1
|
Liu SZ, Xie JH, Yan BJ, Wang J. Knowledge mapping and research trends of IL-22 from 2014 to 2023: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2426321. [PMID: 39540219 PMCID: PMC11572295 DOI: 10.1080/21645515.2024.2426321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Although IL-22 has been extensively studied, a comprehensive and systematic bibliometric analysis has not yet been conducted on it. This article reviews the research progress of IL-22 using bibliometric methods. On May 20, 2024, publications related to IL-22 were identified and selected from the Web of Science Core Collection (WoSCC) database. CiteSpace and VOSviewer are beneficial for IL-22 bibliometric and knowledge graph analysis. From January 1, 2014 to December 31, 2023, 25134 authors from 4206 institutions in 106 countries published 3943 articles on IL-22 research in 940 academic journals. During this period, the number of articles steadily increased. The United States and China are the main contributors to this research field, with the most active institutions being the Medical Research Institute (INSERM) led by De la Sante et al. and the University of California system. The most prolific journal is Frontiers of Immunology, and it is also the journal with the most citations. Guttman Yassky, E. has published the most articles, and Guttman Yassky, E. is also the most frequently cited. The main areas of these publications are immunology and cell biology. After analysis, the high-frequency keywords of IL-22 research involve molecular biology (IL-17) and immune response (T cells) Th17 cells and diseases (autoimmune diseases, cancer). Among them, the involvement of interleukin-22 in microbial populations and cancer cell spread has strong research potential and is currently a hot research topic. Since 2014, IL-22 has received significant attention in scientific research as a key immune regulatory factor. China is at the forefront of research in this field, followed closely by the United States. At present, breakthrough progress is being made in the research of immunotherapy, and in-depth study of IL-22 and its signal transduction mechanisms is crucial for understanding its biological functions. Meanwhile, exploring new possibilities for IL-22 as a therapeutic target will help develop more effective treatment strategies. This study can provide scholars with research directions related to IL-22.
Collapse
Affiliation(s)
- Shu-Zhen Liu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jie-Hong Xie
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bing-Ju Yan
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jun Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
2
|
Zhang C, Li L, Lin J, Luo J, Liu L, Peng X. Barley polysaccharides inhibit colorectal cancer by two relatively independent pathways. Int J Biol Macromol 2024; 277:133820. [PMID: 39002916 DOI: 10.1016/j.ijbiomac.2024.133820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Colorectal cancer is one of the most common types of cancer worldwide that can lead to serious injury and death. Although polysaccharides are widely recognized as having antitumor activity, there has been little research on the role of barley polysaccharides (BP)1 in colorectal cancer. The results of our research suggest that BP (300 mg/kg) had a significant inhibitory effect on colorectal cancer, and this effect was achieved through two pathways. First, BP can directly promote the secretion of protective metabolites like 5-(4-Hydroxyphenyl)-5-phenylimidazolidine-2,4-dione and 2,3-Bis(4-hydroxyphenyl)propionitrile thereby inhibiting the cancer pathways such as ERK, PI3K, WNT, JAK-STAT, Calcium, and Cell cycle cancer pathways to alleviate inflammation. Second, BP also can enrich beneficial intestinal bacteria such as Colidextribacter, Bilophila, and UCG-003 improve the intestinal barrier, promote the production of beneficial metabolites such as 5,8-Epoxy-5,8-dihydro-3-hydroxy-8'-apo-b,y-carotenal and L-Glutamic acid, and thus inhibit cancer pathways such as ERK, PI3K, Nuclear receptor, Cell cycle, Apoptosis and TGF-β. In conclusion, our findings suggest for the first time that BP can alleviate colorectal cancer by two relatively independent pathways: direct action and indirect action via the gut microbiota on both colon tumor cells and microbiota.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510630, China
| | - Li Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510630, China
| | - Jiali Lin
- Department of Food Science and Engineering, Jinan University, Guangzhou 510630, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510630, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510630, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
3
|
Liu S, Zhang Z, Wang Z, Li J, Shen L. Genome-wide CRISPR screening identifies the pivotal role of ANKRD42 in colorectal cancer metastasis through EMT regulation. IUBMB Life 2024; 76:803-819. [PMID: 38822625 DOI: 10.1002/iub.2855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
Colorectal cancer (CRC), a pervasive and lethal malignancy of gastrointestinal cancer, imposes significant challenges due to the occurrence of distant metastasis in advanced stages. Understanding the intricate regulatory mechanisms driving CRC distant metastasis is of paramount importance. CRISPR-Cas9 screening has emerged as a powerful tool for investigating tumor initiation and progression. However, its application in studying CRC distant metastasis remains largely unexplored. To establish a model that faithfully recapitulates CRC liver metastasis in patients, we developed an in vivo genome-wide CRISPR-Cas9 screening approach using a spleen-injected liver metastasis mouse model. Through comprehensive screening of a whole-genome sgRNA library, we identified ANKRD42 as a pivotal regulatory gene facilitating CRC liver metastasis. Analysis of the TCGA database and our clinical cohorts unveiled heightened ANKRD42 expression in metastases. At the cellular level, the attenuation of ANKRD42 impaired the migration and invasion processes of tumor cells. In vivo experiments further validated these observations, highlighting the diminished liver metastatic capacity of tumor cells upon ANKRD42 knockdown. To unravel the specific mechanisms by which ANKRD42 regulates CRC distant metastasis, we leveraged patient-derived organoid (PDO) models. Depleting ANKRD42 in PDOs sourced from liver metastases precipitated the downregulation of pivotal genes linked to epithelial-mesenchymal transition (EMT), including CDH2 and SNAI2, thereby effectively suppressing tumor metastasis. This study not only establishes a conceptual framework but also identifies potential therapeutic avenues for advanced-stage distant metastasis in CRC patients.
Collapse
Affiliation(s)
- Shengde Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zizhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhenghang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
4
|
Wang W, Liu Y, Wang Z, Tan X, Jian X, Zhang Z. Exploring and validating the necroptotic gene regulation and related lncRNA mechanisms in colon adenocarcinoma based on multi-dimensional data. Sci Rep 2024; 14:22251. [PMID: 39333335 PMCID: PMC11437100 DOI: 10.1038/s41598-024-73168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Necroptosis is intimately associated with the initiation and progression of colon adenocarcinoma (COAD). However, studies on necroptosis-related genes (NRGs) and the regulating long non-coding RNAs (NRGlncRNAs) in the context of COAD are limited. We retrieved the cancer genome atlas (TCGA) to collect datasets of NRGs and NRGlncRNAs on COAD patients. The risk model constructed using Cox and least absolute shrinkage and selection operator (LASSO) regression was then employed to identify NRGs and NRGlncRNAs with prognostic significance. Subsequently, we validated the results using gene expression omnibus (GEO) datasets from different populations, conducted Mendelian randomization (MR) analysis to explore the potential causal relationships between prognostic NRGs and COAD, and conducted cell experiments to verify the expression of prognostic NRGlncRNAs in COAD. Furthermore, we explored potential pathways and regulatory mechanisms of these prognostic NRGlncRNAs and NRGs in COAD through enrichment analysis, immune cell correlation analysis, tumor microenvironment analysis, immune checkpoint analysis, tumor sample clustering, and so on. We identified eight NRGlncRNAs (AC245100.5, AP001619.1, LINC01614, AC010463.3, AL162595.1, ITGB1-DT, LINC01857, and LINC00513) used for constructing the prognostic model and nine prognostic NRGs (AXL, BACH2, CFLAR, CYLD, IPMK, MAP3K7, ATRX, BRAF, and OTULIN) with regulatory relationships with them, and their validation was performed using GEO and GWAS datasets, as well as cell experiments, which showed largely consistent results. These prognostic NRGlncRNAs and NRGs modulate various biological functions, including immune inflammatory response, oxidative stress, immune escape, telomere regulation, and cytokine response, influencing the development of COAD. Additionally, stratified analysis of the high-risk and low-risk groups based on the prognostic model revealed elevated expression of immune cells, increased expression of tumor microenvironment cells, and upregulation of immune checkpoint gene expression in the high-risk group. Finally, through cluster analysis, we identified tumor subtypes, and the results of cluster analysis were essentially consistent with the analysis between risk groups. The prognostic NGRlncRNAs and NRGs identified in our study serve as prognostic indicators and potential therapeutic targets for COAD, providing a theoretical basis for the clinical diagnosis and treatment of COAD and offering guidance for further research.
Collapse
Affiliation(s)
- Weili Wang
- Department of Oncology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziqi Wang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoning Tan
- Department of Oncology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| | - Xiaolan Jian
- Department of Oncology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| | - Zhen Zhang
- Department of Oncology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| |
Collapse
|
5
|
Helal IM, Kamal MA, Abd El-Aziz MK, El Tayebi HM. Epigenetic tuning of tumour-associated macrophages (TAMs): a potential approach in hepatocellular carcinoma (HCC) immunotherapy. Expert Rev Mol Med 2024; 26:e18. [PMID: 39320855 PMCID: PMC11440614 DOI: 10.1017/erm.2024.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 09/26/2024]
Abstract
Recent development in immunotherapy for cancer treatment has substantiated to be more effective than most of the other treatments. Immunity is the first line of defence of the body; nevertheless, cancerous cells can manipulate immunity compartments to play several roles in tumour progression. Tumour-associated macrophages (TAMs), one of the most dominant components in the tumour microenvironment, are recognized as anti-tumour suppressors. Unfortunately, the complete behaviour of TAMs is still unclear and understudied. TAM density is directly correlated with the progression and poor prognosis of hepatocellular carcinoma (HCC), therefore studying TAMs from different points of view passing by all the factors that may affect its existence, polarization, functions and repolarization are of great importance. Different epigenetic regulations were reported to have a direct relation with both HCC and TAMs. Here, this review discusses different epigenetic regulations that can affect TAMs in HCC whether positively or negatively.
Collapse
Affiliation(s)
- Israa M. Helal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Monica A. Kamal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Mostafa K. Abd El-Aziz
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| |
Collapse
|
6
|
Hunzeker ZE, Zhao L, Kim AM, Parker JM, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The role of IL-22 in cancer. Med Oncol 2024; 41:240. [PMID: 39231878 DOI: 10.1007/s12032-024-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.
Collapse
Affiliation(s)
- Zachary E Hunzeker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Internal Medicine, University of Texas Houston Health Science Center, Houston, TX, USA
| | - Lei Zhao
- Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Jacob M Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
7
|
Zhang Y, Xue X, Li F, Zhang B, Zheng P, Mi Y. Integrative nomogram model based on anoikis-related genes enhances prognostic evaluation in colorectal cancer. Heliyon 2024; 10:e33637. [PMID: 39040248 PMCID: PMC11261108 DOI: 10.1016/j.heliyon.2024.e33637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Background Revealing the role of anoikis resistance plays in CRC is significant for CRC diagnosis and treatment. This study integrated the CRC anoikis-related key genes (CRC-AKGs) and established a novel model for improving the efficiency and accuracy of the prognostic evaluation of CRC. Methods CRC-ARGs were screened out by performing differential expression and univariate Cox analysis. CRC-AKGs were obtained through the LASSO machine learning algorithm and the LASSO Risk-Score was constructed to build a nomogram clinical prediction model combined with the clinical predictors. In parallel, this work developed a web-based dynamic nomogram to facilitate the generalization and practical application of our model. Results We identified 10 CRC-AKGs and a risk-related prognostic Risk-Score was calculated. Multivariate COX regression analysis indicated that the Risk-Score, TNM stage, and age were independent risk factors that significantly associated with the CRC prognosis(p < 0.05). A prognostic model was built to predict the outcome with satisfied accuracy (3-year AUC = 0.815) for CRC individuals. The web interactive nomogram (https://yuexiaozhang.shinyapps.io/anoikisCRC/) showed strong generalizability of our model. In parallel, a substantial correlation between tumor microenvironment and Risk-Score was discovered in the present work. Conclusion This study reveals the potential role of anoikis in CRC and sets new insights into clinical decision-making in colorectal cancer based on both clinical and sequencing data. Also, the interactive tool provides researchers with a user-friendly interface to input relevant clinical variables and obtain personalized risk predictions or prognostic assessments based on our established model.
