1
|
Mm Yahya S, Elsayed GH. The role of MiRNA-34 family in different signaling pathways and its therapeutic options. Gene 2024; 931:148829. [PMID: 39154971 DOI: 10.1016/j.gene.2024.148829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
MiRNAs are short non-coding RNA molecules that have been shown to affect a vast number of genes at the post-transcriptional level, hence regulating several signaling pathways. Because the miRNA-34 family regulates a number of different signaling pathways, including those linked to cancer, the immune system, metabolism, cellular structure, and neurological disorders, it has garnered a great deal of attention from researchers. Members of the miRNA-34 family have been shown to inhibit tumors in a variety of cancer types. This family is also important for obesity, the cardiovascular system, and glycolysis. It's interesting to note that the miRNA-34 family is known to play a role in major depressive disorder, schizophrenia, Parkinson's disease (PD), adverse childhood experiences or trauma, regulation of stress responses, Alzheimer's disease (AD), and stress-related psychatric conditions. In this review, the expected targets of the miRNA-34 family are presented alongside the well-established targets identified by pathway analysis. Furthermore, the therapeutic potential of this miRNA family will be discussed.
Collapse
Affiliation(s)
- Shaymaa Mm Yahya
- Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Centre of Excellence for Advanced SciencesNational Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Ghada H Elsayed
- Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Centre of Excellence for Advanced SciencesNational Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Okuyama K, Yanamoto S. Saliva in Balancing Oral and Systemic Health, Oral Cancer, and Beyond: A Narrative Review. Cancers (Basel) 2024; 16:4276. [PMID: 39766175 PMCID: PMC11674559 DOI: 10.3390/cancers16244276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Saliva plays a multifaceted role in oral health and systemic well-being. It supports digestion, protects oral tissues, maintains a healthy oral microbiome, and facilitates wound healing. Additionally, saliva serves as a diagnostic tool that reflects systemic health and disease/therapeutic states. Furthermore, although saliva shows a protective effect against oral cancer development, once tumor formation occurs, it may be involved in tumor progression and metastasis via exosomes and microRNAs. This review discusses the essential role of saliva; its relationship with the development, progression, and metastasis of head and neck squamous cell carcinoma (HNSCC); liquid biopsy tools for early diagnosis and monitoring of HNSCC; and the potential of exosomes as therapeutic agents.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX 77054, USA
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8549, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| |
Collapse
|
3
|
Komitova KS, Dimitrov LD, Stancheva GS, Kyurkchiyan SG, Petkova V, Dimitrov SI, Skelina SP, Kaneva RP, Popov TM. A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. Int J Mol Sci 2024; 25:13468. [PMID: 39769234 PMCID: PMC11676902 DOI: 10.3390/ijms252413468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
During the past decade, a vast number of studies were dedicated to unravelling the obscurities of non-coding RNAs in all fields of the medical sciences. A great amount of data has been accumulated, and consequently a natural need for organization and classification in all subfields arises. The aim of this review is to summarize all reports on microRNAs that were delineated as prognostic biomarkers in laryngeal carcinoma. Additionally, we attempt to allocate and organize these molecules according to their association with key pathways and oncogenes affected in laryngeal carcinoma. Finally, we critically analyze the common shortcomings and biases of the methodologies in some of the published papers in this area of research. A literature search was performed using the PubMed and MEDLINE databases with the keywords "laryngeal carcinoma" OR "laryngeal cancer" AND "microRNA" OR "miRNA" AND "prognostic marker" OR "prognosis". Only research articles written in English were included, without any specific restrictions on study type. We have found 43 articles that report 39 microRNAs with prognostic value associated with laryngeal carcinoma, and all of them are summarized along with the major characteristics and methodology of the respective studies. A second layer of the review is structural analysis of the outlined microRNAs and their association with oncogenes and pathways connected with the cell cycle (p53, CCND1, CDKN2A/p16, E2F1), RTK/RAS/PI3K cascades (EGFR, PI3K, PTEN), cell differentiation (NOTCH, p63, FAT1), and cell death (FADD, TRAF3). Finally, we critically review common shortcomings in the methodology of the papers and their possible effect on their results.
