1
|
Al-Khafaji AS, Wang LM, Alabdei HH, Liloglou T. Effect of valproic acid on histone deacetylase expression in oral cancer (Review). Oncol Lett 2024; 27:197. [PMID: 38516679 PMCID: PMC10955681 DOI: 10.3892/ol.2024.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 03/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a frequent human malignancy that demonstrates a range of genetic and epigenetic alterations. Histone deacetylases (HDACs) are key epigenetic regulators of cell-cycle progression, differentiation and apoptosis and their dysregulation is implicated in cancer development. HDACs are promising targets for anticancer therapy through the utilisation of HDAC inhibitors (HDACis). OSCC cells have been shown to have low levels of histone acetylation, suggesting that HDACis may produce beneficial effects in patients with OSCC. Valproic acid (VPA) is a class I and IIa HDACi and, therefore, may be useful in anticancer therapy. VPA has been reported as a chemo-preventive epigenetic agent in individuals with high-risk oral dysplasia (OD) and thus associated with a reduced risk of HNSCC. It is hypothesised that HDAC inhibition by VPA triggers a change in the expression levels of different HDAC family gene-members. The present review summarises the current literature on HDAC expression changes in response to VPA in oral cancer patients and in vitro studies in an effort to better understand the potential epigenetic impact of VPA treatment. The present review outlined the need for exploring supportive evidence of the chemo-preventive role played by VPA-based epigenetic modification in treating oral pre-cancerous lesions and, thus, providing a novel tolerable chemotherapeutic strategy for patients with oral cancer.
Collapse
Affiliation(s)
- Ahmed S.K. Al-Khafaji
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L7 8TX, UK
- Department of Biology, College of Science, University of Baghdad, Baghdad 10071, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Lydia M. Wang
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Haidar H. Alabdei
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Triantafillos Liloglou
- Cardiorespiratory Research Centre, Medical School, Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| |
Collapse
|
2
|
Taghehchian N, Samsami Y, Maharati A, Zangouei AS, Boroumand-Noughabi S, Moghbeli M. Molecular biology of microRNA-342 during tumor progression and invasion. Pathol Res Pract 2023; 248:154672. [PMID: 37413875 DOI: 10.1016/j.prp.2023.154672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Cancer is considered as one of the main causes of human deaths and health challenges in the world. Various factors are involved in the high death rate of cancer patients, including late diagnosis and drug resistance that result in treatment failure and tumor recurrence. Invasive diagnostic methods are one of the main reasons of late tumor detection in cancer patients. Therefore, it is necessary to investigate the molecular tumor biology to introduce efficient non-invasive markers. MicroRNAs (miRNAs) are involved in regulation of the cellular mechanisms such as cell proliferation, apoptosis, and migration. MiRNAs deregulations have been also frequently shown in different tumor types. Here, we discussed the molecular mechanisms of miR-342 during tumor growth. MiR-342 mainly functions as a tumor suppressor by the regulation of transcription factors and signaling pathways such as WNT, PI3K/AKT, NF-kB, and MAPK. Therefore, miR-342 mimics can be used as a reliable therapeutic strategy to inhibit the tumor cells growth. The present review can also pave the way to introduce the miR-342 as a non-invasive diagnostic/prognostic marker in cancer patients.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Bank, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Kori M, Arga KY. HPV16 status predicts potential protein biomarkers and therapeutics in head and neck squamous cell carcinoma. Virology 2023; 582:90-99. [PMID: 37031657 DOI: 10.1016/j.virol.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
Human papillomavirus (HPV) infection, especially HPV16, is one of the causative factors for the development of head and neck squamous cell (HNSC) carcinoma. HPV-positive and HPV-negative HNSC patients differ significantly in their molecular profiles and clinical features, so they should be evaluated differently depending on their HPV status. Given the tremendous variation in HNSC cancers depending on HPV, our goal in this study was to present biomarkers and treatment options tailored to the patient's HPV status. Gene expression levels of HPV16-positive and -negative patients were used as proxies, and the differential interactome algorithm was employed to identify the differential interacting proteins (DIPs). By assessing the prognostic capabilities and druggabilities of DIPs and their interacting partners (DIP-centered modules), we introduce eight modules as potential biomarkers specialized for either positive or negative phenotype. Finally, raloxifene was repositioned for the first time as a drug candidate for the treatment of HPV16-positive HNSC patients.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Marmara University, Istanbul, Turkey.
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, Istanbul, Turkey; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey.
| |
Collapse
|
4
|
Sah RK, Anand S, Dar W, Jain R, Kumari G, Madan E, Saini M, Gupta A, Joshi N, Hada RS, Gupta N, Pati S, Singh S. Host-Erythrocytic Sphingosine-1-Phosphate Regulates Plasmodium Histone Deacetylase Activity and Exhibits Epigenetic Control over Cell Death and Differentiation. Microbiol Spectr 2023; 11:e0276622. [PMID: 36744922 PMCID: PMC10100792 DOI: 10.1128/spectrum.02766-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/08/2023] [Indexed: 02/07/2023] Open
Abstract
The evolution of resistance to practically all antimalarial drugs poses a challenge to the current malaria elimination and eradication efforts. Given that the epigenome of Plasmodium falciparum governs several crucial parasite functions, pharmaceutical interventions with transmission-blocking potential that target epigenetic molecular markers and regulatory mechanisms are likely to encounter drug resistance. In the malaria parasite, histone deacetylases (HDACs) are essential epigenetic modulators that regulate cellular transcriptional rearrangements, notably the molecular mechanisms underlying parasite proliferation and differentiation. We establish "lipid sequestration" as a mechanism by which sphingolipids, specifically Sphingosine-1-Phosphate (S1P) (a metabolic product of Sphingosine Kinase 1 [SphK-1]), regulate epigenetic reprogramming in the parasite by interacting with, and modulating, the histone-deacetylation activity of PfHDAC-1, thereby regulating Plasmodium pathogenesis. Furthermore, we demonstrate that altering host S1P levels with PF-543, a potent and selective Sphk-1 inhibitor, dysregulates PfHDAC-1 activity, resulting in a significant increase in the global histone acetylation signals and, consequently, transcriptional modulation of genes associated with gametocytogenesis, virulence, and proliferation. Our findings point to a hitherto unrecognized functional role for host S1P-mediated sphingolipid signaling in modulating PfHDAC-1's enzymatic activity and, as a result, the parasite's dynamic genome-wide transcriptional patterns. The epigenetic regulation of parasite proliferation and sexual differentiation offers a novel approach for developing host-targeted therapeutics to combat malaria resistance to conventional regimens. IMPORTANCE Sphingolipid is an 18-carbon amino-alcohol-containing lipid with a sphingosine backbone, which when phosphorylated by sphingosine kinase 1 (SphK-1), generates sphingosine-1-phosphate (S1P), an essential lipid signaling molecule. Dysregulation of S1P function has been observed in a variety of pathologies, including severe malaria. The malaria parasite Plasmodium acquires a host S1P pool for its growth and survival. Here, we describe the molecular attuning of histone deacetylase-1 (PfHDAC-1), a crucial epigenetic modulator that contributes to the establishment of epigenetic chromatin states and parasite survival, in response to S1P binding. Our findings highlight the host lipid-mediated epigenetic regulation of malaria parasite key genes.
