiple studies have suggested that melatonin produced by the pineal gland possesses anti-proliferative and oncostatic effects in experimental melanoma models. The anticarcinogenic activity of melatonin is attributed to its ability to target a variety of oncogenic signaling pathways, including the MAPK pathways which are involved in regulating the behavior of cancer cells, including cell survival and proliferation. Additionally, preclinical studies have demonstrated that melatonin in combination with chemotherapeutic agents exerts synergistic effects against melanoma. The goal of this review is to highlight the mechanistic insights of melatonin as a monotherapy or combinational therapy for melanoma treatment.
Collapse
|
11
|
Steinhoff M, Alam M, Ahmad A, Uddin S, Buddenkotte J. Targeting oncogenic transcription factors in skin malignancies: An update on cancer stemness and therapeutic outcomes. Semin Cancer Biol 2022; 87:98-116. [PMID: 36372325 DOI: 10.1016/j.semcancer.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.
Collapse
Affiliation(s)
- Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
12
|
Targhazeh N, Hutt KJ, Winship AL, Reiter R, Yousefi B. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022; 202:71-84. [PMID: 36116742 DOI: 10.1016/j.biochi.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.
Collapse
Affiliation(s)
- Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Russel Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Liu Y, Weng X, Wei M, Yu S, Ding Y, Cheng B. Melatonin alleviates the immune response and improves salivary gland function in primary Sjögren's syndrome. Biochem Pharmacol 2022; 201:115073. [PMID: 35525327 DOI: 10.1016/j.bcp.2022.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that primarily affects exocrine glands and is characterized by sicca syndrome and systemic manifestation. Mounting evidence indicates that circadian clocks are involved in the onset and progression of autoimmune diseases, including rheumatic arthritis, multiple sclerosis, and systemic lupus erythematosus. However, few studies have reported the expression of clock genes in pSS. There is no ideal therapeuticmethod for pSS, the management of pSS is mainly palliative, aims to alleviate sicca symptoms. Melatonin is a neuroendocrine hormone mainly secreted by the pineal gland that plays an important role in the maintenance of the circadian rhythm and immunomodulation. Hence, this study aimed to analyse the circadian expression profile of clock genes in pSS, and further evaluate the therapeutic potential of melatonin in pSS. We discovered a distinct clock gene expression profile in an animal model and in patients with pSS. More importantly, melatonin administration regulated clock gene expression, improved the hypofunction of the salivary glands, and inhibited inflammatory development in animal model of pSS. Our study suggested that the pathogenesis of pSS might correlate with abnormal expression of circadian genes, and that melatonin might be a potential candidate for prevention and treatment of pSS.
Collapse
Affiliation(s)
- Yi Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Xiuhong Weng
- Department of Stomatology, Zhongnan Hospital of Wuhan University
| | - Mingbo Wei
- Department of Stomatology, Zhongnan Hospital of Wuhan University
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University.
| |
Collapse
|
14
|
Wang L, Wang C, Choi WS. Use of Melatonin in Cancer Treatment: Where Are We? Int J Mol Sci 2022; 23:ijms23073779. [PMID: 35409137 PMCID: PMC8998229 DOI: 10.3390/ijms23073779] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer represents a large group of diseases accounting for nearly 10 million deaths each year. Various treatment strategies, including surgical resection combined with chemotherapy, radiotherapy, and immunotherapy, have been applied for cancer treatment. However, the outcomes remain largely unsatisfying. Melatonin, as an endogenous hormone, is associated with the circadian rhythm moderation. Many physiological functions of melatonin besides sleep–wake cycle control have been identified, such as antioxidant, immunomodulation, and anti-inflammation. In recent years, an increasing number of studies have described the anticancer effects of melatonin. This has drawn our attention to the potential usage of melatonin for cancer treatment in the clinical setting, although huge obstacles still exist before its wide clinical administration is accepted. The exact mechanisms behind its anticancer effects remain unclear, and the specific characters impede its in vivo investigation. In this review, we will summarize the latest advances in melatonin studies, including its chemical properties, the possible mechanisms for its anticancer effects, and the ongoing clinical trials. Importantly, challenges for the clinical application of melatonin will be discussed, accompanied with our perspectives on its future development. Finally, obstacles and perspectives of using melatonin for cancer treatment will be proposed. The present article will provide a comprehensive foundation for applying melatonin as a preventive and therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Leilei Wang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
| | - Chuan Wang
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
| | - Wing Shan Choi
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
- Correspondence: ; Tel.: +852-28590266
| |
Collapse
|
15
|
Sun Q, Zhang J, Li X, Yang G, Cheng S, Guo D, Zhang Q, Sun F, Zhao F, Yang D, Wang S, Wang T, Liu S, Zou L, Zhang Y, Liu H. The ubiquitin-specific protease 8 antagonizes melatonin-induced endocytic degradation of MT1 receptor to promote lung adenocarcinoma growth. J Adv Res 2022; 41:1-12. [PMID: 36328739 PMCID: PMC9637587 DOI: 10.1016/j.jare.2022.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Melatonin can induce the downregulation of the MT1 receptor. MT1 receptor internalization incurred by melatonin follows the canonical endolysosomal pathway. The ubiquitin-specific protease 8 antagonizes the endocytic degradation of the MT1 receptor. The suppression of ubiquitin-specific protease 8 potentiates the cancer-inhibitory effects of melatonin in vitro. Combination of USP8 inhibition and melatonin treatment effectively deters tumor growth in xenograft mouse models.
