1
|
Howard PG, Zou P, Zhang Y, Huang F, Tesic V, Wu CYC, Lee RHC. Serum/glucocorticoid regulated kinase 1 (SGK1) in neurological disorders: pain or gain. Exp Neurol 2024; 382:114973. [PMID: 39326820 PMCID: PMC11536509 DOI: 10.1016/j.expneurol.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.
Collapse
Affiliation(s)
- Peyton Grace Howard
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Peibin Zou
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Yulan Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Fang Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA.
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA; Department of Department of Cell Biology & Anatomy, Louisiana State University Health, Shreveport, LA, USA.
| |
Collapse
|
2
|
Jia M, Zhou X, Li P, Zhang S. An injectable biomimetic hydrogel adapting brain tissue mechanical strength for postoperative treatment of glioblastoma without anti-tumor drugs participation. J Control Release 2024; 373:699-712. [PMID: 39089504 DOI: 10.1016/j.jconrel.2024.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Adapting the mechanical strength between the implant materials and the brain tissue is crucial for the postoperative treatment of glioblastoma. However, no related study has been reported. Herein, we report an injectable lipoic acid‑iron (LA-Fe) hydrogel (LFH) that can adapt to the mechanical strength of various brain tissues, including human brain tissue, by coordinating Fe3+ into a hybrid hydrogel of LA and its sodium salt (LANa). When LFH, which matches the mechanical properties of mouse brain tissue (337 ± 8.06 Pa), was injected into the brain resection cavity, the water content of the brain tissue was maintained at a normal level (77%). Similarly, LFH did not induce the activation or hypertrophy of glial astrocytes, effectively preventing brain edema and scar hyperplasia. Notably, LFH spontaneously degrades in the interstitial fluid, releasing LA and Fe3+ into tumor cells. The redox couples LA/DHLA (dihydrolipoic acid, reduction form of LA in cells) and Fe3+/Fe2+ would regenerate each other to continuously provide ROS to induce ferroptosis and activate immunogenic cell death. As loaded the anti-PDL1, anti-PDL1@LFH further enhanced the efficacy of tumor-immunotherapy and promoted tumor ferroptosis. The injectable hydrogel that adapted the mechanical strength of tissues shed a new light for the tumor postoperative treatment.
Collapse
Affiliation(s)
- Mengqi Jia
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; School of Basic Medical Science, Henan University, Zhengzhou 450046, China
| | - Xiaodong Zhou
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Pengfei Li
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Gulzar M, Noor S, Hasan GM, Hassan MI. The role of serum and glucocorticoid-regulated kinase 1 in cellular signaling: Implications for drug development. Int J Biol Macromol 2024; 258:128725. [PMID: 38092114 DOI: 10.1016/j.ijbiomac.2023.128725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a ubiquitously expressed protein belonging to the Ser/Thr kinase family. It regulates diverse physiological processes, including epithelial sodium channel activity, hypertension, cell proliferation, and insulin sensitivity. Due to its significant role in the pathogenesis of numerous diseases, SGK1 can be exploited as a potential therapeutic target to address challenging health problems. SGK1 is associated with the development of obesity, and its overexpression enhances the sodium-glucose co-transporter 1 activity, which absorbs intestinal glucose. This review highlighted the detailed functional significance of SGK1 signaling and role in different diseases and subsequent therapeutic targeting. We aim to provide deeper mechanistic insights into understanding the pathogenesis and recent advancements in the SGK1 targeted drug development process. Small-molecule inhibitors are being developed with excellent binding affinity and improved SGK1 inhibition with desired selectivity. We have discussed small molecule inhibitors designed explicitly as potent SGK1 inhibitors and their therapeutic implications in various diseases. We further addressed the therapeutic potential and mechanism of action of these SGK1 inhibitors and provided a strong scientific foundation for developing effective therapeutics.
Collapse
Affiliation(s)
- Mehak Gulzar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Abbruzzese C, Matteoni S, Matarrese P, Signore M, Ascione B, Iessi E, Gurtner A, Sacconi A, Ricci-Vitiani L, Pallini R, Pace A, Villani V, Polo A, Costantini S, Budillon A, Ciliberto G, Paggi MG. Chlorpromazine affects glioblastoma bioenergetics by interfering with pyruvate kinase M2. Cell Death Dis 2023; 14:821. [PMID: 38092755 PMCID: PMC10719363 DOI: 10.1038/s41419-023-06353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Glioblastoma (GBM) is the most frequent and lethal brain tumor, whose therapeutic outcome - only partially effective with current schemes - places this disease among the unmet medical needs, and effective therapeutic approaches are urgently required. In our attempts to identify repositionable drugs in glioblastoma therapy, we identified the neuroleptic drug chlorpromazine (CPZ) as a very promising compound. Here we aimed to further unveil the mode of action of this drug. We performed a supervised recognition of the signal transduction pathways potentially influenced by CPZ via Reverse-Phase Protein microArrays (RPPA) and carried out an Activity-Based Protein Profiling (ABPP) followed by Mass Spectrometry (MS) analysis to possibly identify cellular factors targeted by the drug. Indeed, the glycolytic enzyme PKM2 was identified as one of the major targets of CPZ. Furthermore, using the Seahorse platform, we analyzed the bioenergetics changes induced by the drug. Consistent with the ability of CPZ to target PKM2, we detected relevant changes in GBM energy metabolism, possibly attributable to the drug's ability to inhibit the oncogenic properties of PKM2. RPE-1 non-cancer neuroepithelial cells appeared less responsive to the drug. PKM2 silencing reduced the effects of CPZ. 3D modeling showed that CPZ interacts with PKM2 tetramer in the same region involved in binding other known activators. The effect of CPZ can be epitomized as an inhibition of the Warburg effect and thus malignancy in GBM cells, while sparing RPE-1 cells. These preclinical data enforce the rationale that allowed us to investigate the role of CPZ in GBM treatment in a recent multicenter Phase II clinical trial.