Collapse
Affiliation(s)
- Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Waseem Dar
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Evanka Madan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Nishant Joshi
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Rahul Singh Hada
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Nutan Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
GTPase Pathways in Health and Diseases. Cells 2022; 11:cells11244055. [PMID: 36552819 PMCID: PMC9777353 DOI: 10.3390/cells11244055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
GTPases, the molecular switches toggling between an inactive GDP-bound state and an active GTP-bound state, play a pivotal role in controlling complex cellular processes (e [...].
Collapse
|
6
|
Wang Y, Du J, Gao Z, Sun H, Mei M, Wang Y, Ren Y, Zhou X. Evolving landscape of PD-L2: bring new light to checkpoint immunotherapy. Br J Cancer 2022; 128:1196-1207. [PMID: 36522474 PMCID: PMC10050415 DOI: 10.1038/s41416-022-02084-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
AbstractImmune checkpoint blockade therapy targeting programmed cell death protein 1 (PD-1) has revolutionized the landscape of multiple human cancer types, including head and neck squamous carcinoma (HNSCC). Programmed death ligand-2 (PD-L2), a PD-1 ligand, mediates cancer cell immune escape (or tolerance independent of PD-L1) and predicts poor prognosis of patients with HNSCC. Therefore, an in-depth understanding of the regulatory process of PD-L2 expression may stratify patients with HNSCC to benefit from anti-PD-1 immunotherapy. In this review, we summarised the PD-L2 expression and its immune-dependent and independent functions in HNSCC and other solid tumours. We focused on recent findings on the mechanisms that regulate PD-L2 at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels, also in intercellular communication of tumour microenvironment (TME). We also discussed the prospects of using small molecular agents indirectly targeting PD-L2 in cancer therapy. These findings may provide a notable avenue in developing novel and effective PD-L2-targeted therapeutic strategies for immune combination therapy and uncovering biomarkers that improve the clinical efficacy of anti-PD-1 therapies.
Collapse
|
7
|
Bredel M, Kim H, Bonner JA. An ErbB Lineage Co-Regulon Harbors Potentially Co-Druggable Targets for Multimodal Precision Therapy in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms232113497. [PMID: 36362284 PMCID: PMC9658814 DOI: 10.3390/ijms232113497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The ErbB lineage of oncogenic receptor tyrosine kinases is frequently overexpressed in head and neck squamous cell carcinomas. A common co-regulon triggered by the ErbB proteins; involving shared signaling circuitries; may harbor co-druggable targets or response biomarkers for potential future multimodal precision therapy in ErbB-driven head and neck squamous cell carcinoma. We here present a cohort-based; genome-wide analysis of 488 head and neck squamous cell carcinomas curated as part of The Cancer Genome Atlas Project to characterize genes that are significantly positively co-regulated with the four ErbB proteins and those that are shared among all ErbBs denoting a common ErbB co-regulon. Significant positive gene correlations involved hundreds of genes that were co-expressed with the four ErbB family members (q < 0.05). A common; overlapping co-regulon consisted of a core set of 268 genes that were uniformly co-regulated with all four ErbB genes and highly enriched for functions in chromatin organization and histone modifications. This high-priority set of genes contained ten putative antineoplastic drug-gene interactions. The nature and directionality of these ten drug-gene associations was an inhibiting interaction for seven (PIK3CB; PIK3C2B; HDAC4; FRK; PRKCE; EPHA4; and DYRK1A) of them in which the drug decreases the biological activity or expression of the gene target. For three (CHD4; ARID1A; and PBRM1) of the associations; the directionality of the interaction was such that the gene predicted sensitivit y to the drug suggesting utility as potential response biomarkers. Drug-gene interactions that predicted the gene product to be reduced by the drug included a variety of potential targeted molecular agent classes. This unbiased genome-wide analysis identified a target-rich environment for multimodal therapeutic approaches in tumors that are putatively ErbB-driven. The results of this study require preclinical validation before ultimately devising lines of combinatorial treatment strategies for ErbB-dependent head and neck squamous cell carcinomas that incorporate these findings.
Collapse
Affiliation(s)
- Markus Bredel
- Department of Radiation Oncology, O’Neal Comprehensive Cancer Center, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (M.B.); (J.A.B.)
| | - Hyunsoo Kim
- Lineberger Comprehensive Cancer Center, University of Northern Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James A. Bonner
- Department of Radiation Oncology, O’Neal Comprehensive Cancer Center, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (M.B.); (J.A.B.)
| |
Collapse
|
8
|
Luciano AK, Korobkina E, Lyons SP, Haley JA, Fluharty S, Jung SM, Kettenbach AN, Guertin DA. Proximity labeling of endogenous RICTOR identifies mTOR Complex 2 regulation by ADP ribosylation factor ARF1. J Biol Chem 2022; 298:102379. [PMID: 35973513 PMCID: PMC9513271 DOI: 10.1016/j.jbc.2022.102379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 01/08/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) regulates metabolism, cell proliferation, and cell survival. mTORC2 activity is stimulated by growth factors, and it phosphorylates the hydrophobic motif site of the AGC kinases AKT, SGK, and PKC. However, the proteins that interact with mTORC2 to control its activity and localization remain poorly defined. To identify mTORC2-interacting proteins in living cells, we tagged endogenous RICTOR, an essential mTORC2 subunit, with the modified BirA biotin ligase BioID2 and performed live-cell proximity labeling. We identified 215 RICTOR-proximal proteins, including proteins with known mTORC2 pathway interactions, and 135 proteins (63%) not previously linked to mTORC2 signaling, including nuclear and cytoplasmic proteins. Our imaging and cell fractionation experiments suggest nearly 30% of RICTOR is in the nucleus, hinting at potential nuclear functions. We also identified 29 interactors containing RICTOR-dependent, insulin-stimulated phosphorylation sites, thus providing insight into mTORC2-dependent insulin signaling dynamics. Finally, we identify the endogenous ADP ribosylation factor 1 (ARF1) GTPase as an mTORC2-interacting protein. Through gain-of-function and loss-of-function studies, we provide functional evidence that ARF1 may negatively regulate mTORC2. In summary, we present a new method of studying endogenous mTORC2, a resource of RICTOR/mTORC2 protein interactions in living cells, and a potential mechanism of mTORC2 regulation by the ARF1 GTPase.