Introduction The human genome encodes two melatonin receptors (MT1 and MT2) that relay melatonin signals to cellular interior. Accumulating evidence has linked melatonin to multiple health benefits, among which its anticancer effects have become well-established. However, the implications of its receptors in lung adenocarcinoma have so far remained incompletely understood. Objectives This study aims to investigate the response of the MT1 receptor to melatonin treatment and its dynamic regulation by ubiquitin-specific protease 8 (USP8) in lung adenocarcinoma. Methods The mRNA levels of MT1 and MT2 receptors were analyzed with sequencing data. The expression and localization of the MT1 receptor with melatonin treatment were investigated by immunoblotting, immunofluorescence and confocal microscopy assays. Endocytic deubiquitylases were screened to identify MT1 association. The effects of USP8 were assessed with shRNA-mediated knockdown and small molecule inhibitor. The combined efficacy of melatonin and USP8 suppression was also evaluated using xenograft animal models. Results Bioinformatic analysis revealed increased expression of the MT1 receptor in lung adenocarcinoma tissues. Melatonin treatment leads to the downregulation of the MT1 receptor in lung adenocarcinoma cells, which is attributed to receptor endocytosis and lysosomal degradation via the canonical endo-lysosomal route. USP8 negatively regulates the endocytic degradation of the MT1 receptor incurred by melatonin exposure and thus protects lung adenocarcinoma cell growth. USP8 suppression by knockdown or pharmacological inhibition effectively deters cancer cell proliferation and sensitizes lung adenocarcinoma cells to melatonin in vitro. Furthermore, USP8 silencing significantly potentiates the anticancer effects of melatonin in xenograft tumor models. Conclusion The MT1 receptor responds to melatonin treatment and is endocytosed for lysosomal degradation that is counteracted by USP8. The inhibition of USP8 demonstrates tumor-suppressive effects and thus can be exploited as potential therapeutic strategy either as monotherapy or combined therapy with melatonin.
Collapse
|
16
|
Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166281. [PMID: 34610472 DOI: 10.1016/j.bbadis.2021.166281] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/24/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. The occurrence and development of CRC are complicated processes. Obesity and dysbacteriosis have been increasingly regarded as the main risk factors for CRC. Understanding the etiology of CRC from multiple perspectives is conducive to screening for some potential drugs or new treatment strategies to limit the serious side effects of conventional treatment and prolong the survival of CRC patients. Melatonin, a natural indoleamine, is mainly produced by the pineal gland, but it is also abundant in other tissues, including the gastrointestinal tract, retina, testes, lymphocytes, and Harder's glands. Melatonin could participate in lipid metabolism by regulating adipogenesis and lipolysis. Additionally, many studies have focused on the potential beneficial effects of melatonin in CRC, such as promotion of apoptosis; inhibition of cell proliferation, migration, and invasion; antioxidant activity; and immune regulation. Meaningfully, gut microbiota is the main determinant of all aspects of health and disease (including obesity and tumorigenesis). The gut microbiota is of great significance for understanding the relationship between obesity and increased risk of CRC. Although the current understanding of how the melatonin-mediated gut microbiota coordinates a variety of physiological and pathological activities is fairly comprehensive, there are still many unknown topics to be explored in the face of a complex nutritional status and a changeable microbiota. This review summarizes the potential links among melatonin, lipid metabolism, gut microbiota, and CRC to promote the development of melatonin as a preventive and therapeutic agent for CRC.
Collapse
|
17
|
Tarazón E, de Unamuno Bustos B, Murria Estal R, Pérez Simó G, Sahuquillo Torralba A, Simarro J, Palanca Suela S, Botella Estrada R. MiR-138-5p Suppresses Cell Growth and Migration in Melanoma by Targeting Telomerase Reverse Transcriptase. Genes (Basel) 2021; 12:genes12121931. [PMID: 34946880 PMCID: PMC8701232 DOI: 10.3390/genes12121931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
Recent evidence suggests the existence of a miRNA regulatory network involving human telomerase reverse transcriptase gene (hTERT), with miR-138-5p playing a central role in many types of cancers. However, little is known about the regulation of hTERT expression by microRNA (miRNAs) in melanocytic tumors. Here, we investigated the effects of miR-138-5p in hTERT regulation in melanoma cells lines. In vitro studies demonstrated higher miR-138-5p and lower hTERT messenger RNA (mRNA) expression in human epidermal melanocytes, compared with melanoma cell lines (A2058, A375, SK-MEL-28) by quantitative polymerase chain reaction (qPCR) observing a negative correlation between them. A2058 melanoma cells were selected to be transfected with miR-138-5p mimic or inhibitor. Using luciferase assay, hTERT was identified as a direct target of this miRNA. Overexpression of miR-138-5p detected by Western blot revealed a decrease in hTERT protein expression (p = 0.012), and qPCR showed a reduction in telomerase activity (p < 0.001). Moreover, suppressions in cell growth (p = 0.035) and migration abilities (p = 0.015) were observed in A2058-transfected cells using thiazolyl blue tetrazolium bromide and flow cytometry, respectively. This study identifies miR-138-5p as a crucial tumor suppressor miRNA involved in telomerase regulation. Targeting it as a combination therapy with immunotherapy or targeted therapies could be used in advanced melanoma treatment; however, more preclinical studies are necessary.
Collapse
Affiliation(s)
- Estefanía Tarazón
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
| | - Blanca de Unamuno Bustos
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
- Department of Dermatology, University Hospital La Fe, 46026 Valencia, Spain
| | - Rosa Murria Estal
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
| | - Gema Pérez Simó
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.P.S.); (J.S.)
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, 46026 Valencia, Spain
| | - Antonio Sahuquillo Torralba
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
- Department of Dermatology, University Hospital La Fe, 46026 Valencia, Spain
| | - Javier Simarro
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.P.S.); (J.S.)
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, 46026 Valencia, Spain
| | - Sarai Palanca Suela
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.P.S.); (J.S.)
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-9612-44586
| | - Rafael Botella Estrada
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
- Department of Dermatology, University Hospital La Fe, 46026 Valencia, Spain
- Department of Medicine, School of Medicine, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
18
|
Fatemi I, Dehdashtian E, Pourhanifeh MH, Mehrzadi S, Hosseinzadeh A. Therapeutic Application of Melatonin in the Treatment of Melanoma: A Review. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210526140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanoma is an aggressive type of skin cancer, which is responsible for more deaths
than nonmelanoma skin cancers. Therapeutic strategies include targeted therapy, biochemotherapy,
immunotherapy, photodynamic therapy, chemotherapy, and surgical resection. Depending on the
clinical stage, single or combination therapy may be used to prevent and treat cancer. Due to resistance
development during treatment courses, the efficacy of mentioned therapies can be reduced.
In addition to resistance, these treatments have serious side effects for melanoma patients. According
to available reports, melatonin, a pineal indolamine with a wide spectrum of biological potentials,
has anticancer features. Furthermore, melatonin could protect against chemotherapy- and radiation-
induced adverse events and can sensitize cancer cells to therapy. The present review discusses
the therapeutic application of melatonin in the treatment of melanoma. This review was carried
out in PubMed, Web of Science, and Scopus databases comprising the date of publication period
from January 1976 to March 2021.
