1
|
Teisseire M, Giuliano S, Pagès G. Combination of Anti-Angiogenics and Immunotherapies in Renal Cell Carcinoma Show Their Limits: Targeting Fibrosis to Break through the Glass Ceiling? Biomedicines 2024; 12:385. [PMID: 38397987 PMCID: PMC10886484 DOI: 10.3390/biomedicines12020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
This review explores treating metastatic clear cell renal cell carcinoma (ccRCC) through current therapeutic modalities-anti-angiogenic therapies and immunotherapies. While these approaches represent the forefront, their limitations and variable patient responses highlight the need to comprehend underlying resistance mechanisms. We specifically investigate the role of fibrosis, prevalent in chronic kidney disease, influencing tumour growth and treatment resistance. Our focus extends to unravelling the intricate interplay between fibrosis, immunotherapy resistance, and the tumour microenvironment for effective therapy development. The analysis centres on connective tissue growth factor (CTGF), revealing its multifaceted role in ccRCC-promoting fibrosis, angiogenesis, and cancer progression. We discuss the potential of targeting CTGF to address the problem of fibrosis in ccRCC. Emphasising the crucial relationship between fibrosis and the immune system in ccRCC, we propose that targeting CTGF holds promise for overcoming obstacles to cancer treatment. However, we recognise that an in-depth understanding of the mechanisms and potential limitations is imperative and, therefore, advocate for further research. This is an essential prerequisite for the successful integration of CTGF-targeted therapies into the clinical landscape.
Collapse
Affiliation(s)
| | - Sandy Giuliano
- University Cote d’Azur (UCA), Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France;
| | - Gilles Pagès
- University Cote d’Azur (UCA), Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France;
| |
Collapse
|
2
|
Fukumoto W, Yoshino H, Horike S, Kawakami I, Tamai M, Arima J, Kawahara I, Mitsuke A, Sakaguchi T, Inoguchi S, Meguro‐Horike M, Tatarano S, Enokida H. Potential therapeutic target secretogranin II might cooperate with hypoxia-inducible factor 1α in sunitinib-resistant renal cell carcinoma. Cancer Sci 2023; 114:3946-3956. [PMID: 37545017 PMCID: PMC10551594 DOI: 10.1111/cas.15914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Multitargeted receptor tyrosine kinase inhibitors, including vascular endothelial growth factor (VEGF) inhibitors, such as sunitinib, have been used as the primary targeted agents for patients with recurrent or distant metastasis of advanced renal cell carcinoma (RCC). However, endogenous or acquired sunitinib resistance has become a significant therapeutic problem. Therefore, we focused on mechanisms of sunitinib resistance in RCC. First, we undertook RNA sequencing analysis using previously established sunitinib-resistant RCC (SUR-Caki1, SUR-ACHN, and SUR-A498) cells. The results showed increased expression of secretogranin II (SCG2, chromogranin C) in SUR-RCC cells compared to parental cells. The Cancer Genome Atlas database showed that SCG2 expression was increased in RCC compared to normal renal cells. In addition, the survival rate of the SCG2 high-expression group was significantly lower than that of the RCC low-expression group. Thus, we investigated the involvement of SCG2 in sunitinib-resistant RCC. In vitro analysis showed that migratory and invasive abilities were suppressed by SCG2 knockdown SUR cells. As SCG2 was previously reported to be associated with angiogenesis, we undertook a tube formation assay. The results showed that suppression of SCG2 inhibited angiogenesis. Furthermore, coimmunoprecipitation assays revealed a direct interaction between SCG2 and hypoxia-inducible factor 1α (HIF1α). Expression levels of VEGF-A and VEGF-C downstream of HIF1α were found to be decreased in SCG2 knockdown SUR cells. In conclusion, SCG2 could be associated with sunitinib resistance through VEGF regulation in RCC cells. These findings could lead to a better understanding of the VHL/HIF/VEGF pathway and the development of new therapeutic strategies for sunitinib-resistant RCC.