Collapse
Affiliation(s)
- Amelia K Luciano
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Ekaterina Korobkina
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Scott P Lyons
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - John A Haley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Shelagh Fluharty
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605.
| |
Collapse
|
9
|
Patra S, Patil S, Das S, Bhutia SK. Epigenetic dysregulation in autophagy signaling as a driver of viral manifested oral carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166517. [DOI: 10.1016/j.bbadis.2022.166517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
|
10
|
Huang H, Fu Y, Duan Y, Zhang Y, Lu M, Chen Z, Li M, Chen Y. Suberoylanilide Hydroxamic Acid (SAHA) Treatment Reveals Crosstalk Among Proteome, Phosphoproteome, and Acetylome in Nasopharyngeal Carcinoma Cells. Front Genet 2022; 13:873840. [PMID: 35591851 PMCID: PMC9110868 DOI: 10.3389/fgene.2022.873840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/05/2022] [Indexed: 01/14/2023] Open
Abstract
Suberoylanilide hydroxamic acid (SAHA), a famous histone deacetylase (HDAC) inhibitor, has been utilized in clinical treatment for cutaneous T-cell lymphoma. Previously, the mechanisms underlying SAHA anti-tumor activity mainly focused on acetylome. However, the characteristics of SAHA in terms of other protein posttranslational modifications (PTMs) and the crosstalk between various modifications are poorly understood. Our previous work revealed that SAHA had anti-tumor activity in nasopharyngeal carcinoma (NPC) cells as well. Here, we reported the profiles of global proteome, acetylome, and phosphoproteome of 5–8 F cells upon SAHA induction and the crosstalk between these data sets. Overall, we detected and quantified 6,491 proteins, 2,456 phosphorylated proteins, and 228 acetylated proteins in response to SAHA treatment in 5–8 F cells. In addition, we identified 46 proteins exhibiting both acetylation and phosphorylation, such as WSTF and LMNA. With the aid of intensive bioinformatics analyses, multiple cellular processes and signaling pathways involved in tumorigenesis were clustered, including glycolysis, EGFR signaling, and Myc signaling pathways. Taken together, this study highlighted the interconnectivity of acetylation and phosphorylation signaling networks and suggested that SAHA-mediated HDAC inhibition may alter both acetylation and phosphorylation of viral proteins. Subsequently, cellular signaling pathways were reprogrammed and contributed to anti-tumor effects of SAHA in NPC cells.
Collapse
Affiliation(s)
- Huichao Huang
- Department of Infectious Disease, XiangYa Hospital, Central South University, Changsha, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Yankun Duan
- Department of Infectious Disease, XiangYa Hospital, Central South University, Changsha, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Miaolong Lu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
- Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
- Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, China
- *Correspondence: Maoyu Li, ; Yongheng Chen,
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
- *Correspondence: Maoyu Li, ; Yongheng Chen,
| |
Collapse
|
11
|
Dong J, He J, Zhang Z, Zhang W, Li Y, Li D, Xie H, Zuo W, Tang J, Zeng Z, Cai W, Lai L, Yun M, Shen L, Yin L, Tang D, Dai Y. Identification of lysine acetylome of oral squamous cell carcinoma by label-free quantitative proteomics. J Proteomics 2022; 262:104598. [PMID: 35489685 DOI: 10.1016/j.jprot.2022.104598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Lysine acetylation (Kac) on histone promotes relaxation of the chromatin conformation and favors gene transcription to regulate oncogenesis, whereas the total acetylation profiling of oral squamous cell carcinoma (OSCC) is unknown. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was utilised to investigate lysine acetylation features of tumor tissues and adjacent normal tissues from 9 patients with OCSS. 282 upregulated Kac sites in 234 proteins and 235 downregulated Kac sites in 162 proteins between OSCC tissues and paired adjacent normal tissues were identified. Different acetylation proteins (DAPs) were analyzed through KEGG-based and MCODE. These DAPs are enriched in the ribosome biogenesis pathway. Survival Analysis of hub genes with TCGA database was performed. In addition, IPA software was used to explore the connection between 9 core DAPs (RPS3, RPL24, RPL19, EIF4A2, RPL12, MYBPC1, RPS6, ARCN1, and TMEM9) and the different expression of KATs and KDACs identified in our proteomic. The study is the first comparative study of Kac modification on oral squamous cell carcinoma. We propose to put forward the hypothesis that the dysfunction of ribosome biogenesis caused by the change of Lysine acetylation, especially downregulated acetylation on RPS6 and RPS3 may associated with the pathogenesis of OSCC. SIGNIFICANCE: The study is the first comparative study of Kac modification on oral squamous cell carcinoma through LC-MS/MS-based modified proteomic. These DAPs are high enriched in the ribosome biogenesis pathway. Used MCODE and survival analysis, 9 core DAPs (RPS3, RPL24, RPL19, EIF4A2, RPL12, MYBPC1, RPS6, ARCN1, and TMEM9) were screened. IPA software was used to explore the connection between 9 core DAPs and the different expression of KATs and KDACs identified in our proteomic. In addition, we propose to put forward the hypothesis that the dysfunction of ribosome biogenesis caused by the change of Lysine acetylation, especially downregulated acetylation on RPS6 and RPS3 may associated with the pathogenesis of OSCC.
Collapse
Affiliation(s)
- Jingjing Dong
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China; Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Jingquan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Zeyu Zhang
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Wei Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Yixi Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Dandan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Hongliang Xie
- Stomatology Department, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Wenxin Zuo
- Stomatology Department, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Jianming Tang
- Stomatology Department, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Liusheng Lai
- Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Hospital, Southern Medical University, Guilin 541002, Guangxi, China
| | - Manhua Yun
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Lingjun Shen
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China; Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Hospital, Southern Medical University, Guilin 541002, Guangxi, China.
| |
Collapse
|
12
|
Enhanced Cytotoxic Effects in Human Oral Squamous Cell Carcinoma Cells Treated with Combined Methyltransferase Inhibitors and Histone Deacetylase Inhibitors. Biomedicines 2022; 10:biomedicines10040763. [PMID: 35453513 PMCID: PMC9029187 DOI: 10.3390/biomedicines10040763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Combined treatment of human oral squamous cell carcinoma (OSCCs) with DNA methyltransferase inhibitors (DNMTis), histone methyltransferase inhibitors (HMTis), and histone deacetylase inhibitors (HDACis), and the molecular mechanisms underlying their anticancer effects, have not been fully elucidated. Herein, we investigated the cytotoxic effects of combined DNMTis (5-Aza-deoxycytidine: 5-Aza-dC, RG108), HMTis (3-deazaneplanocin A: DZNep), and HDACis (trichostatin A: TSA) treatment on human OSCC cells and explored their molecular mechanisms. Combined 5-Aza-dC, or RG108, and TSA treatment significantly decreased HSC-2 and Ca9-22 cell viability. Combinatorial DZNep and TSA treatment also decreased Ca9-22 cell viability. Although caspase 3/7 activation was not observed in HSC-2 cells following combined treatment, caspase activity was significantly increased in Ca9-22 cells treated with DZNep and TSA. Moreover, combined treatment with 5-Aza-dC, RG108, and TSA increased the proportion of HSC-2 and Ca9-22 cells in the S and G2/M phases. Meanwhile, increased phosphorylation of the histone variant H2A.X, a marker of double-stranded DNA breaks, was observed in both cells after combination treatment. Hence, the decreased viability induced by combined treatment with epigenomic inhibitors results from apoptosis and cell cycle arrest in S and G2/M phases. Thus, epigenomic therapy comprising combined low concentrations of DNMTi, HMTi, and HDACi is effective against OSCC.