Collapse
Affiliation(s)
- Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | - Ehsan Dehdashtian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| | | | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| |
Collapse
|
19
|
Sharda N, Ikuse T, Hill E, Garcia S, Czinn SJ, Bafford A, Blanchard TG, Banerjee A. Impact of Andrographolide and Melatonin Combinatorial Drug Therapy on Metastatic Colon Cancer Cells and Organoids. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211012672. [PMID: 34158803 PMCID: PMC8182223 DOI: 10.1177/11795549211012672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/29/2021] [Indexed: 11/15/2022]
Abstract
Background: The death rate (the number of deaths per 100 000 people per year) of
colorectal cancer (CRC) has been dropping since 1980 due to increased
screening, lifestyle-related risk factors, and improved treatment options;
however, CRC is the third leading cause of cancer-related deaths in men and
women in the United States. Therefore, successful therapy for CRC is an
unmet clinical need. This study aimed to investigate the impacts of
andrographolide (AGP) and melatonin (MLT) on CRC and the underlying
mechanism. Methods: To investigate AGP and MLT anticancer effects, a series of metastatic colon
cancer cell lines (T84, Colo 205, HT-29, and DLD-1) were selected. In
addition, a metastatic patient-derived organoid model (PDOD) was used to
monitor the anticancer effects of AGP and MLT. A series of bioassays
including 3D organoid cell culture, MTT, colony formation, western blotting,
immunofluorescence, and quantitative polymerase chain reaction (qPCR) were
performed. Results: The dual therapy significantly promotes CRC cell death, as compared with the
normal cells. It also limits CRC colony formation and disrupts the PDOD
membrane integrity along with decreased Ki-67 expression. A significantly
higher cleaved caspase-3 and the endoplasmic reticulum (ER) stress proteins,
IRE-1 and ATF-6 expression, by 48 hours were found. This combinatorial
treatment increased reactive oxygen species (ROS) levels. Apoptosis
signaling molecules BAX, XBP-1, and CHOP were significantly increased as
determined by qPCR. Conclusions: These findings indicated that AGP and MLT associated ER stress-mediated
apoptotic metastatic colorectal cancer (mCRC) cell death through the
IRE-1/XBP-1/CHOP signaling pathway. This novel combination could be a
potential therapeutic strategy for mCRC cells.
Collapse
Affiliation(s)
- Neha Sharda
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tamaki Ikuse
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Elizabeth Hill
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sonia Garcia
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea Bafford
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Melatonin and neuroblastoma: a novel therapeutic approach. Mol Biol Rep 2021; 48:4659-4665. [PMID: 34061325 DOI: 10.1007/s11033-021-06439-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a deadly and serious malignancy among children. Although many developments have been occurred for the treatment of this disease, the rate of mortality is still high. Therefore, it is necessary to search for novel complementary and alternative therapies. Melatonin, a hormone secreted from pineal gland, is a multifunctional agent having anticancer potentials. Recently, several investigations have been conducted indicating melatonin effects against neuroblastoma. In this paper, we summarize current evidence on anti-neuroblastoma effects of melatonin based on cellular pathways.
Collapse
|
21
|
Mehrzadi S, Pourhanifeh MH, Mirzaei A, Moradian F, Hosseinzadeh A. An updated review of mechanistic potentials of melatonin against cancer: pivotal roles in angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Cancer Cell Int 2021; 21:188. [PMID: 33789681 PMCID: PMC8011077 DOI: 10.1186/s12935-021-01892-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cancers are serious life-threatening diseases which annually are responsible for millions of deaths across the world. Despite many developments in therapeutic approaches for affected individuals, the rate of morbidity and mortality is high. The survival rate and life quality of cancer patients is still low. In addition, the poor prognosis of patients and side effects of the present treatments underscores that finding novel and effective complementary and alternative therapies is a critical issue. Melatonin is a powerful anticancer agent and its efficiency has been widely documented up to now. Melatonin applies its anticancer abilities through affecting various mechanisms including angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Regarding the implication of mentioned cellular processes in cancer pathogenesis, we aimed to further evaluate the anticancer effects of melatonin via these mechanisms.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Moradian
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Amin SN, Sharawy N, El Tablawy N, Elberry DA, Youssef MF, Abdelhady EG, Rashed LA, Hassan SS. Melatonin-Pretreated Mesenchymal Stem Cells Improved Cognition in a Diabetic Murine Model. Front Physiol 2021; 12:628107. [PMID: 33815140 PMCID: PMC8012759 DOI: 10.3389/fphys.2021.628107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/11/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) is a multisystem endocrine disorder affecting the brain. Mesenchymal stem cells (MSCs) pretreated with Melatonin have been shown to increase the potency of MSCs. This work aimed to compare Melatonin, stem cells, and stem cells pretreated with Melatonin on the cognitive functions and markers of synaptic plasticity in an animal model of type I diabetes mellitus (TIDM). Thirty-six rats represented the animal model; six rats for isolation of MSCs and 30 rats were divided into five groups: control, TIDM, TIDM + Melatonin, TIDM + Stem cells, and TIDM + Stem ex vivo Melatonin. Functional assessment was performed with Y-maze, forced swimming test and novel object recognition. Histological and biochemical evaluation of hippocampal Neuroligin 1, Sortilin, Brain-Derived Neurotrophic Factor (BDNF), inducible nitric oxide synthase (iNOS), toll-like receptor 2 (TLR2), Tumor necrosis factor-alpha (TNF-α), and Growth Associated Protein 43 (GAP43). The TIDM group showed a significant decrease of hippocampal Neuroligin, Sortilin, and BDNF and a significant increase in iNOS, TNF-α, TLR2, and GAP43. Melatonin or stem cells groups showed improvement compared to the diabetic group but not compared to the control group. TIDM + Stem ex vivo Melatonin group showed a significant improvement, and some values were restored to normal. Ex vivo melatonin-treated stem cells had improved spatial working and object recognition memory and depression, with positive effects on glucose homeostasis, inflammatory markers levels and synaptic plasticity markers expression.