Collapse
Affiliation(s)
| | | | | | | | - Veronika Petkova
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | | | | | - Radka P. Kaneva
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | - Todor M. Popov
- Department of ENT, Medical University, 1000 Sofia, Bulgaria
| |
Collapse
|
4
|
Fawzy MP, Hassan HAFM, Sedky NK, Nafie MS, Youness RA, Fahmy SA. Revolutionizing cancer therapy: nanoformulation of miRNA-34 - enhancing delivery and efficacy for various cancer immunotherapies: a review. NANOSCALE ADVANCES 2024:d4na00488d. [PMID: 39309515 PMCID: PMC11414826 DOI: 10.1039/d4na00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Despite recent advancements in cancer therapies, challenges such as severe toxic effects, non-selective targeting, resistance to chemotherapy and radiotherapy, and recurrence of metastatic tumors persist. Consequently, there has been considerable effort to explore innovative anticancer compounds, particularly in immunotherapy, which offer the potential for enhanced biosafety and efficacy in cancer prevention and treatment. One such avenue of exploration involves the miRNA-34 (miR-34) family, known for its ability to inhibit tumorigenesis across various cancers. Dysregulation of miR-34 has been observed in several human cancers, and it is recognized as a tumor suppressor microRNA due to its synergistic interaction with the well-established tumor suppressor p53. However, challenges have arisen with the therapeutic application of miR-34a. These include its susceptibility to degradation by RNase in serum, limiting its ability to penetrate capillary endothelium and reach target cells, as well as reports of immunoreactive adverse reactions. Furthermore, unexpected side effects may occur, such as the accumulation of therapeutic miRNAs in healthy tissues due to interactions with serum proteins on nano-vector surfaces, nanoparticle breakdown in the bloodstream due to shearing stress, and unsuccessful extravasation of nanocarriers to target cells owing to interstitial fluid pressure. Despite these challenges, miR-34a remains a promising candidate for cancer therapy, and other members of the miR-34 family have also shown potential in inhibiting tumor cell proliferation. While the in vivo applications of miR-34b/c are limited, they warrant further exploration for oncotherapy. Recently, procedures utilizing nanoparticles have been developed to address the challenges associated with the clinical use of miR-34, demonstrating efficacy both in vitro and in vivo. This review highlights emerging trends in nanodelivery systems for miR-34 targeting cancer cells, offering insights into novel nanoformulations designed to enhance the anticancer therapeutic activity and targeting precision of miR-34. As far as current knowledge extends, no similar recent review comprehensively addresses the diverse nanoformulations aimed at optimizing the therapeutic potential of miR-34 in anticancer strategies.
Collapse
Affiliation(s)
- Marola Paula Fawzy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
| | - Hatem A F M Hassan
- Medway School of Pharmacy, University of Kent Central Avenue, Chatham Maritime Canterbury ME44TB UK
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah (P.O. 27272) Sharjah United Arab Emirates (UAE)
- Chemistry Department, Faculty of Science, Suez Canal University (P.O. 41522) Ismailia Egypt
| | - Rana A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| |
Collapse
|
5
|
Pashirzad M, Kesharwani P, Sahebkar A. The clinical prognostic significance of miR-140-5p expression in patients with cancer: A Meta and Bioinformatic analysis. Pathol Res Pract 2024; 261:155475. [PMID: 39067174 DOI: 10.1016/j.prp.2024.155475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The prognostic value of microRNA-140-5p (miR-140-5p) expression in cancer patients has been investigated, but with inconsistent results. This meta-analysis aims to determine the prognostic significance of miR-140-5p expression in patients with various malignancies. A comprehensive literature search was conducted using PubMed, Web of Science, ProQuest, Cochrane, and Google Scholar to identify relevant studies published before June 2023. Pooled hazard ratios (HR) and odds ratios (OR) with 95 % confidence intervals (CI) were calculated to assess the prognostic importance and clinicopathological features of miR-140-5p in overall survival (OS) and disease-free survival (DFS) of cancer patients, respectively. The CancerMIRNome database and other OS analysis webservers were utilized to explore the prognostic value and expression profile of miR-140-5p. A total of 17 studies were included in the final analysis. The results demonstrated that decreased miR-140-5p expression was significantly associated with inferior OS (pooled HR 0.63; 95 % CI, 