Collapse
Affiliation(s)
- Claudia Abbruzzese
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Silvia Matteoni
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Barbara Ascione
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Elisabetta Iessi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Aymone Gurtner
- SAFU Unit, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
- The Institute of Translational Pharmacology - IFT - CNR, Rome, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Roberto Pallini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Institute of Neurosurgery, Catholic University School of Medicine, 00168, Rome, Italy
| | - Andrea Pace
- Neuro-Oncology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Veronica Villani
- Neuro-Oncology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Polo
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Napoli, Italy
| | - Susan Costantini
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Napoli, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Napoli, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Marco G Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
5
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Fu X, Xiong B, Zhao M, Wan W, Zhang S, Wu X, Xu J. Quinacrine is active in preclinical models of glioblastoma through suppressing angiogenesis, inducing oxidative stress and activating AMPK. Toxicol In Vitro 2022; 83:105420. [PMID: 35724837 DOI: 10.1016/j.tiv.2022.105420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/22/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023]
Abstract
The poor prognosis of glioblastoma requires new innovative treatment strategies. We and others have shown that targeting tumor as well as angiogenesis in glioblastoma are effective therapeutic strategies. In line with these efforts, this work reveals that Quinacrine, an antimalarial drug, is a dual inhibitor of angiogenesis and glioblastoma. Using multiple glioblastoma cell lines, we found that Quinacrine inhibited proliferation and induced apoptosis in these cells, and acted in synergy with Temozolomide. Quinacrine potently inhibited tubular structure formations of glioblastoma microvascular endothelial cell (GMVEC) isolated from glioblastoma patients, especially for early stage tubular structure formation. Although Quinacrine induces apoptosis in GMVEC, the anti-angiogenic activity of Quinacrine is independent of its pro-apoptotic activity in GMVECs. Quinacrine inhibits glioblastoma angiogenesis and growth in vivo, and acts synergistically with Temozolomide in inhibiting glioblastoma growth in mice. Mechanistically, we found that Quinacrine acts on glioblastoma through inducing oxidative stress, impairing mitochondrial function and activating AMP-activated protein kinase (AMPK). Our work is the first to demonstrate the anti-angiogenic activity of Quinacrine. Our findings highlight Quinacrine as an attractive candidate to support treatment of glioblastoma.
Collapse
Affiliation(s)
- Xiaohong Fu
- Department of Neurosurgery, The First People's Hospital of Zunyi, Zunyi, People's Republic of China; Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Bo Xiong
- Department of Neurosurgery, The First People's Hospital of Zunyi, Zunyi, People's Republic of China
| | - Min Zhao
- Department of Pharmacy, The First People's Hospital of Zunyi, Zunyi, People's Republic of China
| | - Weifeng Wan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shaofu Zhang
- Department of Neurosurgery, The First People's Hospital of Zunyi, Zunyi, People's Republic of China
| | - Xuedong Wu
- Department of Neurosurgery, The First People's Hospital of Zunyi, Zunyi, People's Republic of China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Li Z, Si W, Jin W, Yuan Z, Chen Y, Fu L. Targeting autophagy in colorectal cancer: An update on pharmacological small-molecule compounds. Drug Discov Today 2022; 27:2373-2385. [PMID: 35589015 DOI: 10.1016/j.drudis.2022.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023]
Abstract
Autophagy, an evolutionarily highly conserved cellular degradation process, plays the Janus role (either cytoprotective or death-promoting) in colorectal cancer, so the targeting of several key autophagic pathways with small-molecule compounds may be a new therapeutic strategy. In this review, we discuss autophagy-associated cell death pathways and key cytoprotective autophagy pathways in colorectal cancer. Moreover, we summarize a series of small-molecule compounds that have the potential to modulate autophagy-associated cell death or cytoprotective autophagy for therapeutic purposes. Taken together, these findings demonstrate the Janus role of autophagy in colorectal cancer, and shed new light on the exploitation of a growing number of small-molecule compounds to target autophagy in future cancer drug discovery.
Collapse
Affiliation(s)
- Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wen Si
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences Limited, Hong Kong Special Administrative Region; Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhaoxin Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
8
|
Lu RQ, Zhang YY, Zhao HQ, Guo RQ, Jiang ZX, Guo R. SGK1, a Critical Regulator of Immune Modulation and Fibrosis and a Potential Therapeutic Target in Chronic Graft-Versus-Host Disease. Front Immunol 2022; 13:822303. [PMID: 35222400 PMCID: PMC8866649 DOI: 10.3389/fimmu.2022.822303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Patients with severe chronic graft-versus-host disease (cGVHD) always experience debilitating tissue injury and have poorer quality of life and shorter survival time. The early stage of cGVHD is characterized by inflammation, which eventually leads to extensive tissue fibrosis in various organs, such as skin and lung, eventually inducing scleroderma-like changes and bronchiolitis obliterans syndrome. Here we review the functions of serum/glucocorticoid regulated kinase 1 (SGK1), a hub molecule in multiple signal transduction pathways and cell phosphorylation cascades, which has important roles in cell proliferation and ion channel regulation, and its relevance in cGVHD. SGK1 phosphorylates the ubiquitin ligase, NEDD4, and induces Th cells to differentiate into Th17 and Th2 phenotypes, hinders Treg development, and promotes inflammatory fibrosis. Phosphorylation of NEDD4 by SGK1 also leads to up-regulation of the transcription factor SMAD2/3, thereby amplifying the fibrosis-promoting effect of TGF-β. SGK1 also up-regulates the inflammatory transcription factor, nuclear factor-κB (NF-κB), which in turn stimulates the expression of multiple inflammatory mediators, including connective tissue growth factor. Overexpression of SGK1 has been observed in various fibrotic diseases, including pulmonary fibrosis, diabetic renal fibrosis, liver cirrhosis, hypertensive cardiac fibrosis, peritoneal fibrosis, and Crohn’s disease. In addition, SGK1 inhibitors can attenuate, or even reverse, the effect of fibrosis, and may be used to treat inflammatory conditions and/or fibrotic diseases, such as cGVHD, in the future.