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nivin Sharawy
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nashwa El Tablawy
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia Azmy Elberry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mira Farouk Youssef
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ebtehal Gamal Abdelhady
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherif Sabry Hassan
- Department of Medical Education, School of Medicine, California University of Science and Medicine, San Bernardino, CA, United States.,Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Gurunathan S, Qasim M, Kang MH, Kim JH. Role and Therapeutic Potential of Melatonin in Various Type of Cancers. Onco Targets Ther 2021; 14:2019-2052. [PMID: 33776451 PMCID: PMC7987311 DOI: 10.2147/ott.s298512] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a large group of diseases and the second leading cause of death worldwide. Lung, prostate, colorectal, stomach, and liver cancers are the most common types of cancer in men, whereas breast, colorectal, lung, cervical, and thyroid cancers are the most common among women. Presently, various treatment strategies, including surgical resection combined with chemotherapy, radiotherapy, nanotherapy, and immunotherapy, have been used as conventional treatments for patients with cancer. However, the clinical outcomes of advanced-stage disease remain relatively unfavorable owing to the emergence of chemoresistance, toxicity, and other undesired detrimental side effects. Therefore, new therapies to overcome these limitations are indispensable. Recently, there has been considerable evidence from experimental and clinical studies suggesting that melatonin can be used to prevent and treat cancer. Studies have confirmed that melatonin mitigates the pathogenesis of cancer by directly affecting carcinogenesis and indirectly disrupting the circadian cycle. Melatonin (MLT) is nontoxic and exhibits a range of beneficial effects against cancer via apoptotic, antiangiogenic, antiproliferative, and metastasis-inhibitory pathways. The combination of melatonin with conventional drugs improves the drug sensitivity of cancers, including solid and liquid tumors. In this manuscript, we will comprehensively review some of the cellular, animal, and human studies from the literature that provide evidence that melatonin has oncostatic and anticancer properties. Further, this comprehensive review compiles the available experimental and clinical data analyzing the history, epidemiology, risk factors, therapeutic effect, clinical significance, of melatonin alone or in combination with chemotherapeutic agents or radiotherapy, as well as the underlying molecular mechanisms of its anticancer effect against lung, breast, prostate, colorectal, skin, liver, cervical, and ovarian cancers. Nonetheless, in the interest of readership clarity and ease of reading, we have discussed the overall mechanism of the anticancer activity of melatonin against different types of cancer. We have ended this report with general conclusions and future perspectives.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
24
|
Zhang M, Zhang M, Li R, Zhang R, Zhang Y. Melatonin sensitizes esophageal cancer cells to 5‑fluorouracil via promotion of apoptosis by regulating EZH2 expression. Oncol Rep 2021; 45:22. [PMID: 33649858 PMCID: PMC7905689 DOI: 10.3892/or.2021.7973] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/13/2021] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to investigate the effects of melatonin (MLT) and 5-fluorouracil (5-FU) combination on the chemotherapeutic effect of 5-FU in esophageal cancer, and determine the potential molecular mechanisms. The effects of MLT and 5-FU combination on cell proliferation, cell migration and invasion, and cell apoptosis were detected by Cell Counting Kit-8, Transwell assays and flow cytometric analysis, respectively. Quantitative PCR and western blotting were performed for mRNA and protein quantification, respectively. The present study revealed that MLT significantly inhibited cell activity in a dose-dependent manner and MLT significantly enhanced 5-FU-mediated inhibition of cell proliferation in esophageal cancer cells. Compared with the 5-FU group, the MLT and 5-FU combination group significantly inhibited the invasion and migration of EC-9706 and EC-109 cells. The present study also revealed that MLT and 5-FU synergistically promoted apoptosis via activation of the caspase-dependent apoptosis pathway. Histone-lysine N-methyltransferase EZH2 (EZH2) was highly expressed in esophageal cancer tissues and cells and its high expression promoted esophageal cancer progression. MLT and 5-FU combination inhibited cell proliferation and promoted apoptosis by regulating EZH2 expression. In conclusion, MLT enhanced 5-FU-mediated inhibition of cell proliferation via promotion of apoptosis by regulating EZH2 expression in esophageal cancer.
Collapse
Affiliation(s)
- Mengti Zhang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Mengli Zhang
- Department of Traditional Chinese Medicine, Kaifeng Central Hospital, Kaifeng, Henan 475000, P.R. China
| | - Ruijia Li
- Department of Pharmacy, The 8th Hospital of Xi'an, Xian, Shaanxi 710061, P.R. China
| | - Rui Zhang
- Department of Critical Care Medicine, Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong University, Xian, Shaanxi 710061, P.R. China
| | - Yueli Zhang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
25
|
Kuerbanjiang A, Maimaituerxun M, Zhang Y, Li Y, Cui G, Abuduhabaier A, Aierken A, Miranbieke B, Anzaer M, Maimaiti Y. V-Raf murine sarcoma viral oncogene homolog B1 (BRAF) as a prognostic biomarker of poor outcomes in esophageal cancer patients. BMC Gastroenterol 2021; 21:86. [PMID: 33622273 PMCID: PMC7903799 DOI: 10.1186/s12876-021-01671-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Esophageal cancer is one of the most aggressive malignancies, and is associated with multiple genetic mutations. At present, the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) gene mutation has been observed in esophageal cancer and is associated with poor prognosis. This study aimed to investigate the protein expression of BRAF in esophageal cancer and determine its effect on patient outcomes. METHODS We used immunohistochemistry to detect the expression of BRAF via tissue microarrays in esophageal cancer samples, the Kaplan-Meier method to perform survival analysis, and the Cox proportional hazards regression model to explore the risk factors of esophageal cancer. The role of BRAF in the proliferation, invasion, and metastasis of esophageal cancer was studied by clone formation, scratch test, Transwell invasion and migration test. The tumor-bearing model of BRAF inhibitor was established using TE-1 cells, and corresponding negative control was set up to observe the growth rate of the two models. RESULTS The results revealed that BRAF overexpression was significantly correlated with Ki67 (P < 0.05). Survival analysis showed that BRAF overexpression contributed to a shorter overall survival (P = 0.014) in patients with esophageal cancer. Univariate and multivariate regression analyses demonstrated that BRAF was a prognostic factor for poor esophageal cancer outcomes (P < 0.05). Small interfering RNA knockdown of BRAF significantly reduced the cell clone formation rate compared to the control group. Transwell assay analysis showed that the migration and invasion of cells in the experimental group were significantly inhibited relative to the control group, and the inhibition rates of the small interfering RNA group were 67% and 60%, respectively. In the scratch test, the wound healing ability of the BRAF knockdown group was significantly weaker than that of the control group. There were significant differences in tumor growth volume and weight between the two groups in nude mice. CONCLUSION BRAF overexpression may serve as an effective predictive factor for poor prognosis.