Collapse
Affiliation(s)
- Wataru Fukumoto
- Department of Urology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Shin‐Ichi Horike
- Division of Functional Genomics, Advanced Science Research CenterKanazawa UniversityKanazawaJapan
| | - Issei Kawakami
- Department of Urology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Motoki Tamai
- Department of Urology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Junya Arima
- Department of Urology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Ichiro Kawahara
- Department of Urology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Akihiko Mitsuke
- Department of Urology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Satoru Inoguchi
- Department of Urology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Makiko Meguro‐Horike
- Division of Functional Genomics, Advanced Science Research CenterKanazawa UniversityKanazawaJapan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
3
|
Zhang P, Chen L, Zhou F, He Z, Wang G, Luo Y. NRP1 promotes prostate cancer progression via modulating EGFR-dependent AKT pathway activation. Cell Death Dis 2023; 14:159. [PMID: 36841806 PMCID: PMC9958327 DOI: 10.1038/s41419-023-05696-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
Prostate cancer (PCa) is the most common malignant tumor with a high global incidence in males. The mechanism underlying PCa progression is still not clear. This study observed that NRP1 was highly expressed in PCa and associated with poor prognosis in PCa patients. Functionally, NRP1 depletion attenuated the proliferation and migration ability of PCa cells in vitro and in vivo, while NRP1 overexpression promoted PCa cell proliferation and migration. Moreover, it was observed that NRP1 depletion induced G1 phase arrest in PCa cells. Mechanistically, HIF1α is bound to the specific promoter region of NRP1, thereby regulating its transcriptional activation. Subsequently, NRP1 interacted with EGFR, leading to EGFR phosphorylation. This study also provided evidence that the b1/b2 domain of NRP1 was responsible for the interaction with the extracellular domain of EGFR. Moreover, EGFR mediated NRP1-induced activation of the AKT signaling pathway, which promoted the malignant progression of PCa. In addition, the administration of NRP1 inhibitor EG01377 significantly inactivated the EGFR/AKT signaling axis, thereby suppressing PCa progression. In conclusion, the findings from this study highlighted the molecular mechanism underlying NRP1 expression in PCa and provide a potential predictor and therapeutic target for clinical prognosis and treatment of PCa.
Collapse
Affiliation(s)
- Peng Zhang
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiwen He
- grid.413247.70000 0004 1808 0969Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China. .,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China. .,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Benwell CJ, Johnson RT, Taylor JA, Price CA, Robinson SD. Endothelial VEGFR Coreceptors Neuropilin-1 and Neuropilin-2 Are Essential for Tumor Angiogenesis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1626-1640. [PMID: 36970722 PMCID: PMC10036134 DOI: 10.1158/2767-9764.crc-22-0250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Neuropilin (NRP) expression is highly correlated with poor outcome in multiple cancer subtypes. As known coreceptors for VEGFRs, core drivers of angiogenesis, past investigations have alluded to their functional roles in facilitating tumorigenesis by promoting invasive vessel growth. Despite this, it remains unclear as to whether NRP1 and NRP2 act in a synergistic manner to enhance pathologic angiogenesis. Here we demonstrate, using NRP1 ECKO , NRP2 ECKO , and NRP1/NRP2 ECKO mouse models, that maximum inhibition of primary tumor development and angiogenesis is achieved when both endothelial NRP1 and NRP2 are targeted simultaneously. Metastasis and secondary site angiogenesis were also significantly inhibited in NRP1/NRP2 ECKO animals. Mechanistic studies revealed that codepleting NRP1 and NRP2 in mouse-microvascular endothelial cells stimulates rapid shuttling of VEGFR-2 to Rab7+ endosomes for proteosomal degradation. Our results highlight the importance of targeting both NRP1 and NRP2 to modulate tumor angiogenesis. Significance The findings presented in this study demonstrate that tumor angiogenesis and growth can be arrested completely by cotargeting endothelial NRP1 and NRP2. We provide new insight into the mechanisms of action regulating NRP-dependent tumor angiogenesis and signpost a novel approach to halt tumor progression.