Collapse
Affiliation(s)
- Run-Qing Lu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yin-Yin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Qiu Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong-Qun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhong-Xing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Repurposing of Anti-Malarial Drug Quinacrine for Cancer Treatment: A Review. Sci Pharm 2022. [DOI: 10.3390/scipharm90010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Quinacrine (QC), a synthetic drug belonging to the 9-aminoacridine family, has been used extensively to treat malaria and multiple ailments over the past several decades. Following its discovery in the 1920s and extensive use for the treatment of malaria for nearly two decades, numerous studies have explored its antineoplastic potential in both preclinical and clinical settings. Multiple studies spanning over seven decades have examined a wide range of QC anticancer activities across various types of cancers, along with the underlying mechanisms. Many of these mechanisms, including activation of the p53 signaling cascade and simultaneous NF-κB signaling inhibition, have been reported in various studies, bringing QC to a unique polypharmacological category drug possessing the potential to treat a wide variety of diseases, including cancer. This article summarizes most of the research conducted over several decades to uncover new molecular mechanisms activated or inactivated and directly correlate with antineoplastic activity QC.
Collapse
|
10
|
Signore M, Manganelli V. Reverse Phase Protein Arrays in cancer stem cells. Methods Cell Biol 2022; 171:33-61. [DOI: 10.1016/bs.mcb.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Bu F, Zhang J, Shuai W, Liu J, Sun Q, Ouyang L. Repurposing drugs in autophagy for the treatment of cancer: From bench to bedside. Drug Discov Today 2021; 27:1815-1831. [PMID: 34808390 DOI: 10.1016/j.drudis.2021.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
Autophagy is a multistep degradation pathway involving the lysosome, which supports nutrient reuse and metabolic balance, and has been implicated as a process that regulates cancer genesis and development. Targeting tumors by regulating autophagy has become a therapeutic strategy of interest. Drugs with other indications can have antitumor activity by modulating autophagy, providing a shortcut to developing novel antitumor drugs (i.e., drug repurposing/repositioning), as successfully performed for chloroquine (CQ); an increasing number of repurposed drugs have since advanced into clinical trials. In this review, we describe the application of different drug-repurposing approaches in autophagy for the treatment of cancer and focus on repurposing drugs that target autophagy to treat malignant neoplasms.
Collapse
Affiliation(s)
- Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Signore M, Alfonsi R, Federici G, Nanni S, Addario A, Bertuccini L, Aiello A, Di Pace AL, Sperduti I, Muto G, Giacobbe A, Collura D, Brunetto L, Simone G, Costantini M, Crinò L, Rossi S, Tabolacci C, Diociaiuti M, Merlino T, Gallucci M, Sentinelli S, Papalia R, De Maria R, Bonci D. Diagnostic and prognostic potential of the proteomic profiling of serum-derived extracellular vesicles in prostate cancer. Cell Death Dis 2021; 12:636. [PMID: 34155195 PMCID: PMC8215487 DOI: 10.1038/s41419-021-03909-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) and their cargo represent an intriguing source of cancer biomarkers for developing robust and sensitive molecular tests by liquid biopsy. Prostate cancer (PCa) is still one of the most frequent and deadly tumor in men and analysis of EVs from biological fluids of PCa patients has proven the feasibility and the unprecedented potential of such an approach. Here, we exploited an antibody-based proteomic technology, i.e. the Reverse-Phase Protein microArrays (RPPA), to measure key antigens and activated signaling in EVs isolated from sera of PCa patients. Notably, we found tumor-specific protein profiles associated with clinical settings as well as candidate markers for EV-based tumor diagnosis. Among others, PD-L1, ERG, Integrin-β5, Survivin, TGF-β, phosphorylated-TSC2 as well as partners of the MAP-kinase and mTOR pathways emerged as differentially expressed endpoints in tumor-derived EVs. In addition, the retrospective analysis of EVs from a 15-year follow-up cohort generated a protein signature with prognostic significance. Our results confirm that serum-derived EV cargo may be exploited to improve the current diagnostic procedures while providing potential prognostic and predictive information. The approach proposed here has been already applied to tumor entities other than PCa, thus proving its value in translational medicine and paving the way to innovative, clinically meaningful tools.