Collapse
Affiliation(s)
- Aihemaijiang Kuerbanjiang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | | | - Yanjun Zhang
- Department of Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Yiliang Li
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Gang Cui
- Department of Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Aibaidula Abuduhabaier
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Abuduwaili Aierken
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Buya Miranbieke
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Meilikezati Anzaer
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China.
| | - Yusufu Maimaiti
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China.
| |
Collapse
|
26
|
Banerjee V, Sharda N, Huse J, Singh D, Sokolov D, Czinn SJ, Blanchard TG, Banerjee A. Synergistic potential of dual andrographolide and melatonin targeting of metastatic colon cancer cells: Using the Chou-Talalay combination index method. Eur J Pharmacol 2021; 897:173919. [PMID: 33577837 DOI: 10.1016/j.ejphar.2021.173919] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) mortality has diminished for decades due to new and improved treatment profiles. However, CRC still ranks as the third most diagnosed cancer in the US. Therefore, a new therapeutic approach is needed to overcome colospheroids inhibition and drug resistance. It is well documented that andrographolide (AGP) and melatonin (MLT) have anti-carcinogenic properties. Our goal was to evaluate their synergistic effects on metastatic colon cancer cells (mCRC) and colospheroids. HT-29 and HCT-15 mCRC cells were simultaneously treated with serial dilutions of AGP and MLT for 24, 48 and 72 h. Cell viability was monitored using the MTT assay. The Chou-Talalay method for drug combination is based on the median effect equation, providing a theoretical basis for the combination index and the isobologram equation. This allows quantitative determination of drug interactions using the CompuSyn software, where CI < 1, = 1, and >1 indicates synergistic, additive, and antagonistic effects respectively. Our results demonstrate that AGP and MLT in combination show synergism with CI values of 0.35293 and 0.34152 for HT-29 and HCT-15 respectively and a fractional inhibition of Fa = 0.50-0.90, as shown by the Fa-CI plot and isobologram. The synergism value was validated in colospheroids (HT-29-s and HCT-15-s) based on morphology, viability, and colony formation and in 5-FU drug resistant cell (HT-29R and HCT-116R) viability. The mechanism(s) of decreased cell viability are due to the induction of ER stress proteins and angiogenic inhibition. Our results provide rationale for using AGP in combination with MLT on mCRC.
Collapse
Affiliation(s)
- Vivekjyoti Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neha Sharda
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jared Huse
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Damandeep Singh
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniil Sokolov
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Diao C, Guo P, Yang W, Sun Y, Liao Y, Yan Y, Zhao A, Cai X, Hao J, Hu S, Yu W, Chen M, Wang R, Li W, Zuo Y, Pan J, Hua C, Lu X, Fan W, Zheng Z, Deng W, Luo G, Guo W. SPT6 recruits SND1 to co-activate human telomerase reverse transcriptase to promote colon cancer progression. Mol Oncol 2021; 15:1180-1202. [PMID: 33305480 PMCID: PMC8024721 DOI: 10.1002/1878-0261.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) plays an extremely important role in cancer initiation and development, including colorectal cancer (CRC). However, the precise upstream regulatory mechanisms of hTERT in different cancer types remain poorly understood. Here, we uncovered the candidate transcriptional factor of hTERT in CRC and explored its role and the corresponding molecular mechanisms in regulating hTERT expression and CRC survival with an aim of developing mechanism-based combinational targeting therapy. The possible binding proteins at the hTERT promoter were uncovered using pull-down/mass spectrometry analysis. The regulation of SPT6 on hTERT expression and CRC survival was evaluated in human CRC cell lines and mouse models. Mechanistic studies focusing on the synergy between SPT6 and staphylococcal nuclease and Tudor domain containing 1 (SND1) in controlling hTERT expression and CRC progression were conducted also in the above two levels. The expression correlation and clinical significance of SPT6, SND1, and hTERT were investigated in tumor tissues from murine models and patients with CRC in situ. SPT6 was identified as a possible transcriptional factor to bind to the hTERT promoter. SPT6 knockdown decreased the activity of hTERT promoter, downregulated the protein expression level of hTERT, suppressed proliferation, invasion, and stem-like properties, promoted apoptosis induction, and enhanced chemotherapeutic drug sensitivity in vitro. SPT6 silencing also led to the delay of tumor growth and metastasis in mice carrying xenografts of human-derived colon cancer cells. Mechanistically, SND1 interacted with SPT6 to co-control hTERT expression and CRC cell proliferation, stemness, and growth in vitro and in vivo. SPT6, SND1, and hTERT were highly expressed simultaneously in CRC tissues, both from the murine model and patients with CRC in situ, and pairwise expression among these three factors showed a significant positive correlation. In brief, our research demonstrated that SPT6 synergized with SND1 to promote CRC development by targeting hTERT and put forward that inhibiting the SPT6-SND1-hTERT axis may create a therapeutic vulnerability in CRC.