0.51-0.79; p < 0.001) and DFS (pooled HR 0.40; 95 % CI, 0.25-0.64; p < 0.001). Pooled ORs indicated a significant correlation between reduced miR-140-5p expression and positive lymph node metastasis (LNM; OR = 3.42; 95 % CI, 2.36-4.94; p < 0.001), advanced tumor stage (OR = 2.80; 95 % CI, 2.07-3.78; p < 0.001), and positive distant metastasis (DM; OR = 10.81; 95 % CI, 3.31-35.30; p < 0.001). No significant associations were observed between miR-140-5p expression and gender (OR = 0.94; 95 % CI, 0.70-1.28; p = 0.70), age (OR = 1.31; 95 % CI, 0.99-1.74; p = 0.06), tumor size (OR = 1.55; 95 % CI, 0.77-3.10; p = 0.22), and histological grade (OR = 1.20; 95 % CI, 0.46-3.10; p = 0.71). Subgroup analyses revealed that decreased miR-140-5p expression was associated with shorter OS in subgroups based on sample size (<100 or >100), tumor origin (GI or non-GI), and cancer type (GC/CRC). Bioinformatic analysis supported the finding that miR-140-5p was downregulated in most tumor tissues, and its reduced expression was linked to poor prognosis in patients with multiple malignancies. The prognostic significance of miR-140-5p in predicting reduced OS and DFS suggests that measuring miR-140-5p expression levels before treatment could serve as a valuable biomarker for identifying cancer patients with an unfavorable prognosis and improving clinical management.
Collapse
Affiliation(s)
- Mehran Pashirzad
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Abou Madawi NA, Darwish ZE, Omar EM. Targeted gene therapy for cancer: the impact of microRNA multipotentiality. Med Oncol 2024; 41:214. [PMID: 39088082 PMCID: PMC11294399 DOI: 10.1007/s12032-024-02450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Cancer is a life-threatening disease and its management is difficult due to its complex nature. Cancer is characterized by genomic instability and tumor-associated inflammation of the supporting stoma. With the advances in omics science, a treatment strategy for cancer has emerged, which is based on targeting cancer-driving molecules, known as targeted therapy. Gene therapy, a form of targeted therapy, is the introduction of nucleic acids into living cells to replace a defective gene, promote or repress gene expression to treat a disease. MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) that regulate gene expression and thus are involved in physiological processes like cell proliferation, differentiation, and cell death. miRNAs control the actions of many genes. They are deregulated in cancer and their abnormal expression influences genetic and epigenetic alterations inducing carcinogenesis. In this review, we will explain the role of miRNAs in normal and abnormal gene expression and their usefulness in monitoring cancer patients. Besides, we will discuss miRNA-based therapy as a method of gene therapy and its impact on the success of cancer management.
Collapse
Affiliation(s)
- Nourhan A Abou Madawi
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt.
| | - Zeinab E Darwish
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| | - Enas M Omar
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| |
Collapse
|
7
|
Hohmann T, Hohmann U, Dehghani F, Grisk O, Jasinski-Bergner S. Analyzing the Impact of the Highest Expressed Epstein-Barr Virus-Encoded microRNAs on the Host Cell Transcriptome. Int J Mol Sci 2024; 25:7838. [PMID: 39063079 PMCID: PMC11276978 DOI: 10.3390/ijms25147838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The Epstein-Barr virus (EBV) has a very high prevalence (>90% in adults), establishes a lifelong latency after primary infection, and exerts an oncogenic potential. This dsDNA virus encodes for various molecules, including microRNAs (miRs), which can be detected in the latent and lytic phases with different expression levels and affect, among others, immune evasion and malignant transformation. In this study, the different EBV miRs are quantified in EBV-positive lymphomas, and the impact on the host cell transcriptome of the most abundant EBV miRs will be analyzed using comparative RNA sequencing analyses. The EBV miRs ebv-miR-BART1, -BART4, -BART17, and -BHRF1-1 were most highly expressed, and their selective overexpression in EBV-negative human cells resulted in a large number of statistically significantly down- and up-regulated host cell genes. Functional analyses showed that these dysregulated target genes are involved in important cellular processes, including growth factor pathways such as WNT, EGF, FGF, and PDGF, as well as cellular processes such as apoptosis regulation and inflammation. Individual differences were observed between these four analyzed EBV miRs. In particular, ebv-miR-BHRF1-1 appears to be more important for malignant transformation and immune evasion than the other EBV miRs.