Collapse
Affiliation(s)
- Yuexiao Zhang
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Fazhan Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Bo Zhang
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| |
Collapse
|
8
|
Yu J, Zhang Y, Xue Y, Pei H, Li B. Emerging roles of long noncoding RNAs in enzymes related intracellular metabolic pathways in cancer biology. Biomed Pharmacother 2024; 176:116831. [PMID: 38824835 DOI: 10.1016/j.biopha.2024.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Metabolic reprogramming plays critical roles in the development and progression of tumor by providing cancer cells with a sufficient supply of nutrients and other factors needed for fast-proliferating. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in the initiation of metastasis via regulating the metabolic reprogramming in various cancers. In this paper, we aim to summarize that lncRNAs could participate in intracellular nutrient metabolism including glucose, amino acid, lipid, and nucleotide, regardless of whether lncRNAs have tumor-promoting or tumor-suppressor function. Meanwhile, modulation of lncRNAs in glucose metabolic enzymes in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle (TCA) in cancer is reviewed. We also discuss therapeutic strategies targeted at interfering with enzyme activity to decrease the utilization of glucoses, amino acid, nucleotide acid and lipid in tumor cells. This review focuses on our current understanding of lncRNAs participating in cancer cell metabolic reprogramming, paving the way for further investigation into the combination of such approaches with existing anti-cancer therapies.
Collapse
Affiliation(s)
- Jing Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; Department of clinical laboratory Center, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yue Zhang
- School of Clinical Medicine, Medical College of Soochow University, Suzhou 215123, China
| | - Yaqi Xue
- Department of Clinical Nutrition, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
9
|
Li Z, Yan G, Yang M, Liu X, Lian Y, Sun M, Pan W. CBLC promotes the development of colorectal cancer by promoting ABI1 degradation to activate the ERK signaling pathway. Transl Oncol 2024; 45:101992. [PMID: 38743987 PMCID: PMC11109901 DOI: 10.1016/j.tranon.2024.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
CBLC (CBL proto-oncogene C) is an E3 ubiquitin protein ligase that plays a key role in cancers. However, the function and mechanism of CBLC in colorectal cancer (CRC) has not been fully elucidated. The aim of this study was to investigate the function of CBLC in CRC and its underlying molecular mechanism. High CBLC levels were certified in tumor tissues of CRC patients, and its expression was positively associated with TNM stage. Next, we explored the role of CBLC in CRC using gain or loss of function. For biological function analysis, CCK-8 cell proliferation, colony formation, flow cytometry, scratch, and transwell assays collectively suggested that CBLC overexpression promoted cell proliferation, cell cycle progression, migration and invasion. As observed, CBLC knockdown exhibited exactly opposite effects, resulting in impaired tumorigenicity in vitro. Xenograft studies displayed that CBLC overexpression accelerated tumor growth and promoted tumor metastasis to the lung, while the inhibitory effects of CBLC knockdown on tumorigenicity and metastasis ability of CRC cells was also confirmed. Furthermore, the molecular mechanism of CBLC in CRC was explored. CBLC induced the activation of ERK signaling pathway, further leading to its pro-tumor role. Notably, CBLC decreased ABI1 (Abelson interactor protein-1, a candidate tumor suppressor) protein levels through its ubiquitin ligase activity, while ABI1 upregulation abolished the effects of CBLC on the tumorigenesis of CRC. Taken together, these results demonstrate that CBLC acts as a tumor promoter in CRC through triggering the ubiquitination and degradation of ABI1 and activating the ERK signaling pathway. CBLC may be a potential novel target for CRC.
Collapse
Affiliation(s)
- Zhan Li
- Department of General Surgery, Liaoyang City Central Hospital, Liaoyang, Liaoning Province, China
| | - Guanyu Yan
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Meiqi Yang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xingwu Liu
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuan Lian
- General Hospital of Fuxin Mining Industry Group of Liaoning Health Industry Group, Fuxin, Liaoning Province, China
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Wenjun Pan
- Department of General Surgery, Liaoyang City Central Hospital, Liaoyang, Liaoning Province, China.
| |
Collapse
|
10
|
Li S, Wang B, Chen X, Tu C, Peng D, Dai Y. Downregulation of B4GALNT1 inhibits proliferation and metastasis of osteosarcoma cells. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:870-877. [PMID: 39311783 PMCID: PMC11420960 DOI: 10.11817/j.issn.1672-7347.2024.240020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
OBJECTIVES Osteosarcoma is the most common malignant bone tumor in children and adolescents, characterized by a high potential for proliferation and metastasis. Patients with osteosarcoma who have distant metastases generally have a poor prognosis. Challenges in treatment include incomplete resection of tumor and chemotherapy resistance, with no effective cure currently available. Recent studies suggest that β-1,4-N-acetyl-galactosaminyltransferase 1 (B4GALNT1) plays a role in the progression of various malignant tumors. However, the function of B4GALNT1 in osteosarcoma cells has not been reported. This study aims to investigate the expression of B4GALNT1 in osteosarcoma tissues compared to normal tissues and to explore its effects on the proliferation, migration, and invasion of osteosarcoma cells, thereby providing new theoretical foundations and directions for the treatment of osteosarcoma patients. METHODS Tumor tissues and corresponding normal tissue samples were collected from 16 osteosarcoma patients who underwent tumor resection at the Second Xiangya Hospital of Central South University. The patients' ages ranged from 8 to 17 years (median age 12 years). The expression of B4GALNT1 mRNA in osteosarcoma tissues, corresponding normal tissues, 3 osteosarcoma cell lines (MG63, Saos-2, and U2OS), and human fetal osteoblastic cells (hFOB) was detected using real-time reverse transcription PCR (real-time RT-PCR). The effects of B4GALNT1 knockdown on the proliferation of osteosarcoma cells Saos-2 and U2OS were analyzed using cell counting kit-8 (CCK-8) assays and colony formation assays. The effects of B4GALNT1 knockdown on the migration and invasion abilities of Saos-2 and U2OS cells were evaluated using Transwell migration and invasion assays. Western blotting analysis was performed to assess the impact of B4GALNT1 knockdown on the expression of epithelial-mesenchymal transition (EMT) and invasion-related proteins in Saos-2 and U2OS cells. RESULTS Real-time RT-PCR results showed that B4GALNT1 mRNA expression levels were significantly higher in osteosarcoma tissues and the 3 osteosarcoma cell lines compared to normal tissues and hFOB cells (all P<0.01). CCK-8 and colony formation assays indicated that B4GALNT1 knockdown significantly reduced the proliferation rate of osteosarcoma cells compared to the control group (all P<0.05). Transwell migration and invasion assays demonstrated that B4GALNT1 knockdown significantly decreased the number of migrating and invading osteosarcoma cells (all P<0.01). Western blotting analysis revealed that B4GALNT1 knockdown inhibited the expression of N-cadherin, Snail, Vimentin, and matrix metalloproteinase 9 (MMP9) compared to the control group (all P<0.01). CONCLUSIONS B4GALNT1 is upregulated in osteosarcoma tissues and cell lines, and its knockdown suppresses the malignant phenotype of osteosarcoma cells. B4GALNT1 may function as an oncogene in the proliferation and metastasis of osteosarcoma cells.
Collapse
Affiliation(s)
- Shuai Li
- Department of Spine, Second Xiangya Hospital, Central South University, Changsha 410011.
- Hunan Provincial Digital Spine Research Institute, Changsha 410011.
| | - Bing Wang
- Department of Spine, Second Xiangya Hospital, Central South University, Changsha 410011.
- Hunan Provincial Digital Spine Research Institute, Changsha 410011.
| | - Xia Chen
- Department of Orthopadics, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chao Tu
- Department of Orthopadics, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dan Peng
- Department of Orthopadics, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuliang Dai
- Department of Spine, Second Xiangya Hospital, Central South University, Changsha 410011
- Hunan Provincial Digital Spine Research Institute, Changsha 410011
| |
Collapse
|
11
|
Ma RT, Wang Y, Ji F, Chen JN, Wang TJ, Liu Y, Hou MX, Guo ZG. YTHDF1's grip on CRC vasculature: insights into LINC01106 and miR-449b-5p-VEGFA axis. Cancer Cell Int 2024; 24:195. [PMID: 38835070 DOI: 10.1186/s12935-024-03360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Investigating the unexplored territory of lncRNA m6A modification in colorectal cancer (CRC) vasculature, this study focuses on LINC01106 and YTHDF1. METHODS Clinical assessments reveal upregulated LINC01106 promoting vascular generation via the miR-449b-5p-VEGFA pathway. RESULTS YTHDF1, elevated in CRC tissues, emerges as an adverse prognostic factor. Functional experiments showcase YTHDF1's inhibitory effects on CRC cell dynamics. Mechanistically, Me-CLIP identifies m6A-modified LINC01106, validated as a YTHDF1 target through Me-RIP. CONCLUSIONS This study sheds light on the YTHDF1-mediated m6A modification of LINC01106, presenting it as a key player in suppressing CRC vascular generation.
Collapse
Affiliation(s)
- Rui-Ting Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
- The Affiliated Hospital of Inner Mongolia Medical University, No.1, North Channel Road, Huimin District, Hohhot, 010050, China
| | - Yuanyuan Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Feng Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jian-Nan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Tian-Jun Wang
- Nanjing Medical University, Nanjing, Jiangsu, 210097, China
| | - Yan Liu
- The Affiliated Hospital of Inner Mongolia Medical University, No.1, North Channel Road, Huimin District, Hohhot, 010050, China
| | - Ming-Xing Hou
- The Affiliated Hospital of Inner Mongolia Medical University, No.1, North Channel Road, Huimin District, Hohhot, 010050, China.
| | - Zhi-Gang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
- The Academy of Life Sciences, Nanjing Normal University, Nanjing, 210097, China.
| |
Collapse
|
12
|
Tong D, Fan L. LncRNA ZNF667-AS1 Targets miR-523-3p/KIF5C Axis to Hinder Colon Cancer Progression. Mol Biotechnol 2024; 66:1464-1476. [PMID: 37322260 DOI: 10.1007/s12033-023-00772-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
LncRNA ZNF667-AS1 plays an important role in the carcinogenesis and progression of various cancers. However, their role in colon cancer (CC) remains unclear. The expression of ZNF667-AS1, KIF5C, and miR-523-3p in CC cells and tissues was analyzed using RT-qPCR and western blotting. CCK-8 scratch-wound assay, western blotting, and flow cytometry were conducted to investigate the malignant activity of CC in vitro. Luciferase reporter, RNA pull-down, and Ago2 immunoprecipitation (RIP) experiments were conducted to ascertain the association of miR-523-3p with ZNF667-AS1 and KIF5C 3'UTR. Xenograft tumor experiments were also performed. CC cells and tissues showed low expression of NF667-AS1 and KIF5C and elevated expression of miR-523-3p. ZNF667-AS1 overexpression attenuates proliferation and migration of CC cells, restores inactivated apoptosis in vitro, and inhibits tumor growth in vivo. MiR-523-3p targets both ZNF667-AS1 and the KIF5C 3'UTR. ZNF667-AS1 overexpression in SW480 and SW620 cells attenuated the oncogenic effect of miR-523-3p in CC. However, this attenuating effect was counteracted by KIF5C overexpression. ZNF667-AS1 sequestered miR-523-3, reducing miR-523-3p-mediated inhibition of KIF5C expression, thereby repressing colon carcinogenesis in vitro. Our findings shed light on a novel anticancer strategy that could potentially combat CC.