Collapse
Affiliation(s)
- Christopher J. Benwell
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Robert T. Johnson
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - James A.G.E. Taylor
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Christopher A. Price
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Stephen D. Robinson
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
5
|
Fernández-Palanca P, Payo-Serafín T, San-Miguel B, Méndez-Blanco C, Tuñón MJ, González-Gallego J, Mauriz JL. Hepatocellular carcinoma cells loss lenvatinib efficacy in vitro through autophagy and hypoxia response-derived neuropilin-1 degradation. Acta Pharmacol Sin 2022; 44:1066-1082. [PMID: 36376373 PMCID: PMC10104874 DOI: 10.1038/s41401-022-01021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractDespite pharmacological advances such as lenvatinib approval, therapeutic failure of hepatocellular carcinoma (HCC) remains a big challenge due to the complexity of its underlying molecular mechanisms. Neuropilin-1 (NRP1) is a co-receptor involved in several cellular processes associated to chemoresistance development. Since both the double-edged process of autophagy and hypoxia-derived response play crucial roles in the loss of therapeutic effectiveness, herein we investigated the interplay among NRP1, autophagy and hypoxia in development of lenvatinib resistance in HCC cell lines. We first analyzed NRP1 expression levels in human HCC samples from public databases, found significantly increased NRP1 expression in human HCC samples as well as its correlation with advanced tumor and metastasis stages. Among 3 HCC cell lines (HepG2, Huh-7 and Hep3B), Hep3B and Huh-7 cells showed significantly increased NRP1 expression levels and cell migration ability together with higher susceptibility to lenvatinib. We demonstrated that NRP1 gene silencing significantly enhanced the anticancer effects of lenvatinib on Hep3B and Huh-7 cells. Furthermore, lenvatinib suppressed NRP1 expression through promoting autophagy in Hep3B and Huh-7 cells; co-treatment with bafilomycin A1 attenuated the antitumor effects of lenvatinib, and NRP1 silencing prevented this loss of in vitro effectiveness of lenvatinib even in the presence of bafilomycin A1. In addition, exposure to a hypoxic microenvironment significantly decreased NRP1 expression through autophagy in Hep3B and Huh-7 cells. Under hypoxia, HIF-1α directly modulated NRP1 expression; HIF-1α silencing not only enhanced the anticancer effects of combined lenvatinib and hypoxia, but also prevented the loss of effectiveness caused by bafilomycin A1, highlighting the potential role of HIF-1α-derived hypoxia response in the adaptive cellular response to lenvatinib and promoting resistance acquisition by autophagy modulation. Overall, NRP1 may constitute a potential therapeutic target to prevent lenvatinib failure derived from a hypoxia-associated modulation of autophagy in advanced HCC.
Collapse
|
6
|
Neuropilin (NRPs) Related Pathological Conditions and Their Modulators. Int J Mol Sci 2022; 23:ijms23158402. [PMID: 35955539 PMCID: PMC9368954 DOI: 10.3390/ijms23158402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropilin 1 (NRP1) represents one of the two homologous neuropilins (NRP, splice variants of neuropilin 2 are the other) found in all vertebrates. It forms a transmembrane glycoprotein distributed in many human body tissues as a (co)receptor for a variety of different ligands. In addition to its physiological role, it is also associated with various pathological conditions. Recently, NRP1 has been discovered as a coreceptor for the SARS-CoV-2 viral entry, along with ACE2, and has thus become one of the COVID-19 research foci. However, in addition to COVID-19, the current review also summarises its other pathological roles and its involvement in clinical diseases like cancer and neuropathic pain. We also discuss the diversity of native NRP ligands and perform a joint analysis. Last but not least, we review the therapeutic roles of NRP1 and introduce a series of NRP1 modulators, which are typical peptidomimetics or other small molecule antagonists, to provide the medicinal chemistry community with a state-of-the-art overview of neuropilin modulator design and NRP1 druggability assessment.
Collapse
|
7
|
Kang X, Zhu H. Bone Marrow Mesenchymal Stem Cells (BMSCs) Enhance Endometrial Stromal Cell Migration and Epithelial-Mesenchymal Transition in Adenomyosis Through Upregulation of Neuropilin 1. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hormone support (estrogen and progesterone) is a key factor in decidualization and embryo implantation. Elevated levels of estrogen lead to luteal phase defects through Neuropilin 1, a membranecytoskeleton junction protein. This study aimed to explore the effect of BMSCs on endometrial
stromal cells (ESCs) in adenomyosis. ESCs obtained from patients with adenomyosis were cocultured with BMSCs in the absence of presence of Neuropilin 1 inhibitor followed by analysis of expression of decidualization-related genes by RT-qPCR and western blot, cell viability by MTT assay, cell
invasion and migration by Transwell assay, oxidative stress factors by ROS kit. Treatment with Neuropilin 1 inhibitor significantly decreased ESC proliferation and invasion, blocked epithelialmesenchymal transition (EMT) process, and restrained decidualization with a downregulation of decidualization-related
genes. Furthermore, inhibition of Neuropilin 1 exerted effects through estrogen regulation. However, co-culture with BMSCs restored ESC activity by promoting Neuropilin expression and enhanced intrauterine ESC decidualization. In conclusion, Neuropilin 1 inhibitor restrains decidualization
through estrogen regulation which can be abrogated by estrogen receptor antagonists. BMSCs restore the damaged ESC decidualization through increasing Neuropilin 1 expression, which provides new insights into the adverse effect of Neuropilin 1 on human ESCs, suggesting that BMSC is a potential
therapeutic drug candidate for adenomyosis.