Collapse
Affiliation(s)
- Tim Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (T.H.); (U.H.); (F.D.)
| | - Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (T.H.); (U.H.); (F.D.)
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (T.H.); (U.H.); (F.D.)
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School (MHB), Theodor Fontane, Hochstraße 29, Haus 11, 2.OG, 14770 Brandenburg an der Havel, Germany;
| | - Simon Jasinski-Bergner
- Institute of Physiology, Brandenburg Medical School (MHB), Theodor Fontane, Hochstraße 29, Haus 11, 2.OG, 14770 Brandenburg an der Havel, Germany;
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, 14770 Brandenburg an der Havel, Germany
| |
Collapse
|
8
|
Patra SK, Sahoo RK, Biswal S, Panda SS, Biswal BK. Enigmatic exosomal connection in lung cancer drug resistance. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102177. [PMID: 38617976 PMCID: PMC11015513 DOI: 10.1016/j.omtn.2024.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Lung cancer remains a significant global health concern with limited treatment options and poor prognosis, particularly in advanced stages. Small extracellular vesicles such as exosomes, secreted by cancer cells, play a pivotal role in mediating drug resistance in lung cancer. Exosomes have been found to facilitate intercellular communication by transferring various biomolecules between cancer cells and their microenvironment. Additionally, exosomes can transport signaling molecules promoting cancer cell survival and proliferation conferring resistance to chemotherapy. Moreover, exosomes can modulate the tumor microenvironment by inducing phenotypic changes hindering drug response. Understanding the role of exosomes in mediating drug resistance in lung cancer is crucial for developing novel therapeutic strategies and biomarkers to overcome treatment limitations. In this review, we summarize the current knowledge on conventional and emerging drug resistance mechanisms and the involvement of exosomes as well as exosome-mediated factors mediating drug resistance in lung cancer.
Collapse
Affiliation(s)
- Sambit K. Patra
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Rajeev K. Sahoo
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Shikshya S. Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
9
|
Shrestha A, Lahooti B, Hossian AKMN, Madadi M, Mikelis CM, Mattheolabakis G. Stable Dual miR-143 and miR-506 Upregulation Inhibits Proliferation and Cell Cycle Progression. Int J Mol Sci 2024; 25:4432. [PMID: 38674017 PMCID: PMC11050449 DOI: 10.3390/ijms25084432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The mainstays of lung cancer pathogenesis are cell cycle progression dysregulation, impaired apoptosis, and unregulated cell proliferation. While individual microRNA (miR) targeting or delivering is a promising approach that has been extensively studied, combination of miR targeting can enhance therapeutic efficacy and overcome limitations present in individual miR regulations. We previously reported on the use of a miR-143 and miR-506 combination via transient transfections against lung cancer. In this study, we evaluated the effect of miR-143 and miR-506 under stable deregulations in A549 lung cancer cells. We used lentiviral transductions to either up- or downregulate the two miRs individually or in combination. The cells were sorted and analyzed for miR deregulation via qPCR. We determined the miR deregulations' effects on the cell cycle, cell proliferation, cancer cell morphology, and cell motility. Compared to the individual miR deregulations, the combined miR upregulation demonstrated a miR-expression-dependent G2 cell cycle arrest and a significant increase in the cell doubling time, whereas the miR-143/506 dual downregulation demonstrated increased cellular motility. Furthermore, the individual miR-143 and miR-506 up- and downregulations exhibited cellular responses lacking an apparent miR-expression-dependent response in the respective analyses. Our work here indicates that, unlike the individual miR upregulations, the combinatorial miR treatment remained advantageous, even under prolonged miR upregulation. Finally, our findings demonstrate potential advantages of miR combinations vs. individual miR treatments.