Collapse
Affiliation(s)
- Duan Tong
- Department of Anus and Intestine, People's Hospital of Dongxihu District, Wuhan, 430040, Hubei, China
| | - Lili Fan
- Gastroenterology Department, Wuhan Fourth Hospital, No.473 Hanzheng Street, Wusheng Road, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
13
|
Ge C, Wang S, Wu X, Lei L. Quercetin attenuates brain apoptosis in mice with chronic unpredictable mild stress-induced depression. Behav Brain Res 2024; 465:114934. [PMID: 38432303 DOI: 10.1016/j.bbr.2024.114934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Depression is a common psychiatric disorder with limited effective treatments. Research suggests that depression involves apoptosis mechanisms. Quercetin (QUE) has been reported to have anti-apoptotic activities. In this study, we aimed to investigate the effects and mechanisms of QUE in chronic unpredictable mild stress (CUMS)-induced depression. METHODS After establishing mouse models of CUMS-induced depression, the mice were randomly assigned into four groups: control, CUMS, CUMS+QUE, and CUMS+Fluoxetine (FLX). The body weight of the mice was measured during the study. Then, depression-associated behaviors were evaluated using the sucrose preference test (SPT), novelty suppressed feeding test (NSFT), forced swim test (FST) and tail suspension test (TST). Apoptosis in the hippocampus and prefrontal cortex was determined using flow cytometry. Bcl-2 and Nrf2 protein expressions in the hippocampus and prefrontal cortex were also detected. Furthermore, Western blot was used to measure the protein levels of p-ERK, ERK, p-CREB, CREB, and Nrf2 in brain tissues. RESULTS QUE or FLX administration increased the body weight of the CUMS mice. Behavioral tests indicated that CUMS mice developed a state of depression, but QUE or FLX treatment improved their depression-associated behaviors. Meanwhile, QUE or FLX treatment decreased apoptosis in the hippocampus and prefrontal cortex. Furthermore, the decreased Nrf2 protein expression, ERK and CREB phosphorylation in CUMS group were enhanced by QUE or FLX administration. CONCLUSION QUE could attenuate brain apoptosis in mice with CUMS-induced depression, and the mechanism may be related to the ERK/Nrf2 pathway, indicating that QUE could be a potential treatment for depression.
Collapse
Affiliation(s)
- Chenjie Ge
- Department of Psychiatric, HuZhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province 313000, China
| | - Shiliang Wang
- Department of Psychiatric, HuZhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province 313000, China
| | - Xuqi Wu
- Quality Management Division, HuZhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province 313000, China
| | - Lilei Lei
- Department of Psychiatric, HuZhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province 313000, China.
| |
Collapse
|
14
|
Zhou K, Li G, Pan R, Xin S, Wen W, Wang H, Luo C, Han RPS, Gu Y, Tu Y. Preclinical evaluation of AGTR1-Targeting molecular probe for colorectal cancer imaging in orthotopic and liver metastasis mouse models. Eur J Med Chem 2024; 271:116452. [PMID: 38685142 DOI: 10.1016/j.ejmech.2024.116452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Despite advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable for patients with distant liver metastasis. Fluorescence molecular imaging with specific probes is increasingly used to guide CRC surgical resection in real-time and treatment planning. Here, we demonstrate the targeted imaging capacity of an MPA-PEG4-N3-Ang II probe labeled with near-infrared (NIR) fluorescent dye targeting the angiotensin II (Ang II) type 1 receptor (AGTR1) that is significantly upregulated in CRC. MPA-PEG4-N3-Ang II was highly selective and specific to in vitro tumor cells and in vivo tumors in a mouse CRC xenograft model. The favorable ex vivo imaging and in vivo biodistribution of MPA-PEG4-N3-Ang II afforded tumor-specific accumulation with low background and >10 contrast tumor-to-colorectal values in multiple subcutaneous CRC models at 8 h following injection. Biodistribution analysis confirmed the probe's high uptake in HT29 and HCT116 orthotopic and liver metastatic models of CRC with signal-to-noise ratio (SNR) values of tumor-to-colorectal and -liver fluorescence of 5.8 ± 0.6, 5.3 ± 0.7, and 2.7 ± 0.5, 2.6 ± 0.5, respectively, enabling high-contrast intraoperative tumor visualization for surgical navigation. Given its rapid tumor targeting, precise tumor boundary delineation, durable tumor retention and docking study, MPA-PEG4-N3-Ang II is a promising high-contrast imaging agent for the clinical detection of CRC.
Collapse
Affiliation(s)
- Kuncheng Zhou
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Gang Li
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, China
| | - Rongbin Pan
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Sulin Xin
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Weijie Wen
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiyi Wang
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chao Luo
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ray P S Han
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuanbiao Tu
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
15
|
Wang X, Yue Y, Tan J, Kou F, Su B, Xie J, Yan S. LncRNA EBLN3P Accelerates Cell Proliferation and Invasion of Colon Cancer through Modulating the miR-519d-3p/ZFP91 Axis. Cancer Biother Radiopharm 2024. [PMID: 38597324 DOI: 10.1089/cbr.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Purpose: The study aims to explore the roles and underlying mechanisms of long noncoding RNAs endogenous bornavirus-like nucleoprotein (lncRNA EBLN3P) in colon cancer, emphasizing the potential impact of these insights on advancing colon cancer treatment strategies. By shedding light on lncRNA EBLN3P's involvement, this research could contribute to the development of novel therapeutic approaches, enhancing the efficacy of interventions for colon cancer patients. Methods: We employed quantitative reverse transcription polymerase chain reaction to assess the levels of lncRNA EBLN3P, zinc finger protein (ZFP91), and miR-519d-3p, alongside CCK-8 and EdU assays for cell proliferation, flow cytometry for apoptosis, and Transwell and wound healing assays for migration and invasion. The in vivo function of lncRNA EBLN3P was investigated through a xenograft model, and protein levels were evaluated via Western blot analysis. Results: LncRNA EBLN3P was found to be upregulated in colon cancer tissues and cells, promoting cell proliferation and metastasis while inhibiting apoptosis. Downregulation of lncRNA EBLN3P reduced tumor size, volume, and weight in a mouse model. MiR-519d-3p, which negatively interacts with lncRNA EBLN3P, was found to be downregulated in colon cancer tissues and cell lines. Its upregulation hindered cancer cell proliferation and metastasis while enhancing apoptosis. ZFP91, a binding partner of miR-519d-3p, was upregulated in colon cancer and inversely related to miR-519d-3p levels. Rescue experiments indicated that the effects of lncRNA EBLN3P silencing could be reversed by miR-519d-3p suppression, but were mitigated by ZFP91 downregulation. Conclusion: LncRNA EBLN3P facilitates colon cancer progression via the miR-519d-3p/ZFP91 axis, presenting a novel understanding of lncRNA EBLN3P's role and offering potential therapeutic insights for colon cancer treatment. This study fills a critical gap by linking lncRNA EBLN3P with the miR-519d-3p/ZFP91 axis in the context of colon cancer, thereby broadening our understanding of the molecular mechanisms underlying colon cancer progression.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People's Hospital, Korla, People's Republic of China
| | - Yinzi Yue
- Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, People's Republic of China
| | - Jinhua Tan
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People's Hospital, Korla, People's Republic of China
| | - Fei Kou
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People's Hospital, Korla, People's Republic of China
| | - Bude Su
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People's Hospital, Korla, People's Republic of China
| | - Jin Xie
- Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, People's Republic of China
| | - Shuai Yan
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, People's Republic of China
| |
Collapse
|
16
|
Zhang M, Wu Y, Mou J, Yao Y, Wen P, Liu X, Shang S, Kang X, Tian J, Liu Y, Lv E, Wang L. The global landscape of immune-derived lncRNA signature in colorectal cancer. Heliyon 2024; 10:e25568. [PMID: 38420407 PMCID: PMC10900961 DOI: 10.1016/j.heliyon.2024.e25568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly heterogeneous cancer. This heterogeneity has an impact on the efficacy of immunotherapy. Long noncoding RNAs (lncRNAs) have been found to play regulatory functions in cancer immunity. However, the global landscape of immune-derived lncRNA signatures has not yet been explored in colorectal cancer. METHODS In this study, we applied DESeq2 to identify differentially expressed lncRNAs in colon cancer. Next, we performed an integrative analysis to globally identify immune-driven lncRNA markers in CRC, including immune-associated pathways, tumor immunogenomic features, tumor-infiltrating immune cells, immune checkpoints, microsatellite instability (MSI) and tumor mutation burden (TMB). RESULTS We also identified dysregulated lncRNAs, such as LINC01354 and LINC02257, and their clinical relevance in CRC. Our findings revealed that the differentially expressed lncRNAs were closely associated with immune pathways. In addition, we found that RP11-354P11.3 and RP11-545G3.1 had the highest association with the immunogenomic signature. As a result, these signatures could serve as markers to assess immunogenomic activity in CRC. Among the immune cells, resting mast cells and M0 macrophages had the highest association with lncRNAs in CRC. The AC006129.2 gene was significantly associated with several immune checkpoints, for example, programmed cell death protein 1 (PD-1) and B and T lymphocyte attenuator (BTLA). Therefore, the AC006129.2 gene could be targeted to regulate the condition of immune cells or immune checkpoints to enhance the efficacy of immunotherapy in CRC patients. Finally, we identified 15 immune-related lncRNA-generated open reading frames (ORFs) corresponding to 15 cancer immune epitopes. CONCLUSION In conclusion, we provided a genome-wide immune-driven lncRNA signature for CRC that might provide new insights into clinical applications and immunotherapy.
Collapse
Affiliation(s)
- Mengying Zhang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yifei Wu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyi Mou
- Department of Clinical Medicine, School of 1st Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yang Yao
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pengbo Wen
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shipeng Shang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xingxing Kang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaqi Tian
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Liu
- School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Enhui Lv
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Division of Microbiology and Immunology, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Ghosh PK, Ghosh A. Dysregulation of noncoding RNA in chordoma; implications in identifying potential targets for novel therapeutic approaches. Mol Biol Rep 2024; 51:125. [PMID: 38236360 DOI: 10.1007/s11033-023-09017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
Chordoma is a rare form of bone cancer develops in the spinal cord and skull. Instead of conventional (radio/chemotherapies) and targeted therapies, the disease is associated with high rate of recurrence and poor patient survival. Thus, for better disease management, the molecular pathogenesis of chordoma should be studied in detail to identify dysregulated biomolecules that can be targeted by novel therapeutics. Recent research showed frequent dysregulation of long noncoding RNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA) in association with aggressive tumor phenotypes like cell proliferation, migration, invasion, and metastasis in a variety of cancers, including chordoma. Apart from diagnostic and prognostic importance, noncoding RNAs may serve as promising targets for novel therapeutics in cancer. In this review, we summarized a list of miRNAs, lncRNAs, and circRNA found to be dysregulated in chordoma from available data published in relevant databases (PubMed), as such an approach seems to be rare to date. The dysregulated noncoding RNAs were also associated with adverse tumor phenotypes to assess the impact on disease pathogenesis and, associated downstream molecular pathways were focused. Synthetic compounds and natural products that were reported to target the noncoding RNAs in other malignancies were also listed from published literature and proposed as potential therapeutic agents in chordoma. This review will provide information for further research on chordoma focusing on detailed characterization of dysregulated lncRNAs, miRNAs, and circRNA to understand the disease pathogenesis and, exploration of suitable natural and synthetic products targeting dysregulated non-coding RNAs to develop effective therapeutic measures.
Collapse
Affiliation(s)
- Pramit Kumar Ghosh
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Amlan Ghosh
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India.
- Genetics of Non-communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
18
|
Ma H, Huang H, Li C, Li S, Gan J, Lian C, Ling Y. The antidepressive mechanism of Longya Lilium combined with Fluoxetine in mice with depression-like behaviors. NPJ Syst Biol Appl 2024; 10:5. [PMID: 38218856 PMCID: PMC10787738 DOI: 10.1038/s41540-024-00329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Traditional Chinese medicine is one of the most commonly used complementary and alternative medicine therapies for depression. Integrated Chinese-western therapies have been extensively applied in numerous diseases due to their superior efficiency in individual treatment. We used the meta-analysis, network pharmacology, and bioinformatics studies to identify the putative role of Longya Lilium combined with Fluoxetine in depression. Depression-like behaviors were mimicked in mice after exposure to the chronic unpredictable mild stress (CUMS). The underlying potential mechanism of this combination therapy was further explored based on in vitro and in vivo experiments to analyze the expression of COX-2, PGE2, and IL-22, activation of microglial cells, and neuron viability and apoptosis in the hippocampus. The antidepressant effect was noted for the combination of Longya Lilium with Fluoxetine in mice compared to a single treatment. COX-2 was mainly expressed in hippocampal CA1 areas. Longya Lilium combined with Fluoxetine reduced the expression of COX-2 and thus alleviated depression-like behavior and neuroinflammation in mice. A decrease of COX-2 curtailed BV-2 microglial cell activation, inflammation, and neuron apoptosis by blunting the PGE2/IL-22 axis. Therefore, a combination of Longya Lilium with Fluoxetine inactivates the COX-2/PGE2/IL-22 axis, consequently relieving the neuroinflammatory response and the resultant depression.