Collapse
Affiliation(s)
- Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Romina Alfonsi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Simona Nanni
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonio Addario
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Bertuccini
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Aurora Aiello
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy
| | - Anna Laura Di Pace
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giovanni Muto
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Alessandro Giacobbe
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Devis Collura
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Lidia Brunetto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Simone
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Manuela Costantini
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Lucio Crinò
- Department of Oncology, IRST-Meldola, Meldola, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Diociaiuti
- Department of Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Tania Merlino
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Gallucci
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy.,Department of Urology, Sapienza University of Rome, Rome, Italy
| | | | | | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Désirée Bonci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy. .,IRCCS, Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
13
|
Batara DCR, Choi MC, Shin HU, Kim H, Kim SH. Friend or Foe: Paradoxical Roles of Autophagy in Gliomagenesis. Cells 2021; 10:1411. [PMID: 34204169 PMCID: PMC8227518 DOI: 10.3390/cells10061411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults, with a poor median survival of approximately 15 months after diagnosis. Despite several decades of intensive research on its cancer biology, treatment for GBM remains a challenge. Autophagy, a fundamental homeostatic mechanism, is responsible for degrading and recycling damaged or defective cellular components. It plays a paradoxical role in GBM by either promoting or suppressing tumor growth depending on the cellular context. A thorough understanding of autophagy's pleiotropic roles is needed to develop potential therapeutic strategies for GBM. In this paper, we discussed molecular mechanisms and biphasic functions of autophagy in gliomagenesis. We also provided a summary of treatments for GBM, emphasizing the importance of autophagy as a promising molecular target for treating GBM.
Collapse
Affiliation(s)
- Don Carlo Ramos Batara
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| | - Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea;
| | - Hyeon-Uk Shin
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea;
| | - Sung-Hak Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| |
Collapse
|
14
|
Matteoni S, Matarrese P, Ascione B, Buccarelli M, Ricci-Vitiani L, Pallini R, Villani V, Pace A, Paggi MG, Abbruzzese C. Anticancer Properties of the Antipsychotic Drug Chlorpromazine and Its Synergism With Temozolomide in Restraining Human Glioblastoma Proliferation In Vitro. Front Oncol 2021; 11:635472. [PMID: 33718225 PMCID: PMC7952964 DOI: 10.3389/fonc.2021.635472] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
The extremely poor prognosis of patients affected by glioblastoma (GBM, grade IV glioma) prompts the search for new and more effective therapies. In this regard, drug repurposing or repositioning can represent a safe, swift, and inexpensive way to bring novel pharmacological approaches from bench to bedside. Chlorpromazine, a medication used since six decades for the therapy of psychiatric disorders, shows in vitro several features that make it eligible for repositioning in cancer therapy. Using six GBM cell lines, three of which growing as patient-derived neurospheres and displaying stem-like properties, we found that chlorpromazine was able to inhibit viability in an apoptosis-independent way, induce hyperdiploidy, reduce cloning efficiency as well as neurosphere formation and downregulate the expression of stemness genes in all these cell lines. Notably, chlorpromazine synergized with temozolomide, the first-line therapeutic in GBM patients, in hindering GBM cell viability, and both drugs strongly cooperated in reducing cloning efficiency and inducing cell death in vitro for all the GBM cell lines assayed. These results prompted us to start a Phase II clinical trial on GBM patients (EudraCT # 2019-001988-75; ClinicalTrials.gov Identifier: NCT04224441) by adding chlorpromazine to temozolomide in the adjuvant phase of the standard first-line therapeutic protocol.
Collapse
Affiliation(s)
- Silvia Matteoni
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ascione
- Center for Gender Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Pallini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Institute of Neurosurgery, Catholic University School of Medicine, Rome, Italy
| | - Veronica Villani
- Neuro-Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Pace
- Neuro-Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Marco G Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Abbruzzese
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
15
|
Das B, Kundu CN. Anti-Cancer Stem Cells Potentiality of an Anti-Malarial Agent Quinacrine: An Old Wine in a New Bottle. Anticancer Agents Med Chem 2021; 21:416-427. [PMID: 32698746 DOI: 10.2174/1871520620666200721123046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/23/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
Quinacrine (QC) is a tricyclic compound and a derivative of 9-aminoacridine. It has been widely used to treat malaria and other parasitic diseases since the last century. Interestingly, studies have revealed that it also displays anti-cancer activities. Here, we have discussed the anti-cancer mechanism of QC along with its potentiality to specifically target cancer stem cells. The anti-cancer action of this drug includes DNA intercalation, inhibition of DNA repair mechanism, prevention of cellular growth, cell cycle arrest, inhibition of DNA and RNA polymerase activity, induction of autophagy, promotion of apoptosis, deregulation of cell signaling in cancer cells and cancer stem cells, inhibition of metastasis and angiogenesis. In addition, we have also emphasized on the synergistic effect of this drug with other potent chemotherapeutic agents and mentioned its different applications in anti-cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Chanakya N Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
16
|
Sang Y, Kong P, Zhang S, Zhang L, Cao Y, Duan X, Sun T, Tao Z, Liu W. SGK1 in Human Cancer: Emerging Roles and Mechanisms. Front Oncol 2021; 10:608722. [PMID: 33542904 PMCID: PMC7851074 DOI: 10.3389/fonc.2020.608722] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Serum and glucocorticoid-induced protein kinase 1 (SGK1) is a member of the "AGC" subfamily of protein kinases, which shares structural and functional similarities with the AKT family of kinases and displays serine/threonine kinase activity. Aberrant expression of SGK1 has profound cellular consequences and is closely correlated with human cancer. SGK1 is considered a canonical factor affecting the expression and signal transduction of multiple genes involved in the genesis and development of many human cancers. Abnormal expression of SGK1 has been found in tissue and may hopefully become a useful indicator of cancer progression. In addition, SGK1 acts as a prognostic factor for cancer patient survival. This review systematically summarizes and discusses the role of SGK1 as a diagnostic and prognostic biomarker of diverse cancer types; focuses on its essential roles and functions in tumorigenesis, cancer cell proliferation, apoptosis, invasion, metastasis, autophagy, metabolism, and therapy resistance and in the tumor microenvironment; and finally summarizes the current understanding of the regulatory mechanisms of SGK1 at the molecular level. Taken together, this evidence highlights the crucial role of SGK1 in tumorigenesis and cancer progression, revealing why it has emerged as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yiwen Sang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Piaoping Kong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhen Zhang
- The Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Greco C, Catania R, Balacco DL, Taresco V, Musumeci F, Alexander C, Huett A, Schenone S. Synthesis and Antibacterial Evaluation of New Pyrazolo[3,4- d]pyrimidines Kinase Inhibitors. Molecules 2020; 25:molecules25225354. [PMID: 33207806 PMCID: PMC7696985 DOI: 10.3390/molecules25225354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pyrazolo[3,4-d]pyrimidines represent an important class of heterocyclic compounds well-known for their anticancer activity exerted by the inhibition of eukaryotic protein kinases. Recently, pyrazolo[3,4-d]pyrimidines have become increasingly attractive for their potential antimicrobial properties. Here, we explored the activity of a library of in-house pyrazolo[3,4-d]pyrimidines, targeting human protein kinases, against Staphylococcus aureus and Escherichia coli and their interaction with ampicillin and kanamycin, representing important classes of clinically used antibiotics. Our results represent a first step towards the potential application of dual active pyrazolo[3,4-d]pyrimidine kinase inhibitors in the prevention and treatment of bacterial infections in cancer patients.