Collapse
Affiliation(s)
- Xiaofang Kang
- Department of Gynecology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China
| | - Hongcheng Zhu
- Department of Obstetrics and Gynecology, Hubei Sheng Enshizhou Central Hospital, Enshi City, Hubei Province, 445009, China
| |
Collapse
|
8
|
Bouchalova P, Beranek J, Lapcik P, Potesil D, Podhorec J, Poprach A, Bouchal P. Transgelin Contributes to a Poor Response of Metastatic Renal Cell Carcinoma to Sunitinib Treatment. Biomedicines 2021; 9:biomedicines9091145. [PMID: 34572331 PMCID: PMC8467952 DOI: 10.3390/biomedicines9091145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) represents about 2-3% of all cancers with over 400,000 new cases per year. Sunitinib, a vascular endothelial growth factor tyrosine kinase receptor inhibitor, has been used mainly for first-line treatment of metastatic clear-cell RCC with good or intermediate prognosis. However, about one-third of metastatic RCC patients do not respond to sunitinib, leading to disease progression. Here, we aim to find and characterize proteins associated with poor sunitinib response in a pilot proteomics study. Sixteen RCC tumors from patients responding (8) vs. non-responding (8) to sunitinib 3 months after treatment initiation were analyzed using data-independent acquisition mass spectrometry, together with their adjacent non-cancerous tissues. Proteomics analysis quantified 1996 protein groups (FDR = 0.01) and revealed 27 proteins deregulated between tumors non-responding vs. responding to sunitinib, representing a pattern of deregulated proteins potentially contributing to sunitinib resistance. Gene set enrichment analysis showed an up-regulation of epithelial-to-mesenchymal transition with transgelin as one of the most significantly abundant proteins. Transgelin expression was silenced by CRISPR/Cas9 and RNA interference, and the cells with reduced transgelin level exhibited significantly slower proliferation. Our data indicate that transgelin is an essential protein supporting RCC cell proliferation, which could contribute to intrinsic sunitinib resistance.
Collapse
Affiliation(s)
- Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (P.B.); (J.B.); (P.L.)
| | - Jindrich Beranek
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (P.B.); (J.B.); (P.L.)
| | - Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (P.B.); (J.B.); (P.L.)
| | - David Potesil
- Proteomics Core Facility, Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic;
| | - Jan Podhorec
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (J.P.); (A.P.)
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, 656 53 Brno, Czech Republic
| | - Alexandr Poprach
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (J.P.); (A.P.)
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, 656 53 Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (P.B.); (J.B.); (P.L.)
- Correspondence: ; Tel.: +420-549-493-251
| |
Collapse
|
9
|
Saleki K, Banazadeh M, Miri NS, Azadmehr A. Triangle of cytokine storm, central nervous system involvement, and viral infection in COVID-19: the role of sFasL and neuropilin-1. Rev Neurosci 2021; 33:147-160. [PMID: 34225390 DOI: 10.1515/revneuro-2021-0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is identified as the cause of coronavirus disease 2019 (COVID-19), and is often linked to extreme inflammatory responses by over activation of neutrophil extracellular traps (NETs), cytokine storm, and sepsis. These are robust causes for multi-organ damage. In particular, potential routes of SARS-CoV2 entry, such as angiotensin-converting enzyme 2 (ACE2), have been linked to central nervous system (CNS) involvement. CNS has been recognized as one of the most susceptible compartments to cytokine storm, which can be affected by neuropilin-1 (NRP-1). ACE2 is widely-recognized as a SARS-CoV2 entry pathway; However, NRP-1 has been recently introduced as a novel path of viral entry. Apoptosis of cells invaded by this virus involves Fas receptor-Fas ligand (FasL) signaling; moreover, Fas receptor may function as a controller of inflammation. Furthermore, NRP-1 may influence FasL and modulate cytokine profile. The neuroimmunological insult by SARS-CoV2 infection may be inhibited by therapeutic approaches targeting soluble Fas ligand (sFasL), cytokine storm elements, or related viral entry pathways. In the current review, we explain pivotal players behind the activation of cytokine storm that are associated with vast CNS injury. We also hypothesize that sFasL may affect neuroinflammatory processes and trigger the cytokine storm in COVID-19.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, 47176-47745, Iran
- USERN Office, Babol University of Medical Sciences, Babol, 47176-47745, Iran