Collapse
Affiliation(s)
- Huina Ma
- Department of Health, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Hehua Huang
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Chenyu Li
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Shasha Li
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Juefang Gan
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Chunrong Lian
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Yanwu Ling
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China.
| |
Collapse
|
19
|
Li F, Wang W, Lai G, Lan S, Lv L, Wang S, Liu X, Zheng J. Development and validation of a novel lysosome-related LncRNA signature for predicting prognosis and the immune landscape features in colon cancer. Sci Rep 2024; 14:622. [PMID: 38182713 PMCID: PMC10770065 DOI: 10.1038/s41598-023-51126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024] Open
Abstract
Lysosomes are essential components for managing tumor microenvironment and regulating tumor growth. Moreover, recent studies have also demonstrated that long non-coding RNAs could be used as a clinical biomarker for diagnosis and treatment of colorectal cancer. However, the influence of lysosome-related lncRNA (LRLs) on the progression of colon cancer is still unclear. This study aimed to identify a prognostic LRL signature in colon cancer and elucidated potential biological function. Herein, 10 differential expressed lysosome-related genes were obtained by the TCGA database and ultimately 4 prognostic LRLs for conducting a risk model were identified by the co-expression, univariate cox, least absolute shrinkage and selection operator analyses. Kaplan-Meier analysis, principal-component analysis, functional enrichment annotation, and nomogram were used to verify the risk model. Besides, the association between the prognostic model and immune infiltration, chemotherapeutic drugs sensitivity were also discussed in this study. This risk model based on the LRLs may be promising for potential clinical prognosis and immunotherapeutic responses related indicator in colon cancer patients.
Collapse
Affiliation(s)
- Fengming Li
- Center of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Wenyi Wang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen, China
| | - Guanbiao Lai
- Center of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Shiqian Lan
- Center of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Liyan Lv
- Center of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Shengjie Wang
- Department of Thyroid and Breast Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen, Fujian, China.
| | - Xinli Liu
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Juqin Zheng
- Center of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China.
| |
Collapse
|
20
|
Gu A, Li J, Wu JA, Li MY, Liu Y. Exploration of Dan-Shen-Yin against pancreatic cancer based on network pharmacology combined with molecular docking and experimental validation. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 7:100228. [DOI: 10.1016/j.crbiot.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
|
21
|
Zhang J, Pan Y, Jin L, Yang H, Cao P. Exosomal-miR-522-3p derived from cancer-associated fibroblasts accelerates tumor metastasis and angiogenesis via repression bone morphogenetic protein 5 in colorectal cancer. J Gastroenterol Hepatol 2024; 39:107-120. [PMID: 37984826 DOI: 10.1111/jgh.16345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/26/2023] [Accepted: 08/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a gastrointestinal tract malignancy. Exosomes secreted by cancer-associated fibroblasts (CAFs) are reported to participate in tumor progression by delivering noncoding RNA or small proteins. However, the function of exosomal miR-522-3p in CRC remains unclear. METHODS CAFs were derived from tumor tissues, and exosomes were identified by western blot or TEM/NTA and originated from CAFs/NFs. The viability, invasion, and migration of HUVECs and CRC cells was examined using MTT, Transwell, and wound healing assays, respectively. The molecular interactions were validated using dual luciferase reporter assay and RIP. Xenograft and lung metastasis mouse models were generated to assess tumor growth and metastasis. RESULTS Exosomes extracted from CAFs/NFs showed high expression of CD63, CD81, and TSG101. CAF-derived exosomes significantly increased the viability, angiogenesis, invasion, and migration of HUVECs and CRC cells, thereby aggravating tumor growth, invasion, and angiogenesis in vivo. miR-522-3p was upregulated in CAF-derived exosomes and CRC tissues. Depletion of miR-522-3p reversed the effect of exosomes derived from CAFs in migration, angiogenesis, and invasion of HUVECs and CRC cells. Furthermore, bone morphogenetic protein 5 (BMP5) was identified as a target gene of miR-522-3p, and upregulation of BMP5 reversed the promoting effect of miR-522-3p mimics or CAF-derived exosomes on cell invasion, migration, and angiogenesis of HUVECs and CRC cells. CONCLUSION Exosomal miR-522-3p from CAFs promoted the growth and metastasis of CRC through downregulating BMP5, which might provide new strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yuliang Pan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Long Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Huiyun Yang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
22
|
Chen P, Liu Z, Xiao H, Yang X, Li T, Huang W, Zhou H. Effect of tumor exosome-derived Lnc RNA HOTAIR on the growth and metastasis of gastric cancer. Clin Transl Oncol 2023; 25:3447-3459. [PMID: 37199906 DOI: 10.1007/s12094-023-03208-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE HOX transcribed antisense RNA (HOTAIR) is a long noncoding RNA (LncRNA) that promotes tumor progression. Exosomes are critically involved in cancer progression. The presence of HOTAIR in the circulating exosomes and the roles of exosomal HOTAIR in gastric cancer (GC) remains unknown. This study aimed to investigate the role of HOTAIR in exosomes in promoting the growth and metastasis of GC. METHODS Serum exosomes from GC patients were captured by CD63 immunoliposome magnetic spheres (CD63-IMS), and the biological characteristics of the exosomes were identified. The expression levels of HOTAIR in GC cells, tissues, serum and serum exosomes were detected by fluorescence quantitative PCR (qRT-PCR), and the clinicopathological correlation was statistically analyzed. The growth and metastasis abilities of GC cells with HOTAIR knockdown in vitro were evaluated by cell experiment. The effects of HOTAIR highly-expressed NCI-N87 cell-derived exosomes were used to treat HOTAIR lowly-expressed MKN45 cells on GC growth and metastasis were also evaluated. RESULTS The exosomes isolated by CD63-IMS had a particle size of 89.78 ± 4.8 nm and were oval membranous particles. The expression of HOTAIR in tumor tissues and serum of GC patients was increased (P < 0.05), and the expression of HOTAIR in serum exosomes was significantly increased (P < 0.01). The in NCI-N87 and MKN45 cell experiment demonstrated that HOTAIR knockdown by RNA interference suppressed cell growth and metastasis in NCI-N87 cells. Coculture of exosomes secreted by NCI-N87 cells with MKN45 cells significantly increased the expression of HOTAIR, and enhanced cell growth and metastasis. CONCLUSION LncRNA HOTAIR can be used as a potential biomarker which provides a new way for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Pan Chen
- The Animal Laboratory Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhenyang Liu
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Hua Xiao
- Hepatobiliary Surgery Department, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaolin Yang
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ting Li
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Huang
- Department of Radiation Oncology, Research Center of Carcinogenesis and Targeted Therapy/National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huijun Zhou
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
23
|
Duan J, Wang Y, Chen Y, Wang Y, Li Q, Liu J, Fu C, Cao C, Cong Z, Su M. Silencing LY6D Expression Inhibits Colon Cancer in Xenograft Mice and Regulates Colon Cancer Stem Cells' Proliferation, Stemness, Invasion, and Apoptosis via the MAPK Pathway. Molecules 2023; 28:7776. [PMID: 38067506 PMCID: PMC10708431 DOI: 10.3390/molecules28237776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
This study explored the role of lymphocyte antigen 6 family member D (LY6D) in colon cancer stem cells' (CCSCs) proliferation and invasion. LY6D was knocked down using siRNA, and the down-regulation of LY6D was verified using Western blotting. After LY6D knockdown, CCSCs' proliferation, stemness, and invasion were suppressed, whereas apoptosis was increased. Gene Ontology (GO) enrichment analysis revealed that the differentially expressed genes (DEGs) between siLY6D and the negative control groups were significantly enriched in the cell-substrate adherens junction, focal adhesion, and cell-substrate junction terms. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the DEGs were significantly enriched in the MAPK pathway. In addition, Western blotting results showed that pBRAF and pERK1/2, cascade kinases of the MAPK pathway, were significantly down-regulated after LY6D knockdown. In addition, nude mice xenograft experiments showed that the siLY6D treatment decreased tumor sizes and weights and improved tumor-bearing mice survival rates compared with the control group. In conclusion, these findings indicate that LY6D, which is highly expressed in CCSCs, is a key factor involved in tumor growth and development and might be a potential cancer marker and therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Jinyue Duan
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Yuanyuan Chen
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Yujue Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Qisen Li
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Jinrui Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Changhao Fu
- VA Palo Alto Health Care System, Medical School, Stanford University, Palo Alto, CA 94304, USA;
| | - Chenyu Cao
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Zhongyi Cong
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Manman Su
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| |
Collapse
|
24
|
Xu J, Yang J, Pan X, Wang J. Prognostic and immunotherapeutic significance of immunogenic cell death-related genes in colon adenocarcinoma patients. Sci Rep 2023; 13:19188. [PMID: 37932362 PMCID: PMC10628212 DOI: 10.1038/s41598-023-46675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
In recent years, genes associated with immunogenic cell death (ICD)-related genes have garnered significant interest as potential targets for immunotherapy. As a frontier in cancer treatment, immunotherapy has notably enhanced the therapeutic outcomes for cancer patients. However, since only a subset of patients benefits from this treatment approach, there is an imperative need for biomarker research to enhance patient sensitivity to immunotherapy. Expression of ICD-related genes and clinical patient data were sourced from The Cancer Genome Atlas (TCGA) database. Utilizing univariate Cox regression analysis, we constructed a signature for predicting the overall survival of colon adenocarcinoma (COAD) patients. A genomic feature analysis was performed, incorporating tumor mutation burden (TMB) and copy number variation (CNV). The immunological characteristics were analyzed via the ssGSEA and GSEA algorithms, with the resulting data visualized using R software (version 4.2.1). According to the univariate regression analysis for COAD, AIM2 emerged as the gene most significantly associated with overall survival among the 32 ICD-related genes in the TCGA dataset. Patients were divided into two groups based on high or low AIM2 expression, and genomic differences between the groups were explored. Patients expressing high levels of AIM2 had a higher TMB and a lower CNV. In addition, these patients had elevated immune checkpoint, immune cell, and immune function scores, thus indicating increased sensitivity to immunotherapy. TIDE analysis further confirmed that these patients were likely to respond more effectively to immunotherapy. Subclass mapping analysis corroborated our findings, demonstrating that patients with high AIM2 expression responded more positively to immunotherapy. Additionally, our study found that the suppression of AIM2 could significantly enhance the proliferation, invasion, and migration capabilities of colon cancer cells. In this research, we identified a novel prognostic signature suggesting that patients with higher AIM2 expression levels are more likely to respond favorably to immunotherapy.
Collapse
Affiliation(s)
- Jun Xu
- Department of Basic Courses, Anhui Medical College, Hefei, 230032, Anhui, China
- Department of Pathology, Hefei First People's Hospital, Hefei, 230001, Anhui, China
| | - Jun Yang
- Department of Basic Courses, Anhui Medical College, Hefei, 230032, Anhui, China
| | - Xianzhu Pan
- Department of Basic Courses, Anhui Medical College, Hefei, 230032, Anhui, China
| | - Jian Wang
- Department of Basic Courses, Anhui Medical College, Hefei, 230032, Anhui, China.