Collapse
Affiliation(s)
- Chiara Greco
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy; (C.G.); (F.M.)
| | - Rosa Catania
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Dario Leonardo Balacco
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, UK;
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Francesca Musumeci
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy; (C.G.); (F.M.)
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Alan Huett
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Correspondence: (A.H.); (S.S.)
| | - Silvia Schenone
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy; (C.G.); (F.M.)
- Correspondence: (A.H.); (S.S.)
| |
Collapse
|
18
|
Mudassar F, Shen H, O'Neill G, Hau E. Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:208. [PMID: 33028364 PMCID: PMC7542384 DOI: 10.1186/s13046-020-01724-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
High-grade gliomas (HGGs), including glioblastoma and diffuse intrinsic pontine glioma, are amongst the most fatal brain tumors. These tumors are associated with a dismal prognosis with a median survival of less than 15 months. Radiotherapy has been the mainstay of treatment of HGGs for decades; however, pronounced radioresistance is the major obstacle towards the successful radiotherapy treatment. Herein, tumor hypoxia is identified as a significant contributor to the radioresistance of HGGs as oxygenation is critical for the effectiveness of radiotherapy. Hypoxia plays a fundamental role in the aggressive and resistant phenotype of all solid tumors, including HGGs, by upregulating hypoxia-inducible factors (HIFs) which stimulate vital enzymes responsible for cancer survival under hypoxic stress. Since current attempts to target tumor hypoxia focus on reducing oxygen demand of tumor cells by decreasing oxygen consumption rate (OCR), an attractive strategy to achieve this is by inhibiting mitochondrial oxidative phosphorylation, as it could decrease OCR, and increase oxygenation, and could therefore improve the radiation response in HGGs. This approach would also help in eradicating the radioresistant glioma stem cells (GSCs) as these predominantly rely on mitochondrial metabolism for survival. Here, we highlight the potential for repurposing anti-parasitic drugs to abolish tumor hypoxia and induce apoptosis of GSCs. Current literature provides compelling evidence that these drugs (atovaquone, ivermectin, proguanil, mefloquine, and quinacrine) could be effective against cancers by mechanisms including inhibition of mitochondrial metabolism and tumor hypoxia and inducing DNA damage. Therefore, combining these drugs with radiotherapy could potentially enhance the radiosensitivity of HGGs. The reported efficacy of these agents against glioblastomas and their ability to penetrate the blood-brain barrier provides further support towards promising results and clinical translation of these agents for HGGs treatment.
Collapse
Affiliation(s)
- Faiqa Mudassar
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia
| | - Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia.
- Sydney Medical School, University of Sydney, NSW, Sydney, Australia.
| | - Geraldine O'Neill
- Children's Cancer Research Unit, The Children's Hospital at Westmead, NSW, Westmead, Australia
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, NSW, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Sydney, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia
- Sydney Medical School, University of Sydney, NSW, Sydney, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW, Westmead, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, NSW, Blacktown, Australia
| |
Collapse
|
19
|
Bailly C. Pyronaridine: An update of its pharmacological activities and mechanisms of action. Biopolymers 2020; 112:e23398. [PMID: 33280083 DOI: 10.1002/bip.23398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Pyronaridine (PYR) is an erythrocytic schizonticide with a potent antimalarial activity against multidrug-resistant Plasmodium. The drug is used in combination with artesunate for the treatment of uncomplicated P. falciparum malaria, in adults and children. The present review briefly retraces the discovery of PYR and recent antimalarial studies which has led to the approval of PYR/artesunate combination (Pyramax) by the European Medicines Agency to treat uncomplicated malaria worldwide. PYR also presents a marked antitumor activity and has revealed efficacy for the treatment of other parasitic diseases (notably Babesia and Trypanosoma infections) and to mitigate the Ebola virus propagation. On the one hand, PYR functions has an inhibitor of hemozoin (biomineral malaria pigment, by-product of hemoglobin digestion) formation, blocking the biopolymerization of β-hematin and thus facilitating the accumulation of toxic hematin into the digestive vacuole of the parasite. On the other hand, PYR is a bona fide DNA-intercalating agent and an inhibitor of DNA topoisomerase 2, leading to DNA damages and cell death. Inhibition of hematin polymerization represents the prime mechanism at the origin of the antimalarial activity, whereas anticancer effects relies essentially on the interference with DNA metabolism, as with structurally related anticancer drugs like amsacrine and quinacrine. In addition, recent studies point to an immune modulatory activity of PYR and the implication of a mitochondrial oxidative pathway. An analogy with the mechanism of action of artemisinin drugs is underlined. In brief, the biological actions of pyronaridine are recapitulated to shed light on the diverse health benefits of this unsung drug.