Collapse
|
13
|
Suchanti S, Stephen BJ, Awasthi S, Awasthi SK, Singh G, Singh A, Mishra R. Harnessing the role of epigenetic histone modification in targeting head and neck squamous cell carcinoma. Epigenomics 2022; 14:279-293. [PMID: 35184601 DOI: 10.2217/epi-2020-0348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent form of cancer worldwide. Despite advancements made in treatment strategies, the fatality rate of HNSCC is very high. An accumulating body of evidence suggests that epigenetic modification of histones plays an influential role in the development and progression of the disease. In this review we discuss the role of epigenetic modifications in HNSCC and the inter-relationships of human papillomavirus oncoproteins and histone-modifying agents. Further, we explore the possibility of identifying these modifications as biomarkers for their use as drugs in treatment strategies.
Collapse
Affiliation(s)
- Surabhi Suchanti
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Bjorn J Stephen
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Sonali Awasthi
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh, 208024, India
| | - Sudhir K Awasthi
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh, 208024, India
| | - Gyanendra Singh
- Toxicology Division, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, 380016, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Rajeev Mishra
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh, 208024, India
| |
Collapse
|
14
|
Lang L, Teng Y. Evaluation of the Efficacy of Saracatinib-Loaded Nanoparticles in Lymphatic Metastases of HNSCC with the Aid of Bioluminescence Imaging. Methods Mol Biol 2022; 2525:15-19. [PMID: 35836057 DOI: 10.1007/978-1-0716-2473-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a deadly disease despite concerted efforts to improve its diagnosis and treatment in recent decades. Metastasis of advanced HNSCC nearly always occurs first in neck lymph nodes before the development of distant metastasis. However, the development of preclinical animal models and therapeutic treatments for metastatic HNSCC is lagged from bench to clinic. In this protocol, we exemplify an orthotopic tongue tumor model that can recapitulate the cervical lymphatic metastases of HNSCC and the application to study the effect of novel saracatinib-loaded nanoparticles (Nano-Sar). By taking advantage of bioluminescence imaging (BLI), the present protocol reveals the strong anti-metastatic efficacy of Nano-Sar in the experimental setup. Collectively, the protocol with a novel metastatic mouse model shows great potential to evaluate treatments on metastatic diseases with the aid of bioluminescent technology.
Collapse
Affiliation(s)
- Liwei Lang
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Blockade of glutamine-dependent cell survival augments antitumor efficacy of CPI-613 in head and neck cancer. J Exp Clin Cancer Res 2021; 40:393. [PMID: 34906193 PMCID: PMC8670127 DOI: 10.1186/s13046-021-02207-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alterations in metabolism are one of the emerging hallmarks of cancer cells and targeting dysregulated cancer metabolism provides a new approach to developing more selective therapeutics. However, insufficient blockade critical metabolic dependencies of cancer allows the development of metabolic bypasses, thus limiting therapeutic benefits. METHODS A series of head and neck squamous cell carcinoma (HNSCC) cell lines and animal models were used to determine the efficacy of CPI-613 and CB-839 when given alone or in combination. Glutaminase 1 (GLS1) depletion was achieved by lentiviral shRNAs. Cell viability and apoptosis were determined in HNSCC cells cultured in 2D culture dish and SeedEZ™ 3D scaffold. Molecular alterations were examined by Western blotting and immunohistochemistry. Metabolic changes were assessed by glucose uptake, lactate production, glutathione levels, and oxygen consumption rate. RESULTS We show here that HNSCC cells display strong addiction to glutamine. CPI-613, a novel lipoate analog, redirects cellular activity towards tumor-promoting glutaminolysis, leading to low anticancer efficacy in HNSCC cells. Mechanistically, CPI-613 inhibits the tricarboxylic acid cycle by blocking the enzyme activities of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, which upregulates GLS1 and eventually promotes the compensatory role of glutaminolysis in cancer cell survival. Most importantly, the addition of a GLS1 inhibitor CB-839 to CPI-613 treatment abrogates the metabolic dependency of HNSCC cells on glutamine, achieving a synergistic anticancer effect in glutamine-addicted HNSCC. CONCLUSIONS These findings uncover the critical role of GLS1-mediated glutaminolysis in CPI-613 treatment and suggest that the CB-839 and CPI-613 combination may potentiate synergistic anticancer activity for HNSCC therapeutic gain.
Collapse
|
16
|
Burkitt K, Saloura V. Epigenetic Modifiers as Novel Therapeutic Targets and a Systematic Review of Clinical Studies Investigating Epigenetic Inhibitors in Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13205241. [PMID: 34680389 PMCID: PMC8534083 DOI: 10.3390/cancers13205241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Head and neck cancer is the sixth most common malignancy worldwide and it affects approximately 50,000 patients annually in the United States. Current treatments are suboptimal and induce significant long-term toxicities that permanently affect quality of life. Novel therapeutic approaches are thus urgently needed to increase the survival and quality of life of these patients. Epigenetic modifications have been recognized as potential therapeutic targets in various cancer types, including head and neck cancer. The objective of this review is to provide a brief overview of the function of important epigenetic modifiers in head and neck cancer, and to discuss the results of past and ongoing clinical trials evaluating epigenetic interventions targeting these epigenetic modifiers in head and neck cancer patients. The field of epigenetic therapy in head and neck cancer is still nascent; however, it holds significant promise. Although more specific epigenetic drugs are being developed, we envision the rational design of clinical trials that will target a select group of head and neck cancer patients with epigenetic vulnerabilities that can be targeted in combination with immunotherapy, chemotherapy and/or radiotherapy, rendering higher and durable responses while minimizing chronic complications for patients with head and neck cancer. Abstract The survival rate of head and neck squamous cell carcinoma patients with the current standard of care therapy is suboptimal and is associated with long-term side effects. Novel therapeutics that will improve survival rates while minimizing treatment-related side effects are the focus of active investigation. Epigenetic modifications have been recognized as potential therapeutic targets in various cancer types, including head and neck cancer. This review summarizes the current knowledge on the function of important epigenetic modifiers in head and neck cancer, their clinical implications and discusses results of clinical trials evaluating epigenetic interventions in past and ongoing clinical trials as monotherapy or combination therapy with either chemotherapy, radiotherapy or immunotherapy. Understanding the function of epigenetic modifiers in both preclinical and clinical settings will provide insight into a more rational design of clinical trials using epigenetic interventions and the patient subgroups that may benefit from such interventions.
Collapse
Affiliation(s)
- Kyunghee Burkitt
- Head and Neck Medical Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: (K.B.); (V.S.)
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Correspondence: (K.B.); (V.S.)
| |
Collapse
|
17
|
Mock A, Plath M, Moratin J, Tapken MJ, Jäger D, Krauss J, Fröhling S, Hess J, Zaoui K. EGFR and PI3K Pathway Activities Might Guide Drug Repurposing in HPV-Negative Head and Neck Cancers. Front Oncol 2021; 11:678966. [PMID: 34178665 PMCID: PMC8226088 DOI: 10.3389/fonc.2021.678966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
While genetic alterations in Epidermal growth factor receptor (EGFR) and PI3K are common in head and neck squamous cell carcinomas (HNSCC), their impact on oncogenic signaling and cancer drug sensitivities remains elusive. To determine their consequences on the transcriptional network, pathway activities of EGFR, PI3K, and 12 additional oncogenic pathways were inferred in 498 HNSCC samples of The Cancer Genome Atlas using PROGENy. More than half of HPV-negative HNSCC showed a pathway activation in EGFR or PI3K. An amplification in EGFR and a mutation in PI3KCA resulted in a significantly higher activity of the respective pathway (p = 0.017 and p = 0.007). Interestingly, both pathway activations could only be explained by genetic alterations in less than 25% of cases indicating additional molecular events involved in the downstream signaling. Suitable in vitro pathway models could be identified in a published drug screen of 45 HPV-negative HNSCC cell lines. An active EGFR pathway was predictive for the response to the PI3K inhibitor buparlisib (p = 6.36E-03) and an inactive EGFR and PI3K pathway was associated with efficacy of the B-cell lymphoma (BCL) inhibitor navitoclax (p = 9.26E-03). In addition, an inactive PI3K pathway correlated with a response to multiple Histone deacetylase inhibitor (HDAC) inhibitors. These findings require validation in preclinical models and clinical studies.