- Department of Pathology, Hefei First People's Hospital, Hefei, 230001, Anhui, China.
| |
Collapse
|
25
|
Tao D, Guan B, Li H, Zhou C. Expression patterns of claudins in cancer. Heliyon 2023; 9:e21338. [PMID: 37954388 PMCID: PMC10637965 DOI: 10.1016/j.heliyon.2023.e21338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Claudins are four-transmembrane proteins, which were found in tight junctions. They maintain cell barriers and regulate cell differentiation and proliferation. They are involved in maintaining cellular polarity and normal functions. Different claudins show different expression patterns. The expression level and localization of claudins are altered in various cancers. They promote or inhibit proliferation, invasion, and migration of cancer cells through multiple signaling pathways. Therefore, claudins may serve as diagnostic markers, novel therapeutic targets, and prognostic risk factors. The important roles of claudins in cancer aroused our great interest. In the present review, we provide a summary of insights into expression patterns of claudins in cancer, which is more comprehensive and provides new ideas for further research.
Collapse
Affiliation(s)
- Daoyu Tao
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hui Li
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
26
|
Han S, Zhao S, Zhao Y, Liu M, Han L, Han L. The novel lncRNA-9802/miR-1646 axis affects cell proliferation of DF-1 by regulating Bax/Bcl-2 signaling pathway. Res Vet Sci 2023; 164:105047. [PMID: 37837750 DOI: 10.1016/j.rvsc.2023.105047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Marek's disease (MD) is a severe infectious and immunosuppressive neoplastic condition that significantly impacts the global poultry industry. Investigating the role of non-coding RNA in pathogenic mechanisms of MD virus (MDV) offers valuable insights for the effective prevention and management of MD. A higher expression of the novel lncRNA-9802 can be found in spleen tissues of MDV-infected chickens from our prior research, and there is a potential association between lncRNA-9802 and cell proliferation. In this study, we further demonstrated that over-expression of lncRNA-9802 could promote the proliferation of DF-1 cells. It has been established that lncRNA-9802 mediated its effects by binding to miR-1646, and further modulated the expression of the Bax and Bcl-2 genes. Deciphering the role of the recently discovered MD-associated lncRNA-9802/miR-1646 axis provides valuable theoretical basis for decoding the molecular mechanisms underlying MDV pathogenesis.
Collapse
Affiliation(s)
- Shuo Han
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuang Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yaolu Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Liping Han
- Department of Bioscience, Changchun Normal University, Changchun 130032, China.
| | - Limei Han
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
27
|
Xue W, Qiu K, Dong B, Guo D, Fu J, Zhu C, Niu Z. Disulfidptosis-associated long non-coding RNA signature predicts the prognosis, tumor microenvironment, and immunotherapy and chemotherapy options in colon adenocarcinoma. Cancer Cell Int 2023; 23:218. [PMID: 37759294 PMCID: PMC10523716 DOI: 10.1186/s12935-023-03065-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Disulfidptosis is independent of apoptosis, ferroptosis, and cuproptosis and is associated with cancer progression, treatment response, and prognosis. However, the predictive potential of disulfidptosis-associated lncRNAs in colon adenocarcinoma (COAD) and their features in the tumor immune microenvironment (TIME) require further elucidation. METHODS RNA transcriptome, clinical information, and mutation data of COAD samples were obtained from the TCGA database. The risk model was first constructed by co-expression analysis of disulfidptosis genes and lncRNAs, and prognostic lncRNAs were screened using Cox regression, followed by least absolute shrinkage and selection operator analysis. Enrichment analyses were performed to explore the underlying biological functions and signaling of model-associated differentially expressed genes (MADEGs). Moreover, TIME of MADEGs was analyzed to assess the immunotherapy. Finally, the expression levels of the lncRNAs were verified by taking specimens of patients with COAD from the Affiliated Hospital of Qingdao University. RESULTS We constructed a prognosis-related risk model based on four disulfidptosis-associated lncRNAs (ZEB1-AS1, SNHG16, SATB2-AS1, and ALMS1-IT1). By analyzing the survival of patients in the whole, training, and test groups, we found that patients with COAD in the low-risk group had better overall survival than those in the high-risk group. Validation of the model via Cox analysis and clinical indicators demonstrated that the model had a decent potential for predicting the prognosis of patients with COAD. Enrichment analyses revealed that the MADEGs were related to disulfidptosis-associated biological functions and cancer pathways. Furthermore, patients with COAD in the high-risk group had more positive responses to immune checkpoint inhibitors (ICIs) than those in the low-risk group, as confirmed by TIME analysis. ZEB1-AS1, SNHG16, and ALMS1-IT1 were expressed at higher levels in tumor samples than those in the corresponding paracancerous samples (p < 0.05), whereas SATB2-AS1 was upregulated in the paracancerous samples (p < 0.05). CONCLUSIONS This signature may guide prognosis, molecular mechanisms, and treatment strategies, including ICIs and chemotherapy, in patients with COAD.
Collapse
Affiliation(s)
- Weijie Xue
- Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266003, China
| | - Kang Qiu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Dong Guo
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266003, China
| | - Junhua Fu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266003, China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, China.
| | - Zhaojian Niu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
28
|
Di Z, Xu G, Ding Z, Li C, Song J, Huang G, Zheng J, Zhang X, Xiong B. Identification and validation of a novel prognosis model based on m5C-related long non-coding RNAs in colorectal cancer. Cancer Cell Int 2023; 23:196. [PMID: 37670275 PMCID: PMC10481501 DOI: 10.1186/s12935-023-03025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND The prognosis of tumor patients can be assessed by measuring the levels of lncRNAs (long non-coding RNAs), which play a role in controlling the methylation of the RNA. Prognosis in individuals with colorectal adenocarcinoma (CRC) is strongly linked to lncRNA expression, making it imperative to find lncRNAs that are associated with RNA methylation with strong prognostic value. METHODS In this study, by analyzing TCGA dataset, we were able to develop a risk model for lncRNAs that are associated with m5C with prognostic significance by employing LASSO regression and univariate Cox proportional analysis. There were a number of methods employed to ensure the model was accurate, including multivariate and univariate Cox regression analysis, Kaplan analysis, and receiver operating characteristic curve analysis. The principal component analysis, GSEA and GSVA analysis were used for risk model analysis. The CIBERSORT instrument and the TIMER database were used to evaluate the link between the immune cells that infiltrate tumors and the risk model. In vitro experiments were also performed to validate the predicted m5C-related significant lncRNAs. RESULTS The m5c regulators were differentially expressed in colorectal cancer and normal tissue. Based on the screening criteria and LASSO regression, 11 m5c-related lncRNAs were identified for developing the prognostic risk model. Multivariate and univariate Cox regression analysis showed the risk score is a crucial prognostic factor in CRC patients. The 1-year, 3-year, and 5-year AUC curves showed the risk score was higher than those identified for other clinicopathological characteristics. A nomogram using the risk score as a quantitative tool was developed for predicting patients' outcomes in clinical settings. In addition, the risk profile of m5C-associated lncRNAs can discriminate between tumor immune cells' characteristics in CRC. Mutation patterns and chemotherapy were analyzed between high- and low- risk groups of CRC patients. Moreover, TNFRSF10A-AS1 was chosen for the in vitro verification of the m5C-connected lncRNA to demonstrate impressive effects on the proliferation, migration and invasion of CRC cells. CONCLUSION A risk model including the prognostic value of 11 m5C-associated lncRNAs proves to be a useful prognostic tool for CRC and improves the care of patients suffering from CRC based on these findings.
Collapse
Affiliation(s)
- Ziyang Di
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Gaoran Xu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Zheyu Ding
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Chengxin Li
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Jialin Song
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Guoquan Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Jinsen Zheng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Xinyao Zhang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.
| |
Collapse
|
29
|
Manabile MA, Hull R, Khanyile R, Molefi T, Damane BP, Mongan NP, Bates DO, Dlamini Z. Alternative Splicing Events and Their Clinical Significance in Colorectal Cancer: Targeted Therapeutic Opportunities. Cancers (Basel) 2023; 15:3999. [PMID: 37568815 PMCID: PMC10417810 DOI: 10.3390/cancers15153999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) ranks as one of the top causes of cancer mortality worldwide and its incidence is on the rise, particularly in low-middle-income countries (LMICs). There are several factors that contribute to the development and progression of CRC. Alternative splicing (AS) was found to be one of the molecular mechanisms underlying the development and progression of CRC. With the advent of genome/transcriptome sequencing and large patient databases, the broad role of aberrant AS in cancer development and progression has become clear. AS affects cancer initiation, proliferation, invasion, and migration. These splicing changes activate oncogenes or deactivate tumor suppressor genes by producing altered amounts of normally functional or new proteins with different, even opposing, functions. Thus, identifying and characterizing CRC-specific alternative splicing events and variants might help in designing new therapeutic splicing disrupter drugs. CRC-specific splicing events can be used as diagnostic and prognostic biomarkers. In this review, alternatively spliced events and their role in CRC development will be discussed. The paper also reviews recent research on alternatively spliced events that might be exploited as prognostic, diagnostic, and targeted therapeutic indicators. Of particular interest is the targeting of protein arginine methyltransferase (PMRT) isoforms for the development of new treatments and diagnostic tools. The potential challenges and limitations in translating these discoveries into clinical practice will also be addressed.
Collapse
Affiliation(s)
- Mosebo Armstrong Manabile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| | - Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Thulo Molefi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa;
| | - Nigel Patrick Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - David Owen Bates
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Centre for Cancer Sciences, Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| |
Collapse
|
30
|
Yang TX, Xue RF. CircSHKBP1 regulates colon cancer cell proliferation and apoptosis by targeting miR-125a-5p. Shijie Huaren Xiaohua Zazhi 2023; 31:537-543. [DOI: 10.11569/wcjd.v31.i13.537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Colon cancer is a common malignant tumor in clinical practice. It has been reported that circular RNAs (circRNAs) are involved in the occurrence and development of cancer. Among them, circSHKBP1 acts as an oncogene to promote cancer progression. Thus, we hypothesized that circSHKBP1 might be also implicated in the development of colon cancer.
AIM To explore the role of circSHKBP1 in colon cancer cell proliferation and apoptosis and the possible mechanism involved.
METHODS Sixty-nine cancer tissues and matched adjacent normal tissues were selected from March 2020 to July 2020 at our hospital. The expression of circSHKBP1 and miR-125a-5p was detected by qRT-PCR. Human colon cancer cells (HT29) cultured in vitro were randomly divided into sh-NC group, sh-circSHKBP1 group, miR-NC group, miR-125a-5p group, sh-circSHKBP1 + anti-miR-NC group, and sh-circSHKBP1 + anti-miR-125a-5p group. MTT assay, colony formation experiment, and flow cytometry were used to detect cell proliferation, colony formation, and apoptosis, respectively. The dual luciferase reporter experiment was used to detect the impact of miR-125a-5p overexpression on the luciferase activity of the wild-type vector wt-circSHKBP1. Western blot was used to detect the protein expression of Bax and Bcl-2.
RESULTS Compared with adjacent tissues, the expression of circSHKBP1 in colon cancer tissues was increased (P < 0.05), while the expression of miR-125a-5p was decreased (P < 0.05). Cell proliferation inhibition rate, apoptosis rate, and Bax protein level in the sh-circSHKBP1 group were increased (P < 0.05), while the number of cell colonies (P < 0.05) and Bcl-2 protein level were decreased (P < 0.05). Overexpression of miR-125a-5p could reduce the luciferase activity of wt-circSHKBP1 (P < 0.05). Relative to the miR-NC group, miR-125a-5p reduced cell proliferation, increased apoptosis rate and Bax protein level (P < 0.05), decreased the number of cell colonies (P < 0.05), and reduced Bcl-2 protein level (P < 0.05). Compared with the sh-circSHKBP1 + anti-miR-NC group, cell proliferation inhibition rate, apoptosis, and the protein level of Bax in the sh-circSHKBP1 + anti-miR-125a-5p group were decreased (P < 0.05), while the number of cell colonies and Bcl-2 protein level were increased (P < 0.05).
CONCLUSION Knockdown of circSHKBP1 could inhibit colon cancer cell proliferation and promote apoptosis via up-regulating miR-125a-5p expression.