Collapse
Affiliation(s)
- Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - A. K. M. Nawshad Hossian
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Mahboubeh Madadi
- Department of Marketing and Business Analytics Lucas College and Graduate School of Business, San Jose State University, San Jose, CA 95192, USA
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| |
Collapse
|
10
|
Tojjari A, Park R, Yu J, Saeed A. Targeting Angiogenesis Alone and in Combination with Immune Checkpoint Inhibitors in Advanced Gastroesophageal Malignancies. Curr Gastroenterol Rep 2024; 26:57-67. [PMID: 38294661 DOI: 10.1007/s11894-024-00920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE OF REVIEW This review critically examines the latest approaches in treating advanced gastroesophageal malignancies. It emphasizes the significance of angiogenesis as a therapeutic target and discusses the potential synergy of combining angiogenesis inhibitors with immune checkpoint inhibitors (ICIs) to enhance treatment efficacy. RECENT FINDINGS Emerging evidence from clinical trials, such as the INTEGRATE IIa trial with regorafenib and studies involving apatinib and sunitinib, underscores the efficacy of targeting the VEGFR pathway. These studies indicate substantial benefits in progression-free survival (PFS) and overall survival (OS) in patients with advanced stages of the disease who have limited treatment options. Additionally, the recent introduction of combination therapies involving ICIs has shown an increased response rate, suggesting a promising direction for future treatment protocols. The landscape of treatment for gastroesophageal malignancies is rapidly evolving. Research is now pivoting from conventional chemotherapy to a more nuanced approach that includes targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Alireza Tojjari
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15213, USA
| | - Robin Park
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - James Yu
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
Bryant CJ, McCool MA, Rosado González G, Abriola L, Surovtseva Y, Baserga S. Discovery of novel microRNA mimic repressors of ribosome biogenesis. Nucleic Acids Res 2024; 52:1988-2011. [PMID: 38197221 PMCID: PMC10899765 DOI: 10.1093/nar/gkad1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A (p21) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We provide evidence that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
Affiliation(s)
- Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mason A McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
12
|
Dharshini LCP, Mandal AKA. Regulation of gene expression by modulating microRNAs through Epigallocatechin-3-gallate in cancer. Mol Biol Rep 2024; 51:230. [PMID: 38281210 DOI: 10.1007/s11033-023-09145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Cancer is an intricate ailment that has a higher death rate globally and is characterized by aberrant cell proliferation and metastasis in nature. Since the beginning of healthcare, natural products, especially those derived from plants, have been utilized to support human health. Green tea contains an essential catechin called epigallocatechin gallate, which has anti-proliferative, anti-mutagenic, anti-inflammatory, and antioxidative properties. The anticancer properties of EGCG have been extensively studied using pre-clinical cell culture and animal model systems. Dysregulated miRNA may be a biomarker since it influences the different characteristics of cancer like upholding proliferative signaling, cell death, invasiveness, metastasis, and angiogenesis. EGCG either elevates or lowers the expression of dysregulated miRNAs in cancer. Nonetheless, due to its anticancer properties, greater attention has been paid towards the development of efficient strategies for utilizing EGCG in cancer chemotherapy. This review summarizes the modifying effect of EGCG on miRNAs in cancer after briefly discussing the anticancer mechanisms of EGCG and the function of miRNAs in cancer.
Collapse
Affiliation(s)
| | - Abul Kalam Azad Mandal
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
13
|
Kostecki KL, Iida M, Crossman BE, Salgia R, Harari PM, Bruce JY, Wheeler DL. Immune Escape Strategies in Head and Neck Cancer: Evade, Resist, Inhibit, Recruit. Cancers (Basel) 2024; 16:312. [PMID: 38254801 PMCID: PMC10814769 DOI: 10.3390/cancers16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Head and neck cancers (HNCs) arise from the mucosal lining of the aerodigestive tract and are often associated with alcohol use, tobacco use, and/or human papillomavirus (HPV) infection. Over 600,000 new cases of HNC are diagnosed each year, making it the sixth most common cancer worldwide. Historically, treatments have included surgery, radiation, and chemotherapy, and while these treatments are still the backbone of current therapy, several immunotherapies have recently been approved by the Food and Drug Administration (FDA) for use in HNC. The role of the immune system in tumorigenesis and cancer progression has been explored since the early 20th century, eventually coalescing into the current three-phase model of cancer immunoediting. During each of the three phases-elimination, equilibrium, and escape-cancer cells develop and utilize multiple strategies to either reach or remain in the final phase, escape, at which point the tumor is able to grow and metastasize with little to no detrimental interference from the immune system. In this review, we summarize the many strategies used by HNC to escape the immune system, which include ways to evade immune detection, resist immune cell attacks, inhibit immune cell functions, and recruit pro-tumor immune cells.