Collapse
|
20
|
Jiang Y, Zhou J, Zhao J, Zhang H, Li L, Li H, Chen L, Hu J, Zheng W, Jing Z. The U2AF2 /circRNA ARF1/miR-342-3p/ISL2 feedback loop regulates angiogenesis in glioma stem cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:182. [PMID: 32894165 PMCID: PMC7487667 DOI: 10.1186/s13046-020-01691-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glioma is the most common and lethal primary brain tumor in adults, and angiogenesis is one of the key factors contributing to its proliferation, aggressiveness, and malignant transformation. However, the discovery of novel oncogenes and the study of its molecular regulating mechanism based on circular RNAs (circRNAs) may provide a promising treatment target in glioma. METHODS Bioinformatics analysis, qPCR, western blotting, and immunohistochemistry were used to detect the expression levels of ISL2, miR-342-3p, circRNA ARF1 (cARF1), U2AF2, and VEGFA. Patient-derived glioma stem cells (GSCs) were established for the molecular experiments. Lentiviral-based infection was used to regulate the expression of these molecules in GSCs. The MTS, EDU, Transwell, and tube formation assays were used to detect the proliferation, invasion, and angiogenesis of human brain microvessel endothelial cells (hBMECs). RNA-binding protein immunoprecipitation, RNA pull-down, dual-luciferase reporter, and chromatin immunoprecipitation assays were used to detect the direct regulation mechanisms among these molecules. RESULTS We first identified a novel transcription factor related to neural development. ISL2 was overexpressed in glioma and correlated with poor patient survival. ISL2 transcriptionally regulated VEGFA expression in GSCs and promoted the proliferation, invasion, and angiogenesis of hBMECs via VEGFA-mediated ERK signaling. Regarding its mechanism of action, cARF1 upregulated ISL2 expression in GSCs via miR-342-3p sponging. Furthermore, U2AF2 bound to and promoted the stability and expression of cARF1, while ISL2 induced the expression of U2AF2, which formed a feedback loop in GSCs. We also showed that both U2AF2 and cARF1 had an oncogenic effect, were overexpressed in glioma, and correlated with poor patient survival. CONCLUSIONS Our study identified a novel feedback loop among U2AF2, cARF1, miR-342-3p, and ISL2 in GSCs. This feedback loop promoted glioma angiogenesis, and could provide an effective biomarker for glioma diagnosis and prognostic evaluation, as well as possibly being used for targeted therapy.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.,Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Jinpeng Zhou
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Junshuang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, 110042, China
| | - Long Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Hao Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Lian Chen
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Jiangfeng Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100 Haining Road, Shanghai, 20080, China
| | - Wei Zheng
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
21
|
Dattilo V, Amato R, Perrotti N, Gennarelli M. The Emerging Role of SGK1 (Serum- and Glucocorticoid-Regulated Kinase 1) in Major Depressive Disorder: Hypothesis and Mechanisms. Front Genet 2020; 11:826. [PMID: 32849818 PMCID: PMC7419621 DOI: 10.3389/fgene.2020.00826] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous psychiatric disease characterized by persistent low mood, diminished interests, and impaired cognitive and social functions. The multifactorial etiology of MDD is still largely unknown because of the complex genetic and environmental interactions involved. Therefore, no established mechanism can explain all the aspects of the disease. In this light, an extensive research about the pathophysiology of MDD has been carried out. Several pathogenic hypotheses, such as monoamines deficiency and neurobiological alterations in the stress-responsive system, including the hypothalamic-pituitary-adrenal (HPA) axis and the immune system, have been proposed for MDD. Over time, remarkable studies, mainly on preclinical rodent models, linked the serum- and glucocorticoid-regulated kinase 1 (SGK1) to the main features of MDD. SGK1 is a serine/threonine kinase belonging to the AGK Kinase family. SGK1 is ubiquitously expressed, which plays a pivotal role in the hormonal regulation of several ion channels, carriers, pumps, and transcription factors or regulators. SGK1 expression is modulated by cell stress and hormones, including gluco- and mineralocorticoids. Compelling evidence suggests that increased SGK1 expression or function is related to the pathogenic stress hypothesis of major depression. Therefore, the first part of the present review highlights the putative role of SGK1 as a critical mediator in the dysregulation of the HPA axis, observed under chronic stress conditions, and its controversial role in the neuroinflammation as well. The second part depicts the negative regulation exerted by SGK1 in the expression of both the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF), resulting in an anti-neurogenic activity. Finally, the review focuses on the antidepressant-like effects of anti-oxidative nutraceuticals in several preclinical model of depression, resulting from the restoration of the physiological expression and/or activity of SGK1, which leads to an increase in neurogenesis. In summary, the purpose of this review is a systematic analysis of literature depicting SGK1 as molecular junction of the complex mechanisms underlying the MDD in an effort to suggest the kinase as a potential biomarker and strategic target in modern molecular antidepressant therapy.