Collapse
Affiliation(s)
- Ting-Xu Yang
- Department of General Medicine, Jiuquan People's Hospital, Jiuquan 735000, Gansu Province, China
| | - Rui-Fang Xue
- Department of General Medicine, Jiuquan People's Hospital, Jiuquan 735000, Gansu Province, China
| |
Collapse
|
31
|
Wu Y, Wen X, Xia Y, Yu X, Lou Y. LncRNAs and regulated cell death in tumor cells. Front Oncol 2023; 13:1170336. [PMID: 37313458 PMCID: PMC10258353 DOI: 10.3389/fonc.2023.1170336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Regulated Cell Death (RCD) is a mode of cell death that occurs through drug or genetic intervention. The regulation of RCDs is one of the significant reasons for the long survival time of tumor cells and poor prognosis of patients. Long non-coding RNAs (lncRNAs) which are involved in the regulation of tumor biological processes, including RCDs occurring on tumor cells, are closely related to tumor progression. In this review, we describe the mechanisms of eight different RCDs which contain apoptosis, necroptosis, pyroptosis, NETosis, entosis, ferroptosis, autosis and cuproptosis. Meanwhile, their respective roles in the tumor are aggregated. In addition, we outline the literature that is related to the regulatory relationships between lncRNAs and RCDs in tumor cells, which is expected to provide new ideas for tumor diagnosis and treatment.
Collapse
|
32
|
Xie Y, Song X, Du D, Ni Z, Huang H. Identification of cuproptosis-related lncRNAs to predict prognosis and immune infiltration characteristics in alimentary tract malignancies. BMC Bioinformatics 2023; 24:184. [PMID: 37142949 PMCID: PMC10161432 DOI: 10.1186/s12859-023-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Alimentary tract malignancies (ATM) caused nearly one-third of all tumor-related death. Cuproptosis is a newly identified cell death pattern. The role of cuproptosis-associated lncRNAs in ATM is unknown. METHOD Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to identify prognostic lncRNAs by Cox regression and LASSO. Then a predictive nomogram was constructed based on seven prognostic lncRNAs. In addition, the prognostic potential of the seven-lncRNA signature was verified via survival analysis, the receiver operating characteristic (ROC) curve, calibration curve, and clinicopathologic characteristics correlation analysis. Furthermore, we explored the associations between the signature risk score and immune landscape, and somatic gene mutation. RESULTS We identified 1211 cuproptosis-related lncRNAs and seven survival-related lncRNAs. Patients were categorized into high-risk and low-risk groups with significantly different prognoses. ROC and calibration curve confirmed the good prediction capability of the risk model and nomogram. Somatic mutations between the two groups were compared. We also found that patients in the two groups responded differently to immune checkpoint inhibitors and immunotherapy. CONCLUSION The proposed novel seven lncRNAs nomogram could predict prognosis and guide treatment of ATM. Further research was required to validate the nomogram.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Xue Song
- Department of Pneumology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Danwei Du
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Zhongkai Ni
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Hai Huang
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
33
|
Okamoto E, Matsuda S, Yoshino Y, Morikawa Y, Suenami K, Tabuchi Y, Matsunaga T, Ikari A. Regulation of Paracellular Fluxes of Amino Acids by Claudin-8 in Normal Mouse Intestinal MCE301 Cells. Nutrients 2023; 15:nu15061346. [PMID: 36986076 PMCID: PMC10055863 DOI: 10.3390/nu15061346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The ingested proteins are catabolized to di/tri-peptides and amino acids (AAs), which are absorbed through various transporters in the small intestinal and colonic epithelial cells. Tight junctions (TJs) are formed between neighboring cells and restrict paracellular fluxes to mineral ions and aqueous molecules. However, it is unknown whether the TJs are implicated in the control of paracellular fluxes to AAs. The paracellular permeability is controlled by claudins (CLDNs), which comprise a family of over 20 members. Here, we found that CLDN8 expression is decreased by AAs deprivation in normal mouse colon-derived MCE301 cells. The reporter activity of CLDN8 was not significantly changed by AAs deprivation, whereas the stability of CLDN8 protein was decreased. MicroRNA analysis showed that AAs deprivation increases the expression of miR-153-5p which targets CLDN8. The AAs deprivation-induced decline of CLDN8 expression was reversed by a miR-153-5p inhibitor. The CLDN8 silencing enhanced the paracellular fluxes to AAs, especially middle molecular size AAs. The expression levels of colonic CLDN8 and miR-153-5p in aged mice were lower and higher than those in young mice, respectively. We suggest that AAs deprivation downregulates CLDN8-dependent barrier function, mediated by the elevation of miR-153-5p expression in the colon, in order to enhance the AAs absorption.
Collapse
Affiliation(s)
- Ema Okamoto
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Shunsuke Matsuda
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Correspondence: ; Tel.: +81-58-230-8124
| |
Collapse
|
34
|
Zhong Y, Zhao J, Deng H, Wu Y, Zhu L, Yang M, Liu Q, Luo G, Ma W, Li H. Integrative bioinformatics analysis to identify novel biomarkers associated with non-obstructive azoospermia. Front Immunol 2023; 14:1088261. [PMID: 36969237 PMCID: PMC10031032 DOI: 10.3389/fimmu.2023.1088261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
AimThis study aimed to identify autophagy-related genes (ARGs) associated with non-obstructive azoospermia and explore the underlying molecular mechanisms.MethodsTwo datasets associated with azoospermia were downloaded from the Gene Expression Omnibus database, and ARGs were obtained from the Human Autophagy-dedicated Database. Autophagy-related differentially expressed genes were identified in the azoospermia and control groups. These genes were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, protein–protein interaction (PPI) network, and functional similarity analyses. After identifying the hub genes, immune infiltration and hub gene–RNA-binding protein (RBP)–transcription factor (TF)–miRNA–drug interactions were analyzed.ResultsA total 46 differentially expressed ARGs were identified between the azoospermia and control groups. These genes were enriched in autophagy-associated functions and pathways. Eight hub genes were selected from the PPI network. Functional similarity analysis revealed that HSPA5 may play a key role in azoospermia. Immune cell infiltration analysis revealed that activated dendritic cells were significantly decreased in the azoospermia group compared to those in the control groups. Hub genes, especially ATG3, KIAA0652, MAPK1, and EGFR were strongly correlated with immune cell infiltration. Finally, a hub gene–miRNA–TF–RBP–drug network was constructed.ConclusionThe eight hub genes, including EGFR, HSPA5, ATG3, KIAA0652, and MAPK1, may serve as biomarkers for the diagnosis and treatment of azoospermia. The study findings suggest potential targets and mechanisms for the occurrence and development of this disease.
Collapse
Affiliation(s)
- Yucheng Zhong
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Jun Zhao
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Hao Deng
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Yaqin Wu
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Li Zhu
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Meiqiong Yang
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Qianru Liu
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Guoqun Luo
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Wenmin Ma
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
- Assist Reproductive Medical Center, Zhaoqing West River Hospital, Zhaoqing, Guangdong, China
- *Correspondence: Wenmin Ma, ; Huan Li,
| | - Huan Li
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
- *Correspondence: Wenmin Ma, ; Huan Li,
| |
Collapse
|
35
|
Ji J, Fu J. MiR-17-3p Facilitates Aggressive Cell Phenotypes in Colon Cancer by Targeting PLCD1 Through Affecting KIF14. Appl Biochem Biotechnol 2023; 195:1723-1735. [PMID: 36367621 DOI: 10.1007/s12010-022-04218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
Colon cancer (CC) is a common and lethal cancer to be further elucidated. Accumulating studies elaborated the crucial role of miRNAs differentially expressed in cancer cell growth. In the present study, differentially expressed miRNAs related to CC were screened by the bioinformatics methods on the strength of TCGA database. Highly expressed miR-17-3p was proved to notably influence CC cell proliferative, migratory, invasion, and apoptotic levels. By using TargetScan and miRTarBase databases, phospholipase C delta 1 (PLCD1) was predicted as a target downstream of miR-17-3p, and their binding site was predicted. Through TCGA database, low expression of PLCD1 and its significant negative correlation with miR-17-3p were identified in CC. Dual-luciferase reporter gene analysis ascertained the targeting relationship between miR-17-3p and PLCD1. Cell Counting Kit-8, colony formation, and transwell assays were introduced to detect CC cell malignant progression. Flow cytometry was applied to detect CC cell apoptosis. As result revealed, miR-17-3p was markedly highly expressed, and PLCD1, the target of miR-17-3p, was remarkably lowly expressed in CC cells. Forced expression of miR-17-3p facilitated CC cell proliferation, migration, invasion, and suppressed apoptosis. Biological roles of upregulating miR-17-3p in the colon cancer cells were markedly weakened by over-expressing PLCD1 simultaneously. MiR-17-3p regulated CC cell malignant progression, as well as apoptosis by targeting PLCD1. Moreover, KIF14 was extensively considered as an involved tumor-promoting gene that could be affected by miR-17-3p/PLCD1 axis based on BioGRID analysis and CO-IP assay. Concludingly, this study exhibited that miR-17-3p facilitated CC progression by PLCD1 downregulation.
Collapse
Affiliation(s)
- Jinxing Ji
- Department of Oncology, The First Clinical Medical College of China Three Gorges University, Yichang Central People's Hospital, Yichang, 443000, Hubei, China
| | - Jun Fu
- Department of Gastrointestinal and Anal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530000, Guangxi, China.
| |
Collapse
|
36
|
Zhang Z, Xu J, Wu Y, Liu N, Wang Y, Liang Y. CapsNet-LDA: predicting lncRNA-disease associations using attention mechanism and capsule network based on multi-view data. Brief Bioinform 2023; 24:6889447. [PMID: 36511221 DOI: 10.1093/bib/bbac531] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022] Open
Abstract
Cumulative studies have shown that many long non-coding RNAs (lncRNAs) are crucial in a number of diseases. Predicting potential lncRNA-disease associations (LDAs) can facilitate disease prevention, diagnosis and treatment. Therefore, it is vital to develop practical computational methods for LDA prediction. In this study, we propose a novel predictor named capsule network (CapsNet)-LDA for LDA prediction. CapsNet-LDA first uses a stacked autoencoder for acquiring the informative low-dimensional representations of the lncRNA-disease pairs under multiple views, then the attention mechanism is leveraged to implement an adaptive allocation of importance weights to them, and they are subsequently processed using a CapsNet-based architecture for predicting LDAs. Different from the conventional convolutional neural networks (CNNs) that have some restrictions with the usage of scalar neurons and pooling operations. the CapsNets use vector neurons instead of scalar neurons that have better robustness for the complex combination of features and they use dynamic routing processes for updating parameters. CapsNet-LDA is superior to other five state-of-the-art models on four benchmark datasets, four perturbed datasets and an independent test set in the comparison experiments, demonstrating that CapsNet-LDA has excellent performance and robustness against perturbation, as well as good generalization ability. The ablation studies verify the effectiveness of some modules of CapsNet-LDA. Moreover, the ability of multi-view data to improve performance is proven. Case studies further indicate that CapsNet-LDA can accurately predict novel LDAs for specific diseases.
Collapse
Affiliation(s)
- Zequn Zhang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, 310045 Jiangxi, China
| | - Junlin Xu
- College of Information Science and Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Yanan Wu
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, 310045 Jiangxi, China
| | - Niannian Liu
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, 310045 Jiangxi, China
| | - Yinglong Wang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, 310045 Jiangxi, China
| | - Ying Liang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, 310045 Jiangxi, China
| |
Collapse
|
37
|
Peng S, Luo Y, Chen L, Dai K, Wang Q. lncRNA ELFN1-AS1 enhances the progression of colon cancer by targeting miR-4270 to upregulate AURKB. Open Med (Wars) 2022; 17:1999-2012. [PMID: 36561847 PMCID: PMC9743200 DOI: 10.1515/med-2022-0582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 12/13/2022] Open
Abstract
The oncogenic role of lncRNA ELFN1-AS1 has been described in different cancers, including colon cancer (CC). However, how ELFN1-AS1 regulates CC malignancy remains unclear. In this study, ELFN1-AS1, AURKB, and miR-4270 expression levels in CC cells and tissues were determined using RT-qPCR and western blotting. CCK-8 and wound healing assays were also performed to analyze alterations in CC cell proliferation and migration. The expression of apoptosis-related proteins (Bax and Bcl-2) was determined via western blot analysis. RNA immunoprecipitation (RIP) assays coupled with luciferase reporter assays were employed to verify the relationship between miR-4270, ELFN1-AS1, and AURKB. An in vivo assay was performed using xenograft tumors in mice to detect the change of tumor growth. It was found that AURKB and ELFN1-AS1 expression was upregulated, whereas miR-4270 was downregulated in CC cells and tissues. ELFN1-AS1 silencing exhibited anti-proliferative, anti-migratory, and pro-apoptotic effects in CC cells. The tumor-suppressive effect of ELFN1-AS1 silencing was verified using in vivo assays. MiR-4270 was predicted to be a target of ELFN1-AS1 and AURKB as a target of miR-4270. Their interactions were further elucidated using luciferase reporter and RNA RIP assays. More importantly, treatment with a miR-4270 inhibitor not only rescued the tumor-suppressing effect of ELFN1-AS1 silencing but also abrogated the tumor suppressor functions of AURKB silencing in CC cells. Taken together, the ELFN1-AS1/miR-4270/AURKB axis facilitates CC tumorigenesis; therefore, targeting this axis might be a promising intervention in preventing CC progression.