Collapse
Affiliation(s)
- Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA;
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| | - Justine Y. Bruce
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| |
Collapse
|
14
|
Formanowicz D. Pathomechanisms of Disturbances Underlying Chronic Disorders. Biomedicines 2024; 12:131. [PMID: 38255236 PMCID: PMC10813478 DOI: 10.3390/biomedicines12010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Chronic disorders' complexity poses enormous challenges to our understanding of such disorders [...].
Collapse
Affiliation(s)
- Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznań, Poland
| |
Collapse
|
15
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
16
|
Blümke J, Bauer M, Vaxevanis C, Wilfer A, Mandelboim O, Wickenhauser C, Seliger B, Jasinski-Bergner S. Identification and characterization of the anti-viral interferon lambda 3 as direct target of the Epstein-Barr virus microRNA-BART7-3p. Oncoimmunology 2023; 12:2284483. [PMID: 38126030 PMCID: PMC10732682 DOI: 10.1080/2162402x.2023.2284483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The human Epstein-Barr virus (EBV), as a member of the human γ herpes viruses (HHV), is known to be linked with distinct tumor types. It is a double-stranded DNA virus and its genome encodes among others for 48 different microRNAs (miRs). Current research demonstrated a strong involvement of certain EBV-miRs in molecular immune evasion mechanisms of infected cells by, e.g., the disruption of human leukocyte antigen (HLA) class Ia and NKG2D functions. To determine novel targets of EBV-miRs involved in immune surveillance, ebv-miR-BART7-3p, an EBV-encoded miR with high expression levels during the different lytic and latent EBV life cycle phases, was overexpressed in human HEK293T cells. Using a cDNA microarray-based comparative analysis, 234 (229 downregulated and 5 upregulated) deregulated human transcripts were identified in ebv-miR-BART7-3p transfectants, which were mainly involved in cellular processes and molecular binding. A statistically significant downregulation of the anti-proliferative and tumor-suppressive hsa-miR-34A and the anti-viral interferon lambda (IFNL)3 mRNA was found. The ebv-miR-BART7-3p-mediated downregulation of IFNL3 expression was due to a direct interaction with the IFNL3 3'-untranslated region (UTR) as determined by luciferase reporter gene assays including the identification of the accurate ebv-miR-BART7-3p binding site. The effect of ebv-miR-BART7-3p on the IFNL3 expression was validated both in human cell lines in vitro and in human tissue specimen with known EBV status. These results expand the current knowledge of EBV-encoded miRs and their role in immune evasion, pathogenesis and malignant transformation.