Collapse
Affiliation(s)
- Andreas Mock
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany.,Division of Translational Medical Oncology, NCT Heidelberg, German Cancer Center (DKFZ), Heidelberg, Germany
| | - Michaela Plath
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Julius Moratin
- Department of Oral and Cranio-Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Johanna Tapken
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Krauss
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, NCT Heidelberg, German Cancer Center (DKFZ), Heidelberg, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Mechanisms of Head and Neck Tumors, DKFZ, Heidelberg, Germany
| | - Karim Zaoui
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
18
|
Bahl S, Ling H, Acharige NPN, Santos-Barriopedro I, Pflum MKH, Seto E. EGFR phosphorylates HDAC1 to regulate its expression and anti-apoptotic function. Cell Death Dis 2021; 12:469. [PMID: 33976119 PMCID: PMC8113371 DOI: 10.1038/s41419-021-03697-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
HDAC1 is the prototypical human histone deacetylase (HDAC) enzyme responsible for catalyzing the removal of acetyl group from lysine residues on many substrate proteins. By deacetylating histones and non-histone proteins, HDAC1 has a profound effect on the regulation of gene transcription and many processes related to cell growth and cell death, including cell cycle progression, DNA repair, and apoptosis. Early studies reveal that, like most eukaryotic proteins, the functions and activities of HDAC1 are regulated by post-translational modifications. For example, serine phosphorylation of HDAC1 by protein kinase CK2 promotes HDAC1 deacetylase enzymatic activity and alters its interactions with proteins in corepressor complexes. Here, we describe an alternative signaling pathway by which HDAC1 activities are regulated. Specifically, we discover that EGFR activity promotes the tyrosine phosphorylation of HDAC1, which is necessary for its protein stability. A key EGFR phosphorylation site on HDAC1, Tyr72, mediates HDAC1's anti-apoptotic function. Given that HDAC1 overexpression and EGFR activity are strongly related with tumor progression and cancer cell survival, HDAC1 tyrosine phosphorylation may present a possible target to manipulate HDAC1 protein levels in future potential cancer treatment strategies.
Collapse
Affiliation(s)
- Sonali Bahl
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- GW Cancer Center, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Hongbo Ling
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- GW Cancer Center, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | | | - Irene Santos-Barriopedro
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- GW Cancer Center, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Edward Seto
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
- GW Cancer Center, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
| |
Collapse
|
19
|
Lang L, Xiong Y, Prieto-Dominguez N, Loveless R, Jensen C, Shay C, Teng Y. FGF19/FGFR4 signaling axis confines and switches the role of melatonin in head and neck cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:93. [PMID: 33691750 PMCID: PMC7945659 DOI: 10.1186/s13046-021-01888-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/21/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND There is no consensus about the effective dosages of melatonin in cancer management, thus, it is imperative to fully understand the dose-dependent responsiveness of cancer cells to melatonin and the underlying mechanisms. METHODS Head and neck squamous cell carcinoma (HNSCC) cells with or without melatonin treatment were used as a research platform. Gene depletion was achieved by short hairpin RNA, small interfering RNA, and CRISPR/Cas9. Molecular changes and regulations were assessed by Western blotting, quantitative RT-PCR (qRT-PCR), immunohistochemistry, and chromatin Immunoprecipitation coupled with qPCR (ChIP-qPCR). The therapeutic efficacy of FGF19/FGFR4 inhibition in melatonin-mediated tumor growth and metastasis was evaluated in orthotopic tongue tumor mice. RESULTS The effect of melatonin on controlling cell motility and metastasis varies in HNSCC cells, which is dose-dependent. Mechanistically, high-dose melatonin facilitates the upregulation of FGF19 expression through activating endoplasmic stress (ER)-associated protein kinase RNA-like endoplasmic reticulum kinase (PERK)-Eukaryotic initiation factor 2 alpha (eIF2α)-activating transcription factor 4 (ATF4) pathway, which in turn promotes FGFR4-Vimentin invasive signaling and attenuates the role of melatonin in repressing metastasis. Intriguingly, following long-term exposure to high-dose melatonin, epithelial HNSCC cells revert the process towards mesenchymal transition and turn more aggressive, which is enabled by FGF19/FGFR4 upregulation and alleviated by genetic depletion of the FGF19 and FGFR4 genes or the treatment of FGFR4 inhibitor H3B-6527. CONCLUSIONS Our study gains novel mechanistic insights into melatonin-mediated modulation of FGF19/FGFR4 signaling in HNSCC, demonstrating that activating this molecular node confines the role of melatonin in suppressing metastasis and even triggers the switch of its function from anti-metastasis to metastasis promotion. The blockade of FGF19/FGFR4 signaling would have great potential in improving the efficacy of melatonin supplements in cancer treatment.
Collapse
Affiliation(s)
- Liwei Lang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yuanping Xiong
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.,Present address: Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nestor Prieto-Dominguez
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Caleb Jensen
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chloe Shay
- Department of Pediatrics, Emory Children's Center, Emory University, Atlanta, GA, USA
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA. .,Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA. .,Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA, USA.
| |
Collapse
|
20
|
Romanowska K, Sobecka A, Rawłuszko-Wieczorek AA, Suchorska WM, Golusiński W. Head and Neck Squamous Cell Carcinoma: Epigenetic Landscape. Diagnostics (Basel) 2020; 11:diagnostics11010034. [PMID: 33375464 PMCID: PMC7823717 DOI: 10.3390/diagnostics11010034] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) constitutes the sixth most prevalent cancer worldwide. The molecular pathogenesis of HNSCC includes disorders in cell cycle, intercellular signaling, proliferation, squamous cell differentiation and apoptosis. In addition to the genetic mutations, changes in HNSCC are also characterized by the accumulation of epigenetic alterations such as DNA methylation, histone modifications, non-coding RNA activity and RNA methylation. In fact, some of them may promote cancer formation and progression by controlling the gene expression machinery, hence, they could be used as biomarkers in the clinical surveillance of HNSCC or as targets for therapeutic strategies. In this review, we focus on the current knowledge regarding epigenetic modifications observed in HNSCC and its predictive value for cancer development.