Collapse
Affiliation(s)
- Chaoliang Diao
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Ping Guo
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Wenjing Yang
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Yao Sun
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Yina Liao
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Yue Yan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Anshi Zhao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xin Cai
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Jiaojiao Hao
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Sheng Hu
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Wendan Yu
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Manyu Chen
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Ruozhu Wang
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Wenyang Li
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Yan Zuo
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Jinjin Pan
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Chunyu Hua
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Xiaona Lu
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| | - Wenhua Fan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zongheng Zheng
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wuguo Deng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Guangyu Luo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wei Guo
- Institute of Cancer Stem Cells and the First Affiliated HospitalDalian Medical UniversityChina
| |
Collapse
|
28
|
Silencing hTERT attenuates cancer stem cell-like characteristics and radioresistance in the radioresistant nasopharyngeal carcinoma cell line CNE-2R. Aging (Albany NY) 2020; 12:25599-25613. [PMID: 33234740 PMCID: PMC7803545 DOI: 10.18632/aging.104167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Objective: This study aimed to explore the effect of silencing hTERT on the CSC-like characteristics and radioresistance of CNE-2R cells. Results: Silencing hTERT suppressed CNE-2R cell proliferation and increased the cell apoptosis rate and radiosensitivity in vitro. Moreover, it could also inhibit the growth of xenografts and increase the apoptosis index and radiosensitivity in vivo. Further study discovered that after silencing hTERT, telomerase activity in CNE-2R cells was markedly suppressed, along with remarkably down-regulated stem cell-related protein levels both in vitro and in vivo. Conclusion: Silencing hTERT can suppress the CSC-like characteristics of CNE-2R cells to enhance their radiosensitivity, revealing that hTERT may become a potential target for treating radioresistant NPC. Methods: An RNAi lentiviral vector specific to the hTERT gene was constructed to infect CNE-2R cells, the hTERT silencing effect was verified through qPCR and Western blot assays, and telomerase activity was detected by PCR-ELISA. Moreover, radiosensitivity in vitro was detected through colony formation assays, CCK-8 assays and flow cytometry. Tumor growth and radioresistance were also evaluated using xenograft models, while the apoptosis index in xenografts was measured through TUNEL assay. Levels of stem cell-related proteins were determined in vitro and in vivo.
Collapse
|
29
|
Ruggieri M, Polizzi A, Catanzaro S, Bianco ML, Praticò AD, Di Rocco C. Neurocutaneous melanocytosis (melanosis). Childs Nerv Syst 2020; 36:2571-2596. [PMID: 33048248 DOI: 10.1007/s00381-020-04770-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 02/03/2023]
Abstract
Neurocutaneous melanosis (NCM; MIM # 249400; ORPHA: 2481], first reported by the Bohemian pathologist Rokitansky in 1861, and now more precisely defined as neurocutaneous melanocytosis, is a rare, congenital syndrome characterised by the association of (1) congenital melanocytic nevi (CMN) of the skin with overlying hypertrichosis, presenting as (a) large (LCMN) or giant and/or multiple (MCMN) melanocytic lesions (or both; sometimes associated with smaller "satellite" nevi) or (b) as proliferative melanocytic nodules; and (2) melanocytosis (with infiltration) of the brain parenchyma and/or leptomeninges. CMN of the skin and leptomeningeal/nervous system infiltration are usually benign, more rarely may progress to melanoma or non-malignant melanosis of the brain. Approximately 12% of individuals with LCMN will develop NCM: wide extension and/or dorsal axial distribution of LCMN increases the risk of NCM. The CMN are recognised at birth and are distributed over the skin according to 6 or more patterns (6B patterns) in line with the archetypical patterns of distribution of mosaic skin disorders. Neurological manifestations can appear acutely in infancy, or more frequently later in childhood or adult life, and include signs/symptoms of intracranial hypertension, seizures/epilepsy, cranial nerve palsies, motor/sensory deficits, cognitive/behavioural abnormalities, sleep cycle anomalies, and eventually neurological deterioration. NMC patients may be symptomatic or asymptomatic, with or without evidence of the typical nervous system changes at MRI. Associated brain and spinal cord malformations include the Dandy-Walker malformation (DWM) complex, hemimegalencephaly, cortical dysplasia, arachnoid cysts, Chiari I and II malformations, syringomyelia, meningoceles, occult spinal dysraphism, and CNS lipoma/lipomatosis. There is no systemic involvement, or only rarely. Pathogenically, single postzygotic mutations in the NRAS (neuroblastoma RAS viral oncogene homologue; MIM # 164790; at 1p13.2) proto-oncogene explain the occurrence of single/multiple CMNs and melanocytic and non-melanocytic nervous system lesions in NCM: these disrupt the RAS/ERK/mTOR/PI3K/akt pathways. Diagnostic/surveillance work-ups require physical examination, ophthalmoscopy, brain/spinal cord magnetic resonance imaging (MRI) and angiography (MRA), positron emission tomography (PET), and video-EEG and IQ testing. Treatment strategies include laser therapy, chemical peeling, dermabrasion, and surgical removal/grafting for CMNs and shunt surgery and surgical removal/chemo/radiotherapy for CNS lesions. Biologically targeted therapies tailored (a) BRAF/MEK in NCM mice (MEK162) and GCMN (trametinib); (b) PI3K/mTOR (omipalisib/GSK2126458) in NMC cells; (c) RAS/MEK (vemurafenib and trametinib) in LCMNs cells; or created experimental NMC cells (YP-MEL).
Collapse
Affiliation(s)
- Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy.
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Stefano Catanzaro
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
- Unit of Neonatology and Neonatal Intensive Care Unit (NICU), AOU "Policlinico", PO "San Marco", University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Postgraduate Programme in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea D Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Concezio Di Rocco
- Pediatric Neurosurgery, International Neuroscience Institute (INI), Hannover, Germany
| |
Collapse
|
30
|
Costanzi E, Simioni C, Conti I, Laface I, Varano G, Brenna C, Neri LM. Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives. J Cell Physiol 2020; 236:2505-2518. [PMID: 32989768 DOI: 10.1002/jcp.30062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that G protein-coupled receptors (GPCRs), the largest signal-conveying receptor family, are targets for mutations occurring frequently in different cancer types. GPCR alterations associated with cancer development represent significant challenges for the discovery and the advancement of targeted therapeutics. Among the different molecules that can activate GPCRs, we focused on two molecules that exert their biological actions regulating many typical features of tumorigenesis such as cellular proliferation, survival, and invasion: somatostatin and melatonin. The modulation of signaling pathways, that involves these two molecules, opens an interesting scenario for cancer therapy, with the opportunity to act at different molecular levels. Therefore, the aim of this review is the analysis of the biological activity and the therapeutic potential of somatostatin and melatonin, displaying a high affinity for GPCRs, that interfere with cancer development and maintenance.