Collapse
Affiliation(s)
- Shuangqin Peng
- Department of Pediatrics, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China
| | - Yanjun Luo
- Department of Pediatrics, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China
| | - Lijuan Chen
- Department of Pediatrics, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China
| | - Kang Dai
- R&D Department, Wensheng Biotechnology Co., Ltd., Wuhan 430000, Hubei, China
| | - Qin Wang
- Department of Pathology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei, China
| |
Collapse
|
38
|
Zhang G, Wu B, Fu L, Liu B, Han X, Wang J, Zhang Y, Yu M, Ma H, Ma S, Cai H. A pan-cancer analysis of the prognostic value of long non-coding RNA LINC00662 in human cancers. Front Genet 2022; 13:1063119. [PMID: 36568401 PMCID: PMC9773142 DOI: 10.3389/fgene.2022.1063119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Numerous studies have revealed that the long non-coding RNA LINC00662 is irregularly expressed in various cancers, as well as is correlated with cancer development and progression. Nevertheless, the clinical value of LINC00662 remains controversial. Hence, we explored the correlation of LINC00662 with cancer prognosis through meta-analysis and bioinformatics analysis. Methods: From the beginning through 12 March 2022, we searched for correlational studies on Web of Science, Embase, PubMed and The Cochrane Library. We used pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) to determine the significance of studies on survival outcomes and clinicopathological aspects in human cancers. Additionally, the Gene Expression Profiling Interactive Analysis (GEPIA) database was employed to confirm our findings. Results: Our meta-analysis of 14 studies comprising a total of 960 cancer patients revealed that LINC00662 overexpression was correlated with poor overall survival (HR = 1.91, 95% CI 1.49-2.45, p < 0.001) in cancer patients and relapse-free survival (HR = 2.12, 95% CI 1.19-3.76, p = 0.010) in hepatocellular carcinoma patients. The correlation between LINC00662 and OS was further supported by the results of subgroup analyses according to cancer type, follow-up time, HR availability, and NOS score. In addition, LINC00662 overexpression predicted advanced tumor stage (OR = 4.23, 95% CI 2.50-7.17, p < 0.001), larger tumor size (OR = 1.49, 95% CI 1.11-1.99, p = 0.008), earlier lymph node metastasis (OR = 2.40, 95% CI 1.25-4.59, p = 0.008), and earlier distant metastasis (OR = 4.78, 95% CI 2.57-8.88, p < 0.001). However, there were no statistically significant differences in age (OR = 1.16, 95% CI 0.90-1.51, p = 0.246), gender (OR = 1.10, 95% CI 0.79-1.53, p = 0.578), or differentiation grade (OR = 1.53, 95% CI 0.71-3.33, p = 0.280). Conclusion: LINC00662 expression upregulation is associated with poor prognosis and advanced clinicopathological features in patients with multiple tumors. LINC00662 may serve as a biomarker for the diagnosis and treatment of patients with tumors.
Collapse
Affiliation(s)
- Guangming Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China,Department of General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China,Gansu Provincial Hospital, Lanzhou, China
| | - Bin Wu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China,Department of General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China,Gansu Provincial Hospital, Lanzhou, China
| | - Liangyin Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China,Department of General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China,Gansu Provincial Hospital, Lanzhou, China
| | - Bin Liu
- Gansu Provincial Hospital, Lanzhou, China,The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | | | - Jie Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Yipeng Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Miao Yu
- Gansu Provincial Hospital, Lanzhou, China
| | - Haizhong Ma
- Gansu Provincial Hospital, Lanzhou, China,The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Shixun Ma
- Gansu Provincial Hospital, Lanzhou, China,The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hui Cai
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China,Department of General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China,Gansu Provincial Hospital, Lanzhou, China,*Correspondence: Hui Cai,
| |
Collapse
|
39
|
Inhibition of Angiogenesis by MiR-524-5p through Suppression of AKT and ERK Activation by Targeting CXCR7 in Colon Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:7224840. [DOI: 10.1155/2022/7224840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Increasing evidence shows that alterations in microRNA (miRNA) expression are involved in the occurrence and development of various malignant tumors, including colon cancer. MiRNA-524-5p has been reported to have anticancer activity in colon cancer. This study explored the influence of the miRNA-524-5p/CXCR7 axis on angiogenesis using colon cancer cells and further studied the mechanisms involved. We found that changing the expression of miRNA-524-5p can affect colonic proliferation, migration, and angiogenesis. Furthermore, angiogenesis induced by miRNA-524-5p overexpression was reversed by overexpression of CXCR7 in HT-29 cells, while the opposite was observed in Caco-2 cells. Furthermore, miRNA-524-5p inhibited the activation of AKT and ERK signaling by targeting CXCR7. Overall, our results indicated that the miRNA-524-5p/CXCR7 axis regulated angiogenesis in colon cancer cells through the AKT and ERK pathways.
Collapse
|
40
|
Entezari M, Taheriazam A, Orouei S, Fallah S, Sanaei A, Hejazi ES, Kakavand A, Rezaei S, Heidari H, Behroozaghdam M, Daneshi S, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions. Biomed Pharmacother 2022; 154:113609. [PMID: 36037786 DOI: 10.1016/j.biopha.2022.113609] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic factors are critical regulators of biological and pathological mechanisms and they could interact with different molecular pathways. Targeting epigenetic factors has been an idea approach in disease therapy, especially cancer. Accumulating evidence has highlighted function of long non-coding RNAs (lncRNAs) as epigenetic factors in cancer initiation and development and has focused on their association with downstream targets. microRNAs (miRNAs) are the most well-known targets of lncRNAs and present review focuses on lncRNA-miRNA axis in malignancy and therapy resistance of tumors. LncRNA-miRNA regulates cell death mechanisms such as apoptosis and autophagy in cancers. This axis affects tumor metastasis via regulating EMT and MMPs. Besides, lncRNA-miRNA axis determines sensitivity of tumor cells to chemotherapy, radiotherapy and immunotherapy. Based on the studies, lncRNAs can be affected by drugs and genetic tools in cancer therapy and this may affect expression level of miRNAs as their downstream targets, leading to cancer suppression/progression. LncRNAs have both tumor-promoting and tumor-suppressor functions in cancer and this unique function of lncRNAs has complicated their implication in tumor therapy. LncRNA-miRNA axis can also affect other signaling networks in cancer such as PI3K/Akt, STAT3, Wnt/β-catenin and EZH2 among others. Notably, lncRNA/miRNA axis can be considered as a signature for diagnosis and prognosis in cancers.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Shayan Fallah
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arezoo Sanaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Hajar Heidari
- Department of Biomedical Sciences School of Public Health University at Albany State University of New York, Albany, NY 12208, USA
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Islamic Republic of Iran.
| |
Collapse
|
41
|
Kim WR, Park EG, Lee YJ, Bae WH, Lee DH, Kim HS. Integration of TE Induces Cancer Specific Alternative Splicing Events. Int J Mol Sci 2022; 23:10918. [PMID: 36142830 PMCID: PMC9502224 DOI: 10.3390/ijms231810918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
42
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
43
|
Zhao L, Sun X, Chen L, Feng X, Yang X, Zou P, Wang X, Zhang R. Hepatitis C Virus Core Protein Promotes the Metastasis of Human Hepatocytes by Activating the MAPK/ERK/PEA3-SRF/c-Fos/MMPs Axis. Arch Med Res 2022; 53:469-482. [PMID: 35817647 DOI: 10.1016/j.arcmed.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/11/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIM Previous studies have shown that the hepatitis C virus (HCV) core protein plays an important role in the metastasis of hepatocellular carcinoma (HCC) cells. This study aimed to identify the potential mechanism of HCV core protein in HCC. METHODS A transcription factor microarray analysis was performed to identify the factors regulated by the HCV core protein. A comprehensive bioinformatics analysis approach was utilized to predict the functions, regulatory signaling pathways and downstream target genes of the differentially regulated transcription factors. Dual-luciferase assays, qPCR, Western blotting, ERK pathway inhibition experiments and siRNA knockdown experiments were performed to verify the effects of the HCV core protein on PEA3, SRF and c-Fos, as well asthe underlying mechanism. The migration/invasion assay and scratch assay served to confirm the metastasis-promoting mechanism of the HCV core protein. RESULTS The results demonstrated that altered expression of PEA3, SRF and c-Fos mediated by the HCV core protein were associated with the MAPK/ERK pathway. c-Fos was a downstream target protein of PEA3 and SRF. Knockdown of PEA3-SRF/c-Fos expression and ERK pathway components suppressed the migration and invasion activity of hepatocytes by affecting MMP2 and MMP9 expression. CONCLUSION We provided preliminary evidence that the role of the HCV core protein in promoting metastasis is at least partially dependent on the activation of the MAPK/ERK/PEA3-SRF/c-Fos/MMP2/MMP9 axis. These findings reveal a novel mechanism by which the HCV core protein promotes HCC metastasis and may provide new therapeutic targets for patients with metastatic HCC.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Biopharmaceutics, School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xiaojie Sun
- Department of Biopharmaceutics, School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Luhua Chen
- Department of Biopharmaceutics, School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xiaoyan Feng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Peng Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xialu Wang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| | - Rong Zhang
- Department of Biopharmaceutics, School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
44
|
Long Intergenic Noncoding RNA 00641 Promotes Growth and Invasion of Colorectal Cancer through Regulating miR-450b-5p/GOLPH3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:8259135. [PMID: 35756081 PMCID: PMC9217543 DOI: 10.1155/2022/8259135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/26/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) have a vital function in tumor onset and progress. For instance, long intergenic noncoding RNA 00641 (LINC00641) has been linked to cancer modulation. Nonetheless, the precise biological roles of LINC00641 in colorectal cancer (CRC) remain elusive. Methods The expression levels of LINC00641 as well as the docking sites for LINC00641 and miR-450b-5p were analyzed using public data resources and web-based analytic tools. The putative downstream targets of miR-450b-5p were also predicted. Next, we evaluated the biological functions and the contents of LINC00641 in CRC both in vivo and in vitro. We next explored the influence of LINC00641 on the growth, migration, and infiltration of CRC cells via cell proliferation, migration, and invasion experiments. Besides, qRT-PCR, western blotting, flow cytometry, luciferase enzyme reporter assay, and in vivo tumorigenicity assays were conducted. Results Our results confirmed that LINC00641 was markedly upmodulated in CRC tissues and CRC cell lines, and the upmodulation was linked to poor survival. Notably, the proliferative and migratory abilities of HCT-116 and SW480 cells were significantly inhibited by the knockdown of LINC00641 both in vitro and in vivo, illustrating that LINC00641 exerted a tumor-promotion role in CRC. Mechanistically, LINC00641 could competitively bind miR-450b-5p, thereby expunging its inhibitory effect on GOLPH3 expression. Moreover, miR-450-5p and GOLPH3 were able to reverse LINC00641-mediated cellular processes. Conclusions Overall, the findings of this study suggest that LINC00641 promotes the proliferative and migratory abilities of CRC through sponging the miR-450b-5p/GOLPH3 axis.