Collapse
Affiliation(s)
- Kamila Romanowska
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
- Correspondence:
| | - Agnieszka Sobecka
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | | | - Wiktoria M. Suchorska
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
| |
Collapse
|
21
|
Huang H, Fu Y, Zhang Y, Peng F, Lu M, Feng Y, Chen L, Chen Z, Li M, Chen Y. Dissection of Anti-tumor Activity of Histone Deacetylase Inhibitor SAHA in Nasopharyngeal Carcinoma Cells via Quantitative Phosphoproteomics. Front Cell Dev Biol 2020; 8:577784. [PMID: 33324635 PMCID: PMC7726116 DOI: 10.3389/fcell.2020.577784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022] Open
Abstract
Suberoylanilide hydroxamic acid (SAHA), a pan HDAC inhibitor, has been approved by the Food and Drug Administration (FDA) to treat cutaneous T cell lymphoma (CTCL). Nevertheless, the mechanisms underlying the therapeutic effects of SAHA on tumors are yet not fully understood. Protein phosphorylation is one of the most important means to regulate key biological processes (BPs), such as cell division, growth, migration, differentiation, and intercellular communication. Thus, investigation on the impacts of SAHA treatment on global cellular phosphorylation covering major signaling pathways deepens our understanding on its anti-tumor mechanisms. Here we comprehensively identified and quantified protein phosphorylation for the first time in nasopharyngeal carcinoma (NPC) cells upon SAHA treatment by combining tandem mass tags (TMTs)-based quantitative proteomics and titanium dioxide (TiO2)-based phosphopeptide enrichment. In total, 7,430 phosphorylation sites on 2,456 phosphoproteins were identified in the NPC cell line 5-8F, of which 1,176 phosphorylation sites on 528 phosphoproteins were significantly elevated upon SAHA treatment. Gene ontology (GO) analysis showed that SAHA influenced several BPs, including mRNA/DNA processing and cell cycle. Furthermore, signaling pathway analysis and immunoblotting demonstrated that SAHA activated tumor suppressors like p53 and Rb1 via phosphorylation and promoted cell apoptosis in NPC cells but inactivated energetic pathways such as AMPK signaling. Overall, our study indicated that SAHA exerted anti-tumor roles in NPC cells, which may serve as novel therapeutic for NPC patients.
Collapse
Affiliation(s)
- Huichao Huang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Fang Peng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Miaolong Lu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Yilu Feng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.,Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China.,Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China.,Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Jiang Y, Zhou J, Zhao J, Zhang H, Li L, Li H, Chen L, Hu J, Zheng W, Jing Z. The U2AF2 /circRNA ARF1/miR-342-3p/ISL2 feedback loop regulates angiogenesis in glioma stem cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:182. [PMID: 32894165 PMCID: PMC7487667 DOI: 10.1186/s13046-020-01691-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glioma is the most common and lethal primary brain tumor in adults, and angiogenesis is one of the key factors contributing to its proliferation, aggressiveness, and malignant transformation. However, the discovery of novel oncogenes and the study of its molecular regulating mechanism based on circular RNAs (circRNAs) may provide a promising treatment target in glioma. METHODS Bioinformatics analysis, qPCR, western blotting, and immunohistochemistry were used to detect the expression levels of ISL2, miR-342-3p, circRNA ARF1 (cARF1), U2AF2, and VEGFA. Patient-derived glioma stem cells (GSCs) were established for the molecular experiments. Lentiviral-based infection was used to regulate the expression of these molecules in GSCs. The MTS, EDU, Transwell, and tube formation assays were used to detect the proliferation, invasion, and angiogenesis of human brain microvessel endothelial cells (hBMECs). RNA-binding protein immunoprecipitation, RNA pull-down, dual-luciferase reporter, and chromatin immunoprecipitation assays were used to detect the direct regulation mechanisms among these molecules. RESULTS We first identified a novel transcription factor related to neural development. ISL2 was overexpressed in glioma and correlated with poor patient survival. ISL2 transcriptionally regulated VEGFA expression in GSCs and promoted the proliferation, invasion, and angiogenesis of hBMECs via VEGFA-mediated ERK signaling. Regarding its mechanism of action, cARF1 upregulated ISL2 expression in GSCs via miR-342-3p sponging. Furthermore, U2AF2 bound to and promoted the stability and expression of cARF1, while ISL2 induced the expression of U2AF2, which formed a feedback loop in GSCs. We also showed that both U2AF2 and cARF1 had an oncogenic effect, were overexpressed in glioma, and correlated with poor patient survival. CONCLUSIONS Our study identified a novel feedback loop among U2AF2, cARF1, miR-342-3p, and ISL2 in GSCs. This feedback loop promoted glioma angiogenesis, and could provide an effective biomarker for glioma diagnosis and prognostic evaluation, as well as possibly being used for targeted therapy.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.,Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Jinpeng Zhou
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Junshuang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, 110042, China
| | - Long Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Hao Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Lian Chen
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Jiangfeng Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100 Haining Road, Shanghai, 20080, China
| | - Wei Zheng
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
23
|
Reactive Oxygen Species-Mediated Mitochondrial Dysfunction Triggers Sodium Valproate-Induced Cytotoxicity in Human Colorectal Adenocarcinoma Cells. J Gastrointest Cancer 2020; 52:899-906. [PMID: 32880040 DOI: 10.1007/s12029-020-00505-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the frequently diagnosed cancers worldwide. Currently used chemotherapeutic drugs have several side effects. Histone deacetylase (HDAC) enzyme inhibitors possess potential anti-cancer effects. Therefore, we investigated the cytotoxic potential of sodium valproate, a HDAC inhibitor in human colorectal adenocarcinoma (HT-29) cells. METHODS MTT assay was used to analyze the cytotoxicity of HT-29 cells. Intracellular reactive oxygen species (ROS) induction was evaluated by dichloro-dihydro-fluorescein diacetate staining. Dual staining with acridine orange/ethidium bromide was used to investigate the morphology-related apoptotic cell death. Mitochondrial membrane potential was analyzed by rhodamine 123 staining. E-cadherin protein expression was examined by immunofluorescence staining. RESULTS Sodium valproate at 2 and 4 mM/mL treatments significantly induced cytotoxicity. Increased intracellular ROS expression was observed in the cells treated with sodium valproate. This treatment also induced mitochondrial dissipation, apoptosis-related morphological damage, and E-cadherin expression in HT-29 cells. CONCLUSIONS Our present results suggest that sodium valproate is cytotoxic to HT-29 cells due to its pro-oxidative and apoptosis inducing potential. Sodium valproate can be used as an adjuvant along with standard chemotherapeutic agents in CRC patients after necessary in vivo and clinical studies.