Collapse
Affiliation(s)
- Eva Costanzi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carolina Simioni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Ilaria Conti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Laface
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Gabriele Varano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Cinzia Brenna
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
31
|
Wu F, Xue H, Li X, Diao W, Jiang B, Wang W, Yu W, Bai J, Wang Y, Lian B, Feng W, Sun T, Qu M, Zhao C, Wang Y, Wu J, Gao Z. Enhanced targeted delivery of adenine to hepatocellular carcinoma using glycyrrhetinic acid-functionalized nanoparticles in vivo and in vitro. Biomed Pharmacother 2020; 131:110682. [PMID: 32947204 DOI: 10.1016/j.biopha.2020.110682] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a common malignancy in China and globally, is primarily treated through surgical resection and liver transplantation, with chemotherapy as a significant synergistic option. Adenine (Ade), a nucleobase, exhibits antitumor effects by blocking human hepatic carcinoma cells in S phase and inhibiting tumor cell proliferation. However, its use is limited owing to its low solubility, poor targeting ability, and nephrotoxicity. Therefore, liver-targeting drug delivery systems have attracted considerable attention for the treatment of HCC. In this study, we explored the liver-targeting efficacy and antitumor effect of adenine-loaded glycyrrhetinic acid-modified hyaluronic acid (Ade/GA-HA) nanoparticles in vitro and in vivo. The GA-HA nanoparticles possessed obvious targeting specificity toward liver cancer cells, which was mainly achieved by the specific binding of the GA ligand to the GA receptor that was highly expressed on the liver cell membrane. In vitro and in vivo results showed that Ade/GA-HA nanoparticles could inhibit liver cancer cell proliferation and migration, promote apoptosis, and significantly inhibit the growth of tumor tissues. Altogether, this study is the first to successfully demonstrate that the targeting activity and antitumor effect of Ade against HCC are enhanced by using GA-HA nanoparticles in vitro and in vivo.
Collapse
Affiliation(s)
- Fei Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Hantao Xue
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Xiaocheng Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Wenbin Diao
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Bin Jiang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Weiyu Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Wenjing Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Yi Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Bo Lian
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Weiguo Feng
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Tongyi Sun
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Meihua Qu
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang 261041, China
| | - Chunling Zhao
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China
| | - Yubing Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China.
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China.
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
32
|
Liao Y, Gao Y, Chang A, Li Z, Wang H, Cao J, Gu W, Tang R. Melatonin synergizes BRAF-targeting agent dabrafenib for the treatment of anaplastic thyroid cancer by inhibiting AKT/hTERT signalling. J Cell Mol Med 2020; 24:12119-12130. [PMID: 32935463 PMCID: PMC7579709 DOI: 10.1111/jcmm.15854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
As a selective inhibitor of BRAF kinase, dabrafenib has shown potent anti‐tumour activities in patients with BRAFV600E mutant anaplastic thyroid cancer. However, the resistance of thyroid cancer cells to dabrafenib limited its therapeutic effect. The effects of melatonin and dabrafenib as monotherapy or in combination on the proliferation, cell cycle arrest, apoptosis, migration and invasion of anaplastic thyroid cancer cells were examined. The molecular mechanism involved in drug combinations was also revealed. Melatonin enhanced dabrafenib‐mediated inhibition of cell proliferation, migration and invasion, and promoted dabrafenib‐induced apoptosis and cell cycle arrest in anaplastic thyroid cancer cells. Molecular mechanistic studies further uncovered that melatonin synergized with dabrafenib to inhibit AKT and EMT signalling pathways. Furthermore, melatonin and dabrafenib synergistically inhibited the expression of hTERT, and the inhibition of cell viability and the induction of cell cycle arrest mediated by the combination of these two drugs were reversed by hTERT overexpression. Taken together, our results demonstrated that melatonin synergized the anti‐tumour effect of dabrafenib in human anaplastic thyroid cancer cells by inhibiting multiple signalling pathways, and provided new insights in exploring the potential therapeutic targets for the treatment of anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Yina Liao
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - An Chang
- Department of Drug Administration, First affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zongjuan Li
- The Second Affiliated Hospital and Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Huayu Wang
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Cao
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ranran Tang
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Kleszczyński K, Böhm M. Can melatonin and its metabolites boost the efficacy of targeted therapy in patients with advanced melanoma? Exp Dermatol 2020; 29:860-863. [DOI: 10.1111/exd.14144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | - Markus Böhm
- Department of Dermatology University of Münster Münster Germany
| |
Collapse
|
34
|
Gonzalez A, Estaras M, Martinez-Morcillo S, Martinez R, García A, Estévez M, Santofimia-Castaño P, Tapia JA, Moreno N, Pérez-López M, Míguez MP, Blanco-Fernández G, Lopez-Guerra D, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM. Melatonin modulates red-ox state and decreases viability of rat pancreatic stellate cells. Sci Rep 2020; 10:6352. [PMID: 32286500 PMCID: PMC7156707 DOI: 10.1038/s41598-020-63433-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
In this work we have studied the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC). Cell viability was analyzed by AlamarBlue test. Production of reactive oxygen species (ROS) was monitored following CM-H2DCFDA and MitoSOX Red-derived fluorescence. Total protein carbonyls and lipid peroxidation were analyzed by HPLC and spectrophotometric methods respectively. Mitochondrial membrane potential (ψm) was monitored by TMRM-derived fluorescence. Reduced (GSH) and oxidized (GSSG) levels of glutathione were determined by fluorescence techniques. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Determination of SOD activity and total antioxidant capacity (TAC) were carried out by colorimetric methods, whereas expression of SOD was analyzed by Western blotting and RT-qPCR. The results show that melatonin decreased PSC viability in a concentration-dependent manner. Melatonin evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Oxidation of proteins was detected in the presence of melatonin, whereas lipids oxidation was not observed. Depolarization of ψm was noted with 1 mM melatonin. A decrease in the GSH/GSSG ratio was observed, that depended on the concentration of melatonin used. A concentration-dependent increase in the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 was detected in cells incubated with melatonin. Finally, decreases in the expression and in the activity of superoxide dismutase were observed. We conclude that pharmacological concentrations melatonin modify the redox state of PSC, which might decrease cellular viability.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| | - Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Alfredo García