Collapse
|
45
|
Kong S, Tian S, Wang Z, Shi Y, Zhang J, Zhuo H. Circular RNA circPFKP suppresses the proliferation and metastasis of gastric cancer cell via sponging miR-644 and regulating ADAMTSL5 expression. Bioengineered 2022; 13:12326-12337. [PMID: 35587154 PMCID: PMC9275984 DOI: 10.1080/21655979.2022.2073001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The treatment of gastric cancer (GC) is extremely challenging; however, the specific pathogenesis of GC remains unclear. Circular RNAs (CircRNAs) are non-coding RNAs that can regulate gene expression both transcriptionally and post-transcriptionally. However, little is known about the circRNAs that are important in the progression of GC. This study identified significantly dysregulated circRNAs by analyzing gastric cancer patients and normal control tissues. The target gene was predicted using online bioinformatics tools and verified using RNA pull-down and luciferase reporter assays. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to evaluate gene and protein expression. The malignant behavior of GC cells was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, wound healing assay, Transwell invasion assay, and flow cytometry. CircPFKP is downregulated in GC tissues, and overexpression of circPFKP inhibits malignant behavior in GC cells. Bioinformatics predicted that circPFKP could bind to miR-644, and miR-644 could target disintegrin-like and metalloprotease domain-containing thrombospondin type 1 motif-like 5 (ADAMTSL5). Overexpression of circPFKP enhances the expression of ADAMTSL5 by decreasing the expression of miR-644 to suppress the growth of xenograft GC tumors in vivo and in vitro. In conclusion, the circPFKP/miR-644/ADAMTSL5 regulatory pathway inhibited the malignant progression of GC. These findings may extend our understanding of the effects of circRNAs on cancer development and provide novel targets for the diagnosis of GC.
Collapse
Affiliation(s)
- Shuai Kong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shubo Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhu Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yulong Shi
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jizhun Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongqing Zhuo
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
46
|
An C, Hu Z, Li Y, Zhao P, Liu R, Zhang Q, Zhu P, Li Y, Wang Y. LINC00662 enhances cell progression and stemness in breast cancer by MiR-144-3p/SOX2 axis. Cancer Cell Int 2022; 22:184. [PMID: 35551606 PMCID: PMC9097442 DOI: 10.1186/s12935-022-02576-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/06/2022] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the most prevalent malignancies among women globally. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are associated with BC carcinogenesis. In the current study, we explored the mechanism by which LINC00662 regulates BC. METHODS Quantitative real-time PCR (qRT-PCR) assessed RNA expressions while western blot for protein levels. Kaplan Meier analysis evaluated overall survival (OS). Cytoplasmic/nuclear fractionation, RNA binding protein immunoprecipitation (RIP) and luciferase reporter assays probed into the underlying molecular mechanism of LINC00662 in BC. Xenograft model was established to explore the influence of LINC00662 on BC progression in vivo. R square graphs were utilized to represent RNA relationships. RESULTS LINC00662 is overtly overexpressed in BC tissues and cell lines. LINC00662 knockdown hampers cell proliferation, migration, invasion and stemness. LINC00662 expression is negatively correlated with OS of BC patients. LINC00662 up-regulates SOX2 expression by competitively binding to miR-144-3p, thereby modulating BC cell progression. Xenograft experiments verified that LINC00662 promotes BC tumor growth and cell stemness in vivo. CONCLUSION LINC00662 enhances cell proliferation, migration, invasion and stemness in BC by targeting miR-144-3p/SOX2 axis. The findings in the present study suggested that LINC00662 could be a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Congjing An
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Zhigang Hu
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Yuehong Li
- Department of Pathology, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Pengxin Zhao
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Runtian Liu
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Qing Zhang
- Department of Pathology, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Peiling Zhu
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Yanting Li
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Ying Wang
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
47
|
Overexpressed lncRNA LINC00893 Suppresses Progression of Colon Cancer by Binding with miR-146b-3p to Upregulate PRSS8. JOURNAL OF ONCOLOGY 2022; 2022:8002318. [PMID: 35571488 PMCID: PMC9098335 DOI: 10.1155/2022/8002318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) play a significant role in the progression and metastasis of various cancers. LINC00893 has been reported to exert antitumor effect on various cancers such as gastric cancer and thyroid cancer. Bioinformatics analysis also predicted that LINC00893 was downregulated in colon cancer. However, the clinical significance and regulating mechanism of LINC00893 in colon cancer remain unknown. Methods Expression of LINC00893, miR-146b-3p, and PRSS8 was detected in colon cancer tissues and adjacent nontumor tissues by RT-qPCR, and clinical significance was analyzed by receiver operating characteristic curve. The regulatory mechanism of LINC00893, miR-146b-3p, and PRSS8 was investigated by dual luciferase reporter and RNA pull-down assays. Proliferation, migration, invasion, and apoptosis were measured in HCT116 and SW620 cells by MTT, EdU staining, wound healing, Transwell, TUNEL, and flow-cytometry assays. Moreover, the effect of LINC00893 on colon cancer progression was further evaluated in tumor-bearing mice. Results LINC00893 and PRSS8 were significantly downregulated, while miR-146b-3p was upregulated in colon cancer tissues compared to control group. LINC00893, miR-146b-3p, and PRSS8 had significant diagnostic value with area under curve of 0.9383, 0.7300, and 0.9644, respectively. Overexpressed LINC00893 or silenced miR-146b-3p suppressed the proliferation, migration, and invasion while promoting apoptosis in colon cancer cells (HCT116, SW620). Moreover, miR-146b-3p overexpression reversed the inhibitory effect of LINC00893, while PRSS8 knockdown rescued the suppressive effect of miR-146b-3p inhibitor on malignant cell behaviors in colon cancer. Furthermore, the tumor growth in mice was significantly reduced by LINC00893 overexpression. Conclusion LINC00893 overexpression suppressed the progression of colon cancer by binding with miR-146b-3p to upregulate PRSS8. LINC00893 and its downstream molecules miR-146b-3p and PRSS8 may serve as novel biomarkers and therapeutic targets of colon cancer, providing new treatment options and research approaches towards colon cancer.
Collapse
|
48
|
Chen G, Lian D, Zhao L, Wang Z, Wuyun Q, Zhang N. The long non-coding RNA T cell leukemia homeobox 1 neighbor enhances signal transducer and activator of transcription 5A phosphorylation to promote colon cancer cell invasion, migration, and metastasis. Bioengineered 2022; 13:11083-11095. [PMID: 35502613 PMCID: PMC9278427 DOI: 10.1080/21655979.2022.2068781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Colon cancer is among the most prevalent gastrointestinal tumor types. The long noncoding RNA (lncRNA) T cell leukemia homeobox 1 neighbor (TLX1NB) is up-regulated in colorectal cancer (CRC). However, the functional role of this lncRNA in colon cancer remains unknown. In our study, we investigated the clinical significance of TLX1NB in colon cancer through bioinformatics analysis and explored its role in migration, invasion and metastasis of colon cancer cell with a series of experiments. Firstly, TLX1NB was up-regulated in colon cancer tissues and increased TLX1NB expression was significantly associated with advanced N stages. In wound healing assays and transwell assays, TLX1NB overexpression promoted HCT116 cell migration and invasion while TLX1NB knockdown inhibited SW620 cell migration and invasion. In vivo, TLX1NB knockdown suppressed pulmonary metastasis of SW620 cell and vimentin expression but increased E-cadherin expression. Then, TLX1NB overexpression enhanced signal transducer and activator of transcription 5A (STAT5A) phosphorylation and TLX1NB knockdown suppressed STAT5A phosphorylation. Moreover, the inhibition of STAT5A phosphorylation reversed TLX1NB overexpression-associated increase in HCT116 cell migratory and invasive activity. In conclusion, TLX1NB enhances STAT5A phosphorylation to promote colon cancer cell invasion, migration, and metastasis.
Collapse
Affiliation(s)
- Guanyang Chen
- Department of General Surgery, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Dongbo Lian
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiqige Wuyun
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Nengwei Zhang
- Department of General Surgery, Peking University Ninth School of Clinical Medicine, Beijing, China
| |
Collapse
|
49
|
miR-340-5p Alleviates Oxidative Stress Injury by Targeting MyD88 in Sepsis-Induced Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2939279. [PMID: 35571255 PMCID: PMC9095363 DOI: 10.1155/2022/2939279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/07/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022]
Abstract
Background Sepsis-induced cardiomyopathy (SIC) is a sort of severe disease in the intensive care unit. This research focuses on exploring the influence of miR-340-5p on SIC and its specific mechanism. Methods Mice were administered with lipopolysaccharide (LPS) to construct a SIC animal model. Mice were intramyocardially injected with Adenoassociated Virus- (AAV-) 9 containing the miR-340-5p precursor to make the miR-340-5p overexpression in the myocardium. The expression level of myocardial miR-340-5p was evaluated by qRT-PCR. The cardiac function was measured by echocardiography, the myocardial morphology was observed by hematoxylin-eosin (HE) staining, and the oxidative stress level was detected by 4-hydroxynonenal (4-HNE) immunohistochemical staining and malondialdehyde (MDA) assay in mice. The cells were pretreated with miR-340-5p mimic, mimic-NC, miR-340-5p inhibitor, inhibitor-NC, MyD88 siRNA, or si-NC and then administered with LPS or PBS. The cell viability was measured with the CCK-8 assay. The level of intracellular oxidative stress was evaluated using reactive oxygen species (ROS), MDA, and glutathione (GSH) detection. The MyD88 level was assessed via Western blotting analysis. The interaction of miR-340-5p with the MyD88 mRNA was confirmed via dual-luciferase reporter assay and RNA pull-down assay. Results The miR-340-5p overexpression partially alleviated the increase of the MyD88 level, impairment of cardiac function, and oxidative stress injury in the SIC animal model. In the SIC cell model, miR-340-5p mimic pretreatment partially relieved oxidative stress injury, while the miR-340-5p inhibitor had the opposite effect. Besides, the miR-340-5p mimic and inhibitor could reduce and further increase the MyD88 level in the SIC cell model, respectively. Dual-luciferase reporter and RNA pull-down experiments confirmed the interaction between the MyD88 mRNA and miR-340-5p. Finally, it was found that MyD88 siRNA pretreatment also partially alleviates the oxidative stress injury in the SIC cell model. Conclusion In sum, our study demonstrated that miR-340-5p can improve myocardial oxidative stress injury by targeting MyD88 in SIC.
Collapse
|
50
|
Wang S, Wang R, Gao F, Huang J, Zhao X, Li D. Pan-cancer analysis of the DNA methylation patterns of long non-coding RNA. Genomics 2022; 114:110377. [PMID: 35513292 DOI: 10.1016/j.ygeno.2022.110377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/23/2022] [Accepted: 04/27/2022] [Indexed: 11/04/2022]
Abstract
Long non-coding RNA (lncRNA) regulated by abnormal DNA methylation (ADM-lncRNA) emerges as a biomarker for cancer diagnosis and treatment. This study comprehensively described the methylation patterns of lncRNA in pan-cancer using the cancer data set in The Cancer Genome Atlas (TCGA). Based on the cancer heterogeneity of ADM-lncRNA in pan-cancer, we constructed a co-expression network of pan-cancer ADM-lncRNA (pADM-lncRNA) in 10 cancers, highlighting the combined action mode of abnormal DNA methylation, and indicating the internal connection among different cancers. Functional analysis revealed the pan-carcinogenic pathway of pADM-lncRNA and suggested potential factors for cancer heterogeneity and tumor immune microenvironment changes. Survival analysis showed the potential of pADM-lncRNA-mRNA co-expression pair as cancer biomarkers. Revealing the action mode of lncRNA and DNA methylation in cancer may help understand the key molecular mechanisms of cell carcinogenesis.
Collapse
Affiliation(s)
- Shijia Wang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China
| | - Rendong Wang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China
| | - Fang Gao
- Health Management Center, Binzhou People's Hospital, Shandong Province, China
| | - Jun Huang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China
| | - Xiaoxiao Zhao
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China
| | - Dongguo Li
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China.
| |
Collapse
|