Collapse
Affiliation(s)
- Vincenzo Dattilo
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosario Amato
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Massimo Gennarelli
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
22
|
Zhu R, Yang G, Cao Z, Shen K, Zheng L, Xiao J, You L, Zhang T. The prospect of serum and glucocorticoid-inducible kinase 1 (SGK1) in cancer therapy: a rising star. Ther Adv Med Oncol 2020; 12:1758835920940946. [PMID: 32728395 PMCID: PMC7364809 DOI: 10.1177/1758835920940946] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Serum and glucocorticoid-inducible kinase 1 (SGK1) is an AGC kinase that has been reported to be involved in a variety of physiological and pathological processes. Recent evidence has accumulated that SGK1 acts as an essential Akt-independent mediator of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway in cancer. SGK1 is overexpressed in several tumors, including prostate cancer, colorectal carcinoma, glioblastoma, breast cancer, and endometrial cancer. The functions of SGK1 include regulating tumor growth, survival, metastasis, autophagy, immunoregulation, calcium (Ca2+) signaling, cancer stem cells, cell cycle, and therapeutic resistance. In this review, we introduce the pleiotropic role of SGK1 in the development and progression of tumors, summarize its downstream targets, and integrate the knowledge provided by preclinical studies that the prospect of SGK1 inhibition as a potential therapeutic approach.
Collapse
Affiliation(s)
- Ruizhe Zhu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Shen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing 100730, China
| |
Collapse
|
23
|
Godoy PRDV, Pour Khavari A, Rizzo M, Sakamoto-Hojo ET, Haghdoost S. Targeting NRF2, Regulator of Antioxidant System, to Sensitize Glioblastoma Neurosphere Cells to Radiation-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2534643. [PMID: 32617133 PMCID: PMC7315280 DOI: 10.1155/2020/2534643] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
The presence of glioma stem cells (GSCs), which are enriched in neurospheres, may be connected to the radioresistance of glioblastoma (GBM) due to their enhanced antioxidant defense and elevated DNA repair capacity. The aim was to evaluate the responses to different radiation qualities and to reduce radioresistance of U87MG cells, a GBM cell line. U87MG cells were cultured in a 3D model and irradiated with low (24 mGy/h) and high (0.39 Gy/min) dose rates of low LET gamma and high LET carbon ions (1-2 Gy/min). Thereafter, expression of proteins related to oxidative stress response, extracellular 8-oxo-dG, and neurospheres were determined. LD50 for carbon ions was significantly lower compared to LD50 of high and low dose rate gamma radiation. A significantly higher level of 8-oxo-dG was detected in the media of cells exposed to a low dose rate as compared to a high dose rate of gamma or carbon ions. A downregulation of oxidative stress proteins was also observed (NRF2, hMTH1, and SOD1). The NRF2 gene was knocked down by CRISPR/Cas9 in neurosphere cells, resulting in less self-renewal, more differentiated cells, and less proliferation capacity after irradiation with low and high dose rate gamma rays. Overall, U87MG glioma neurospheres presented differential responses to distinct radiation qualities and NRF2 plays an important role in cellular sensitivity to radiation.
Collapse
Affiliation(s)
- Paulo R. D. V. Godoy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, Zip Code: 106 91 Stockholm, Sweden
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Zip Code: 14040-901 Ribeirão Preto, SP, Brazil
| | - Ali Pour Khavari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, Zip Code: 106 91 Stockholm, Sweden
| | - Marzia Rizzo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, Zip Code: 106 91 Stockholm, Sweden
| | - Elza T. Sakamoto-Hojo
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Zip Code: 14040-901 Ribeirão Preto, SP, Brazil
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, Av. Bandeirantes 3900, Zip Code: 14049-900 Ribeirão Preto, SP, Brazil
| | - Siamak Haghdoost
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, Zip Code: 106 91 Stockholm, Sweden
- University of Caen Normandy, UMR6252 CIMAP/LARIA team, Zip Code: 14076 Caen, France
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), Zip Code: 14000 Caen, France
| |
Collapse
|
24
|
Greco C, Taresco V, Pearce AK, Vasey CE, Smith S, Rahman R, Alexander C, Cavanagh RJ, Musumeci F, Schenone S. Development of Pyrazolo[3,4- d]pyrimidine Kinase Inhibitors as Potential Clinical Candidates for Glioblastoma Multiforme. ACS Med Chem Lett 2020; 11:657-663. [PMID: 32435367 DOI: 10.1021/acsmedchemlett.9b00530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor. Residual cells at the tumor margin are responsible for up to 85% of GBM recurrences after standard treatment. Despite this evidence, the identification of compounds active on this cell population is still an underexplored field. Herein, starting from the knowledge that kinases are implicated in GBM, we evaluated three in-house pyrazolo[3,4-d]pyrimidines active as Src, Fyn, and SGK1 kinase inhibitors against patient derived cell lines from either the invasive region or contrast-enhanced core of GBM. We identified our Src inhibitor, SI306, as a promising lead compound for eradicating invasive GBM cells. Furthermore, aiming at the development of a feasible oral treatment for GBM, we performed a formulation study using 2D inkjet printing to generate soluble polymer-drug dispersions. Overall, this study led to the identification of a set of polymer-formulated pyrazolo[3,4-d]pyrimidine kinase inhibitors as promising candidates for GBM preclinical efficacy studies.