Collapse
|
24
|
Chen HC, Awale S, Wu CP, Lee HH, Wu HT. Co-cultured bone marrow mesenchymal stem cells repair thioacetamide-induced hepatocyte damage. Cell Biol Int 2020; 44:2459-2472. [PMID: 32827326 DOI: 10.1002/cbin.11453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/18/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Adult stem cells, such as bone marrow mesenchymal stem cells (BMSCs), are postdevelopmental cells found in many bone tissues. They are capable of multipotent differentiation and have low immune-rejection characteristics. Hepatocytes may become inflamed and produce a large number of free radicals when affected by drugs, poisoning, or a viral infection. The excessive accumulation of free radicals in the extracellular matrix (ECM) eventually leads to liver fibrosis. This study aims to investigate the restorative effects of mouse bone marrow mesenchymal stem cells (mBMSCs) on thioacetamide (TAA)-induced damage in hepatocytes. An in vitro transwell co-culture system of HepG2 cells were co-cultured with mBMSCs. The effects of damage done to TAA-treated HepG2 cells were reflected in the overall cell survival, the expression of antioxidants (SOD1, GPX1, and CAT), the ECM (COL1A1 and MMP9), antiapoptosis characteristics (BCL2), and inflammation (TNF) genes. The majority of the damage done to HepG2 by TAA was significantly reduced when cells were co-cultured with mBMSCs. The signal transducer and activator of transcription 3 (STAT3) and its phosphorylated STAT3 (p-STAT3), as related to cell growth and survival, were detected in this study. The results show that STAT3 was significantly decreased in the TAA-treated HepG2 cells, but the STAT3 and p-STAT3 of HepG2 cells were significantly activated when the TAA-treated HepG2 co-cultured with mBMSCs. Strong expression of interleukin (Il6) messenger RNA in co-cultured mBMSCs/HepG2 indicated mBMSCs secret the cytokines IL-6, which promotes cell survival through downstream STAT3 activation and aid in the recovery of HepG2 cells damaged by TAA.
Collapse
Affiliation(s)
- Hung-Chiuan Chen
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Suresh Awale
- Department of Translational Research, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Chean-Ping Wu
- Department of Animal Science, National Chiayi University, Chiayi City, Taiwan
| | - Hu-Hui Lee
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Hsi-Tien Wu
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| |
Collapse
|
25
|
Iannelli F, Zotti AI, Roca MS, Grumetti L, Lombardi R, Moccia T, Vitagliano C, Milone MR, Ciardiello C, Bruzzese F, Leone A, Cavalcanti E, De Cecio R, Iachetta G, Valiante S, Ionna F, Caponigro F, Di Gennaro E, Budillon A. Valproic Acid Synergizes With Cisplatin and Cetuximab in vitro and in vivo in Head and Neck Cancer by Targeting the Mechanisms of Resistance. Front Cell Dev Biol 2020; 8:732. [PMID: 33015030 PMCID: PMC7461984 DOI: 10.3389/fcell.2020.00732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a devastating malignancy with a poor prognosis. The combination of cisplatin (CDDP) plus cetuximab (CX) is one of the standard first-line treatments in this disease. However, this therapeutic regimen is often associated with high toxicity and resistance, suggesting that new combinatorial strategies are needed to improve its therapeutic index. In our study, we evaluated the antitumor effects of valproic acid (VPA), a well-known antiepileptic agent with histone deacetylase inhibitory activity, in combination with CDDP/CX doublet in head and neck squamous cell carcinoma (HNSCC) models. We demonstrated, in HNSCC cell lines, but not in normal human fibroblasts, that simultaneous exposure to equitoxic doses of VPA plus CDDP/CX resulted in a clear synergistic antiproliferative and pro-apoptotic effects. The synergistic antitumor effect was confirmed in four different 3D-self-assembled spheroid models, suggesting the ability of the combined approach to affect also the cancer stem cells compartment. Mechanistically, VPA enhanced DNA damage in combination treatment by reducing the mRNA expression of ERCC Excision Repair 1, a critical player in DNA repair, and by increasing CDDP intracellular concentration via upregulation at transcriptional level of CDDP influx channel copper transporter 1 and downregulation of the ATPAse ATP7B involved in CDDP-export. Valproic acid also induced a dose-dependent downregulation of epidermal growth factor receptor (EGFR) expression and of MAPK and AKT downstream signaling pathways and prevent CDDP- and/or CX-induced EGFR nuclear translocation, a well-known mechanism of resistance to chemotherapy. Indeed, VPA impaired the transcription of genes induced by non-canonical activity of nuclear EGFR, such as cyclin D1 and thymidylate synthase. Finally, we confirmed the synergistic antitumor effect also in vivo in both heterotopic and orthotopic models, demonstrating that the combined treatment completely blocked HNSCC xenograft tumors growth in nude mice. Overall, the introduction of a safe and generic drug such as VPA into the conventional treatment for R/M HNSCC represents an innovative and feasible antitumor strategy that warrants further clinical evaluation. A phase II clinical trial exploring the combination of VPA and CDDP/CX in R/M HNSCC patients is currently ongoing in our institute.
Collapse
Affiliation(s)
- Federica Iannelli
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Andrea Ilaria Zotti
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Laura Grumetti
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Tania Moccia
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Maria Rita Milone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Chiara Ciardiello
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Rossella De Cecio
- Pathology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | | | | | - Franco Ionna
- Maxillo-facial & ENT Surgery Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesco Caponigro
- Head and Neck Medical Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| |
Collapse
|
26
|
Trilla-Fuertes L, Ghanem I, Gámez-Pozo A, Maurel J, G-Pastrián L, Mendiola M, Peña C, López-Vacas R, Prado-Vázquez G, López-Camacho E, Zapater-Moros A, Heredia V, Cuatrecasas M, García-Alfonso P, Capdevila J, Conill C, García-Carbonero R, Ramos-Ruiz R, Fortes C, Llorens C, Nanni P, Fresno Vara JÁ, Feliu J. Genetic Profile and Functional Proteomics of Anal Squamous Cell Carcinoma: Proposal for a Molecular Classification. Mol Cell Proteomics 2020; 19:690-700. [PMID: 32107283 PMCID: PMC7124473 DOI: 10.1074/mcp.ra120.001954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Anal squamous cell carcinoma is a rare tumor. Chemo-radiotherapy yields a 50% 3-year relapse-free survival rate in advanced anal cancer, so improved predictive markers and therapeutic options are needed. High-throughput proteomics and whole-exome sequencing were performed in 46 paraffin samples from anal squamous cell carcinoma patients. Hierarchical clustering was used to establish groups de novo Then, probabilistic graphical models were used to study the differences between groups of patients at the biological process level. A molecular classification into two groups of patients was established, one group with increased expression of proteins related to adhesion, T lymphocytes and glycolysis; and the other group with increased expression of proteins related to translation and ribosomes. The functional analysis by the probabilistic graphical model showed that these two groups presented differences in metabolism, mitochondria, translation, splicing and adhesion processes. Additionally, these groups showed different frequencies of genetic variants in some genes, such as ATM, SLFN11 and DST Finally, genetic and proteomic characteristics of these groups suggested the use of some possible targeted therapies, such as PARP inhibitors or immunotherapy.