Collapse
Affiliation(s)
- Juliane Blümke
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Marcus Bauer
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Christoforos Vaxevanis
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Andreas Wilfer
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Krukenberg Cancer Center, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Claudia Wickenhauser
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Brandenburg an der Havel, Germany
| | - Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Brandenburg an der Havel, Germany
| |
Collapse
|
17
|
Lee JH, Ahn EH, Kwon MJ, Ryu CS, Ha YH, Ko EJ, Lee JY, Hwang JY, Kim JH, Kim YR, Kim NK. Genetic Correlation of miRNA Polymorphisms and STAT3 Signaling Pathway with Recurrent Implantation Failure in the Korean Population. Int J Mol Sci 2023; 24:16794. [PMID: 38069116 PMCID: PMC10706094 DOI: 10.3390/ijms242316794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The growing prevalence of in vitro fertilization-embryo transfer procedures has resulted in an increased incidence of recurrent implantation failure (RIF), necessitating focused research in this area. STAT3, a key factor in maternal endometrial remodeling and stromal proliferation, is crucial for successful embryo implantation. While the relationship between STAT3 and RIF has been studied, the impact of single nucleotide polymorphisms (SNPs) in miRNAs, well-characterized gene expression modulators, on STAT3 in RIF cases remains uncharacterized. Here, we investigated 161 RIF patients and 268 healthy control subjects in the Korean population, analyzing the statistical association between miRNA genetic variants and RIF risk. We aimed to determine whether SNPs in specific miRNAs, namely miR-218-2 rs11134527 G>A, miR-34a rs2666433 G>A, miR-34a rs6577555 C>A, and miR-130a rs731384 G>A, were significantly associated with RIF risk. We identified a significant association between miR-34a rs6577555 C>A and RIF prevalence (implantation failure [IF] ≥ 2: adjusted odds ratio [AOR] = 2.264, 95% CI = 1.007-5.092, p = 0.048). These findings suggest that miR-34a rs6577555 C>A may contribute to an increased susceptibility to RIF. However, further investigations are necessary to elucidate the precise mechanisms underlying the role of miR-34a rs6577555 C>A in RIF. This study sheds light on the genetic and molecular factors underlying RIF, offering new avenues for research and potential advancements in the diagnosis and treatment of this complex condition.
Collapse
Affiliation(s)
- Jung Hun Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea; (E.H.A.); (J.H.K.)
| | - Min Jung Kwon
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Chang Su Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
| | - Yong Hyun Ha
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
| | - Jeong Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
| | - Ji Young Hwang
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea;
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea; (E.H.A.); (J.H.K.)
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea; (E.H.A.); (J.H.K.)
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
| |
Collapse
|
18
|
Bryant CJ, McCool MA, Rosado-González GT, Abriola L, Surovtseva YV, Baserga SJ. Discovery of novel microRNA mimic repressors of ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.526327. [PMID: 36824951 PMCID: PMC9949135 DOI: 10.1101/2023.02.17.526327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2,603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A ( p21 ) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We discovered that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, directly and potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
|
19
|
Fu J, Imani S, Wu MY, Wu RC. MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential. Cancers (Basel) 2023; 15:4723. [PMID: 37835417 PMCID: PMC10571940 DOI: 10.3390/cancers15194723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNA (miRNA) are small noncoding RNAs that play vital roles in post-transcriptional gene regulation by inhibiting mRNA translation or promoting mRNA degradation. The dysregulation of miRNA has been implicated in numerous human diseases, including cancers. miR-34 family members (miR-34s), including miR-34a, miR-34b, and miR-34c, have emerged as the most extensively studied tumor-suppressive miRNAs. In this comprehensive review, we aim to provide an overview of the major signaling pathways and gene networks regulated by miR-34s in various cancers and highlight the critical tumor suppressor role of miR-34s. Furthermore, we will discuss the potential of using miR-34 mimics as a novel therapeutic approach against cancer, while also addressing the challenges associated with their development and delivery. It is anticipated that gaining a deeper understanding of the functions and mechanisms of miR-34s in cancer will greatly contribute to the development of effective miR-34-based cancer therapeutics.