- National Elite Foundation, Mazandaran Province Branch, Tehran, 48157-66435, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran
| | - Niloufar Sadat Miri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, 47176-47745, Iran
| | - Abbas Azadmehr
- National Elite Foundation, Mazandaran Province Branch, Tehran, 48157-66435, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, 47176-47745, Iran
- Medical Immunology Department, Babol University of Medical Sciences, Babol, 47176-47745, Iran
| |
Collapse
|
10
|
Dumond A, Montemagno C, Vial V, Grépin R, Pagès G. Anti-Vascular Endothelial Growth Factor C Antibodies Efficiently Inhibit the Growth of Experimental Clear Cell Renal Cell Carcinomas. Cells 2021; 10:1222. [PMID: 34067671 PMCID: PMC8157203 DOI: 10.3390/cells10051222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/19/2022] Open
Abstract
Despite improvement during the last ten years in the longevity of patients with metastatic clear cell renal cell carcinoma (mccRCC) the disease remains incurable. Hence, new therapeutic strategies are urgently needed. Relapse following anti-angiogenic treatment depends on the over-expression of vascular endothelial growth factor C (VEGFC), one of the main drivers of lymphangiogenesis. Therefore, we developed specific mouse monoclonal antibodies and evaluated their therapeutic efficacy in vitro and in vivo. Immunization of mice with the domain of VEGFC that stimulates the VEGF receptor 3 (VEGFR3) led to the selection of one hybridoma producing specific anti-VEGFC monoclonal antibodies. The selected 1E9 antibodies were sequenced, and the corresponding variable light and heavy chains were subcloned into expression vectors in frame with sequences encoding the human IgG1 constant heavy and light chains. CHO cells were stably transfected and cloned to produce chimeric antibodies. These antibodies inhibited the activation of VEGFR3 signaling, and therefore the proliferation and migration of VEGFC-stimulated endothelial cells. Moreover, they inhibited the proliferation of VEGFC-expressing renal cancer cells through NRP2 signaling. 1E9 antibodies inhibited the growth of experimental RCC, and their therapeutic efficacy was enhanced by the anti-VEGF antibody bevacizumab. Hence, our results suggest that targeting VEGFC could have a relevant therapeutic impact on mccRCC that relapse following anti-angiogenic treatment.
Collapse
Affiliation(s)
- Aurore Dumond
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (A.D.); (C.M.); (V.V.); (R.G.)
| | - Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (A.D.); (C.M.); (V.V.); (R.G.)
- Institute for Research on Cancer and Aging of Nice, Université Cote d’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
| | - Valérie Vial
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (A.D.); (C.M.); (V.V.); (R.G.)
| | - Renaud Grépin
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (A.D.); (C.M.); (V.V.); (R.G.)
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (A.D.); (C.M.); (V.V.); (R.G.)
- Institute for Research on Cancer and Aging of Nice, Université Cote d’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
| |
Collapse
|
11
|
Neuropilin-2 and Its Transcript Variants Correlate with Clinical Outcome in Bladder Cancer. Genes (Basel) 2021; 12:genes12040550. [PMID: 33918816 PMCID: PMC8070368 DOI: 10.3390/genes12040550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Urothelial bladder cancer ranks among the 10 most frequently diagnosed cancers worldwide. In our previous study, the transmembrane protein neuropilin-2 (NRP2) emerged as a predictive marker in patients with bladder cancer. NRP2 consists of several splice variants; the most abundant of these, NRP2a and NRP2b, are reported to have different biological functions in lung cancer progression. For other cancer types, there are no published data on the role of these transcript variants in cancer progression and the clinical outcome. Here, we correlate NRP2 and its two most abundant transcript variants, NRP2A and NRP2B, with the clinical outcome using available genomic data with subsequent validation in our own cohort of patients with muscle-invasive bladder cancer. In addition to NRP2, NRP1 and the NRP ligands PDGFC and PDGFD were studied. Only NRP2A emerged as an independent prognostic marker for shorter cancer-specific survival in muscle-invasive bladder cancer in our cohort of 102 patients who underwent radical cystectomy between 2008 and 2014 with a median follow-up time of 82 months. Additionally, we demonstrate that high messenger expression of NRP2, NRP1, PDGFC and PDGFD associates with a more aggressive disease (i.e., a high T stage, positive lymph node status and reduced survival).
Collapse
|