Collapse
Affiliation(s)
- Chiara Greco
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Amanda K. Pearce
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Catherine E. Vasey
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Stuart Smith
- Children’s Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Ruman Rahman
- Children’s Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Robert J. Cavanagh
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| |
Collapse
|
25
|
Ciliberto G, Mancini R, Paggi MG. Drug repurposing against COVID-19: focus on anticancer agents. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:86. [PMID: 32398164 PMCID: PMC7214852 DOI: 10.1186/s13046-020-01590-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Background The very limited time allowed to face the COVID-19 pandemic poses a pressing challenge to find proper therapeutic approaches. However, synthesis and full investigation from preclinical studies to phase III trials of new medications is a time-consuming procedure, and not viable in a global emergency, such as the one we are facing. Main Body Drug repurposing/repositioning, a strategy effectively employed in cancer treatment, can represent a valid alternative. Most drugs considered for repurposing/repositioning in the therapy of the COVID-19 outbreak are commercially available and their dosage and toxicity in humans is well known, due to years (or even decades) of clinical use. This can allow their fast-track evaluation in phase II–III clinical trials, or even within straightforward compassionate use. Several drugs being re-considered for COVID-19 therapy are or have been used in cancer therapy. Indeed, virus-infected cells are pushed to enhance the synthesis of nucleic acids, protein and lipid synthesis and boost their energy metabolism, in order to comply to the “viral program”. Indeed, the same features are seen in cancer cells, making it likely that drugs interfering with specific cancer cell pathways may be effective as well in defeating viral replication. Short Conclusion To our knowledge, cancer drugs potentially suitable for facing SARS-CoV-2 infection have not been carefully reviewed. We present here a comprehensive analysis of available information on potential candidate cancer drugs that can be repurposed for the treatment of COIVD-19.
Collapse
Affiliation(s)
- Gennaro Ciliberto
- Scientific Director, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Marco G Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
26
|
Maestro I, Boya P, Martinez A. Serum- and glucocorticoid-induced kinase 1, a new therapeutic target for autophagy modulation in chronic diseases. Expert Opin Ther Targets 2020; 24:231-243. [PMID: 32067528 DOI: 10.1080/14728222.2020.1730328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Autophagy, a basic cellular degradation pathway essential for survival, is altered both in aging and in many chronic human diseases, including infections, cancer, heart disease, and neurodegeneration. Identifying new therapeutic targets for the control and modulation of autophagy events is therefore of utmost importance in drug discovery. Serum and glucocorticoid activated kinase 1 (SGK1), known for decades for its role in ion channel modulation, is now known to act as a switch for autophagy homeostasis, and has emerged as a novel and important therapeutic target likely to attract considerable research attention in the coming years.Areas covered: In this general review of SGK1 we describe the kinase's structure and its roles in physiological and pathological contexts. We also discuss small-molecule modulators of SGK1 activity. These modulators are of particular interest to medicinal chemists and pharmacists seeking to develop more potent and selective drug candidates for SGK1, which, despite its key role in autophagy, remains relatively understudied.Expert opinion: The main future challenges in this area are (i) deciphering the role of SGK1 in selective autophagy processes (e.g. mitophagy, lipophagy, and aggrephagy); (ii) identifying selective allosteric modulators of SGK1 with specific biological functions; and (iii) conducting first-in-man clinical studies.
Collapse
Affiliation(s)
- Inés Maestro
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Patricia Boya
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Abstract
Biocompatible and bio-based materials are an appealing resource for the pharmaceutical industry. Poly(glycerol-adipate) (PGA) is a biocompatible and biodegradable polymer that can be used to produce self-assembled nanoparticles (NPs) able to encapsulate active ingredients, with encouraging perspectives for drug delivery purposes. Starch is a versatile, inexpensive, and abundant polysaccharide that can be effectively applied as a bio-scaffold for other molecules in order to enrich it with new appealing properties. In this work, the combination of PGA NPs and starch films proved to be a suitable biopolymeric matrix carrier for the controlled release preparation of hydrophobic drugs. Dynamic Light Scattering (DLS) was used to determine the size of drug-loaded PGA NPs, while the improvement of the apparent drug water solubility was assessed by UV-vis spectroscopy. In vitro biological assays were performed against cancer cell lines and bacteria strains to confirm that drug-loaded PGA NPs maintained the effective activity of the therapeutic agents. Dye-conjugated PGA was then exploited to track the NP release profile during the starch/PGA nanocomposite film digestion, which was assessed using digestion models mimicking physiological conditions. The collected data provide a clear indication of the suitability of our biodegradable carrier system for oral drug delivery.
Collapse
|
28
|
Abbruzzese C, Matteoni S, Persico M, Ascione B, Schenone S, Musumeci F, Amato R, Perrotti N, Matarrese P, Paggi MG. The small molecule SI113 hinders epithelial-to-mesenchymal transition and subverts cytoskeletal organization in human cancer cells. J Cell Physiol 2019; 234:22529-22542. [PMID: 31099037 DOI: 10.1002/jcp.28816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
The small molecule SI113 is an inhibitor of the kinase activity of SGK1, a key biological regulator acting on the PI3K/mTOR signal transduction pathway. Several studies demonstrate that this compound is able to strongly restrain cancer growth in vitro and in vivo, alone or in associative antineoplastic treatments, being able to elicit an autophagic response, either cytotoxic or cytoprotective. To elucidate more exhaustively the molecular mechanisms targeted by SI113, we performed activity-based protein profiling (ABPP) proteomic analysis using a kinase enrichment procedure. This technique allowed the identification via mass spectrometry of novel targets of this compound, most of them involved in functions concerning cell motility and cytoskeletal architecture. Using a glioblastoma multiforme, hepatocarcinoma and colorectal carcinoma cell line, we recognized an inhibitory effect of SI113 on cell migration, invading, and epithelial-to-mesenchymal transition. In addition, these cancer cells, when exposed to this compound, showed a remarkable subversion of the cytoskeletal architecture characterized by F-actin destabilization, phospho-FAK delocalization, and tubulin depolimerization. These results were definitely concordant in attributing to SI113 a key role in hindering cancer cell malignancy and, due to its negligible in vivo toxicity, can sustain performing a Phase I clinical trial to employ this drug in associative cancer therapy.
Collapse
Affiliation(s)
- Claudia Abbruzzese
- Division of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Matteoni
- Division of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Persico
- Division of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Barbara Ascione
- Center for Gender Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Marco G Paggi
- Division of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|