- Department of Animal Production, CICYTEX-La Orden, Guadajira, Badajoz, Spain
| | - Mario Estévez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003, Cáceres, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jose A Tapia
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Noelia Moreno
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Marcos Pérez-López
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - María P Míguez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gerardo Blanco-Fernández
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
35
|
Hong T, Luo M, Liu Q. The TERT rs2736100 Polymorphism and Susceptibility to Myeloproliferative Neoplasms: A Systematic Review and Meta-Analysis. Genet Test Mol Biomarkers 2020; 24:181-187. [PMID: 32202925 DOI: 10.1089/gtmb.2019.0277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introduction: The classification of myeloproliferative neoplasms (MPN) is currently based on the genotype. Thus, to achieve better diagnostic and prognostic outcomes, it is necessary to further investigate the genetic spectrum underlying the pathogenesis of MPNs. The rs2736100A>C is a functional single nucleotide polymorphism in the telomerase reverse transcriptase (TERT) gene that has been previously reported to be associated with the risk of MPNs. Herein, we performed a meta-analysis to confirm the relationship between the TERT rs2736100A>C polymorphism and MPN susceptibility. Materials and Methods: Studies of case-control design were acquired from online databases with specific inclusion criteria. Odds ratios (ORs) with 95% confidence intervals (95% CI) were estimated to evaluate the association between the TERT rs2736100 polymorphism and MPN susceptibility using different genetic models. Results: Ten case-control studies involving 3488 cases and 57,948 controls were examined. Overall, there was a significant association between the TERT rs2736100 polymorphism and the risk of MPNs (allele model [C vs. A]: OR = 1.57 [95% CI: 1.47-1.69]; homozygous model [CC vs. AA]: OR = 3.00 [95% CI: 2.40-3.76]; heterozygous model [AC vs. AA]: OR = 2.17 [95% CI: 1.77-2.66]; dominant model [CC+AC vs. AA]: OR = 2.43 [95% CI: 2.00-2.95]; and recessive model [CC vs. AC+AA]: OR = 1.73 [95% CI: 1.47-2.04]). Conclusions: In this meta-analysis, we confirm an association between the TERT rs2736100A>C polymorphism and MPN susceptibility under all genetic models evaluated. The TERT rs2736100A>C allele increases the overall risk of MPN. Further studies are warranted to determine the functional role of the TERT rs2736100 polymorphism in MPN.
Collapse
Affiliation(s)
- Tao Hong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mei Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Liu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
36
|
Targeting cancer stem cells by melatonin: Effective therapy for cancer treatment. Pathol Res Pract 2020; 216:152919. [PMID: 32171553 DOI: 10.1016/j.prp.2020.152919] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/21/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Melatonin is a physiological hormone produced by the pineal gland. In recent decades, enormous investigations showed that melatonin can prompt apoptosis in cancer cells and inhibit tumor metastasis and angiogenesis in variety of malignancies such as ovarian, melanoma, colon, and breast cancer; therefore, its possible therapeutic usage in cancer treatment was confirmed. CSCs, which has received much attention from researchers in past decades, are major challenges in the treatment of cancer. Because CSCs are resistant to chemotherapeutic drugs and cause recurrence of cancer and also have the ability to be regenerated; they can cause serious problems in the treatment of various cancers. For these reasons, the researchers are trying to find a solution to destroy these cells within the tumor mass. In recent years, the effect of melatonin on CSCs has been investigated in some cancers. Given the importance of CSCs in the process of cancer treatment, this article reviewed the studies conducted on the effect of melatonin on CSCs as a solution to the problems caused by CSCs in the treatment of various cancers.
Collapse
|
37
|
Ghione S, Mabrouk N, Paul C, Bettaieb A, Plenchette S. Protein kinase inhibitor-based cancer therapies: Considering the potential of nitric oxide (NO) to improve cancer treatment. Biochem Pharmacol 2020; 176:113855. [PMID: 32061562 DOI: 10.1016/j.bcp.2020.113855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
The deregulation of a wide variety of protein kinases is associated with cancer cell initiation and tumor progression. Owing to their indispensable function in signaling pathways driving malignant cell features, protein kinases constitute major therapeutic targets in cancer. Over the past two decades, intense efforts in drug development have been dedicated to this field. The development of protein kinase inhibitors (PKIs) have been a real breakthrough in targeted cancer therapy. Despite obvious successes across patients with different types of cancer, the development of PKI resistance still prevails. Combination therapies are part of a comprehensive approach to address the problem of drug resistance. The therapeutic use of nitric oxide (NO) donors to bypass PKI resistance in cancer has never been tested in clinic yet but several arguments suggest that the combination of PKIs and NO donors may exert a potential anticancer effect. The present review summarized the current state of knowledge on common targets to both PKIs and NO. Herein, we attempt to provide the rationale underlying a potential combination of PKIs and NO donors for future directions and design of new combination therapies in cancer.
Collapse
Affiliation(s)
- Silvia Ghione
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Nesrine Mabrouk
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphanie Plenchette
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
38
|
Mortezaee K, Potes Y, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Boosting immune system against cancer by melatonin: A mechanistic viewpoint. Life Sci 2019; 238:116960. [PMID: 31629760 DOI: 10.1016/j.lfs.2019.116960] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Cancer is a disease of high complexity. Resistance to therapy is a major challenge in cancer targeted therapies. Overcoming this resistance requires a deep knowledge of the cellular interactions within tumor. Natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) are the main anti-cancer immune cells, while T regulatory cells (Tregs) and cancer associated fibroblasts (CAFs) facilitate immune escape of cancer cells. Melatonin is a natural agent with anti-cancer functions that has also been suggested as an adjuvant in combination with cancer therapy modalities such as chemotherapy, radiotherapy, immunotherapy and tumor vaccination. One of the main effects of melatonin is regulation of immune responses against cancer cells. Melatonin has been shown to potentiate the activities of anti-cancer immune cells, as well as attenuating the activities of Tregs and CAFs. It also has a potent effect on the mitochondria, which may change immune responses against cancer. In this review, we explain the mechanisms of immune regulation by melatonin involved in its anti-cancer effects.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Spain
| | - Hanifeh Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
39
|
Zhao CN, Wang P, Mao YM, Dan YL, Wu Q, Li XM, Wang DG, Davis C, Hu W, Pan HF. Potential role of melatonin in autoimmune diseases. Cytokine Growth Factor Rev 2019; 48:1-10. [DOI: 10.1016/j.cytogfr.2019.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022]
|