Collapse
Affiliation(s)
| | - Ismael Ghanem
- Medical Oncology Department, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz -IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Joan Maurel
- Medical Oncology Department, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, University of Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
| | - Laura G-Pastrián
- Pathology Department, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain; Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain; Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Av. Monforte de Lemos 5, 28029, Madrid, Spain
| | - Cristina Peña
- Pathology Department, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Rocío López-Vacas
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz -IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | | | - Elena López-Camacho
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz -IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Andrea Zapater-Moros
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz -IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Victoria Heredia
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Av. Monforte de Lemos 5, 28029, Madrid, Spain; Translational Oncology Lab, Hospital Universitario La Paz -IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Hospital Clínic Universitari de Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
| | - Pilar García-Alfonso
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, /Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Jaume Capdevila
- Medical Oncology Service, Vall Hebron University Hospital. Vall Hebron Institute of Oncology (VHIO), Paseigg de la Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Carles Conill
- Radiotherapy Oncology Department, Hospital Clínic Universitari de Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
| | - Rocío García-Carbonero
- Medical Oncology Service, Hospital Universitario 12 de Ocubre, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Ricardo Ramos-Ruiz
- Genomics Unit Cantoblanco, Parque Científico de Madrid, C/ Faraday 7, 28049, Madrid, Spain
| | - Claudia Fortes
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carlos Llorens
- Biotechvana SL, Parque Científico de Madrid, C/ Faraday 7, 28049, Madrid, Spain
| | - Paolo Nanni
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Juan Ángel Fresno Vara
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz -IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain; Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Av. Monforte de Lemos 5, 28029, Madrid, Spain
| | - Jaime Feliu
- Medical Oncology Department, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain; Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Av. Monforte de Lemos 5, 28029, Madrid, Spain; Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
27
|
Guo T, Zambo KDA, Zamuner FT, Ou T, Hopkins C, Kelley DZ, Wulf HA, Winkler E, Erbe R, Danilova L, Considine M, Sidransky D, Favorov A, Florea L, Fertig EJ, Gaykalova DA. Chromatin structure regulates cancer-specific alternative splicing events in primary HPV-related oropharyngeal squamous cell carcinoma. Epigenetics 2020; 15:959-971. [PMID: 32164487 DOI: 10.1080/15592294.2020.1741757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus-related oropharyngeal squamous cell carcinoma (HPV+ OPSCC) represents a unique disease entity within head and neck cancer with rising incidence. Previous work has shown that alternative splicing events (ASEs) are prevalent in HPV+ OPSCC, but further validation is needed to understand the regulation of this process and its role in these tumours. In this study, eleven ASEs (GIT2, CTNNB1, MKNK2, MRPL33, SIPA1L3, SNHG6, SYCP2, TPRG1, ZHX2, ZNF331, and ELOVL1) were selected for validation from 109 previously published candidate ASEs to elucidate the post-transcriptional mechanisms of oncogenesis in HPV+ disease. In vitro qRT-PCR confirmed differential expression of 9 of 11 ASE candidates, and in silico analysis within the TCGA cohort confirmed 8 of 11 candidates. Six ASEs (MRPL33, SIPA1L3, SNHG6, TPRG1, ZHX2, and ELOVL1) showed significant differential expression across both methods. Further evaluation of chromatin modification revealed that ASEs strongly correlated with cancer-specific distribution of acetylated lysine 27 of histone 3 (H3K27ac). Subsequent epigenetic treatment of HPV+ HNSCC cell lines (UM-SCC-047 and UPCI-SCC-090) with JQ1 not only induced downregulation of cancer-specific ASE isoforms, but also growth inhibition in both cell lines. The UPCI-SCC-090 cell line, with greater ASE expression, also showed more significant growth inhibition after JQ1 treatment. This study confirms several novel cancer-specific ASEs in HPV+OPSCC and provides evidence for the role of chromatin modifications in regulation of alternative splicing in HPV+OPSCC. This highlights the role of epigenetic changes in the oncogenesis of HPV+OPSCC, which represents a unique, unexplored target for therapeutics that can alter the global post-transcriptional landscape.
Collapse
Affiliation(s)
- Theresa Guo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Kristina Diana A Zambo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Fernando T Zamuner
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Tingting Ou
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Christopher Hopkins
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Dylan Z Kelley
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Hildegard A Wulf
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Eli Winkler
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Rossin Erbe
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Ludmila Danilova
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, MD, USA.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences , Moscow, Russia
| | - Michael Considine
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Alexander Favorov
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, MD, USA.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences , Moscow, Russia
| | - Liliana Florea
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University , Baltimore, MD, USA
| | - Elana J Fertig
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, MD, USA.,Department of Applied Mathematics and Statistics, Johns Hopkins University , Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine , MD, Baltimore, USA
| | - Daria A Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| |
Collapse
|
28
|
Design and Synthesis of Arf1-Targeting γ-Dipeptides as Potential Agents against Head and Neck Squamous Cell Carcinoma. Cells 2020; 9:cells9020286. [PMID: 31991585 PMCID: PMC7072570 DOI: 10.3390/cells9020286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is one of the leading causes of cancer-related deaths and calls for new druggable targets. We have previously highlighted the critical role of ADP-ribosylation factor-1 (Arf1) activation in HNSCC. In the present study, we address the question whether targeting Arf1 could be proposed as a valuable strategy against HNSCC. Methods: We rationally designed and synthesized constrained ATC-based (4-amino-(methyl)-1,3-thiazole-5-carboxylic acid) γ-dipeptides to block Arf1 activation. We evaluated the effects of these γ-dipeptides in HNSCC cells: The cell viability was determined in 2D and 3D cell cultures after 72 h treatment and Arf1 protein levels and activity were assessed by GGA3 pull-down and Western blotting assays. Results: Targeting Arf1 offers a valuable strategy to counter HNSCC. Our new Arf1-targeting compounds revealed a strong in vitro cytotoxicity against HNSCC cells, through inhibiting Arf1 activation and its downstream pathways. Conclusions: Arf1-targeting γ-dipeptides developed in this study may represent a promising targeted therapeutic to improve managing the HNSCC disease.
Collapse
|
29
|
Yang H, Jin X, Dan H, Chen Q. Histone modifications in oral squamous cell carcinoma and oral potentially malignant disorders. Oral Dis 2019; 26:719-732. [PMID: 31056829 DOI: 10.1111/odi.13115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Huamei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Medicine of Carcinogenesis and Management West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Xin Jin
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Medicine of Carcinogenesis and Management West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Medicine of Carcinogenesis and Management West China Hospital of Stomatology, Sichuan University Chengdu China
| |
Collapse
|
30
|
Prieto-Dominguez N, Parnell C, Teng Y. Drugging the Small GTPase Pathways in Cancer Treatment: Promises and Challenges. Cells 2019; 8:E255. [PMID: 30884855 PMCID: PMC6468615 DOI: 10.3390/cells8030255] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Small GTPases are a family of low molecular weight GTP-hydrolyzing enzymes that cycle between an inactive state when bound to GDP and an active state when associated to GTP. Small GTPases regulate key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants in a great array of pathophysiological processes. Indeed, the dysfunction and deregulation of certain small GTPases, such as the members of the Ras and Arf subfamilies, have been related with the promotion and progression of cancer. Therefore, the development of inhibitors that target dysfunctional small GTPases could represent a potential therapeutic strategy for cancer treatment. This review covers the basic biochemical mechanisms and the diverse functions of small GTPases in cancer. We also discuss the strategies and challenges of inhibiting the activity of these enzymes and delve into new approaches that offer opportunities to target them in cancer therapy.
Collapse
Affiliation(s)
- Néstor Prieto-Dominguez
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Institute of Biomedicine (IBIOMED), University of León, León 24010, Spain.
| | | | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Department of Medical laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|