Collapse
Affiliation(s)
- Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310022, China
| | - Mei-Yi Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
20
|
Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes (Basel) 2023; 14:1375. [PMID: 37510280 PMCID: PMC10378777 DOI: 10.3390/genes14071375] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that regulate gene expression post-transcriptionally by binding to messenger RNAs. miRNAs are important regulators of gene expression, and their dysregulation is implicated in many human and canine diseases. Most cancers tested to date have been shown to express altered miRNA levels, which indicates their potential importance in the oncogenic process. Based on this evidence, numerous miRNAs have been suggested as potential cancer biomarkers for both diagnosis and prognosis. miRNA-based therapies have also been tested in different cancers and have provided measurable clinical benefits to patients. In addition, understanding miRNA biogenesis and regulatory mechanisms in cancer can provide important knowledge about resistance to chemotherapies, leading to more personalized cancer treatment. In this review, we comprehensively summarized the importance of miRNA in human and canine cancer research. We discussed the current state of development and potential for the miRNA as both a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Atonu Chakrabortty
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Daniel J Patton
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Bruce F Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
21
|
Frye CJ, Cunningham CL, Mihailescu MR. Host microRNA interactions with the SARS-CoV-2 viral genome 3'-untranslated region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541401. [PMID: 37292986 PMCID: PMC10245713 DOI: 10.1101/2023.05.18.541401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The 2019 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has marked the spread of a novel human coronavirus. While the viral life cycle is well understood, most of the interactions at the virus-host interface remain elusive. Furthermore, the molecular mechanisms behind disease severity and immune evasion are still largely unknown. Conserved elements of the viral genome such as secondary structures within the 5'- and 3'-untranslated regions (UTRs) serve as attractive targets of interest and could prove crucial in furthering our understanding of virus-host interactions. It has been proposed that microRNA (miR) interactions with viral components could be used by both the virus and host for their own benefit. Analysis of the SARS-CoV-2 viral genome 3'-UTR has revealed the potential for host cellular miR binding sites, providing sites for specific interactions with the virus. In this study, we demonstrate that the SARS-CoV-2 genome 3'-UTR binds the host cellular miRNAs miR-760-3p, miR-34a-5p, and miR-34b-5p, which have been shown to influence translation of interleukin-6 (IL-6), the IL-6 receptor (IL-6R), as well as progranulin (PGRN), respectively, proteins that have roles in the host immune response and inflammatory pathways. Furthermore, recent work suggests the potential of miR-34a-5p and miR-34b-5p to target and inhibit translation of viral proteins. Native gel electrophoresis and steady-state fluorescence spectroscopy were utilized to characterize the binding of these miRs to their predicted sites within the SARS-CoV-2 genome 3'-UTR. Additionally, we investigated 2'-fluoro-D-arabinonucleic acid (FANA) analogs of these miRNAs as competitive binding inhibitors for these miR binding interactions. The mechanisms detailed in this study have the potential to drive the development of antiviral treatments for SARS-CoV-2 infection, and provide a potential molecular basis for cytokine release syndrome and immune evasion which could implicate the host-virus interface.
Collapse
Affiliation(s)
- Caleb J Frye
- Department of Chemistry & Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | - Caylee L Cunningham
- Department of Chemistry & Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | | |
Collapse
|
22
|
Zhang Q, Song J, Cao L, Sun M, Xu T, Yang S, Li S, Wang H, Fu X. RNF113A targeted by miR-197 promotes proliferation and inhibits autophagy via CXCR4/CXCL12/AKT/ERK/Beclin1 axis in cervical cancer. Exp Cell Res 2023; 428:113632. [PMID: 37164050 DOI: 10.1016/j.yexcr.2023.113632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Ring Finger Protein 113 (RNF113A), an ubiquitin E3 ligase, is genetically associated with many biological processes, including proliferation, differentiation, cell death, and neurogenesis. Recently, RNF113A has been found to be an abnormal expression in many diseases, such as X-linked trichothiodystrophy syndrome and esophageal cancer. Here, we explore the potential mechanism of RNF113A in the progression of cervical cancer (CC). In this study, we evaluated the expression level and biological function of RNF113A in CC both in vitro and in vivo by bioinformatic prediction, DIA proteomic analysis, compensation experiment, Co-IP, dual-luciferase reporter assay and nude mouse xenograft to identify the RNF113A-associated autophagy pathways involved with tumorigenesis. Consistent with the prediction from biological information analysis, we found that RNF113A was highly expressed in human CC tissues and cells. In addition, this study illustrated that the high expression of RNF113A dramatically promoted proliferation and suppressed autophagy both in vitro and in vivo. In contrast, low expression of RNF113A enhanced autophagy activities and inhibited tumor growth in CC. We also found that miRNA-197, the level of which (negative correlation with RNF113A) declined in human CC, directly restrained the expression of RNF113A. Mechanistically, proteomic and mechanistic assays uncovered that RNF113A confirmed as the direct downstream target of miR-197, promoted proliferation and restrained autophagy in CC not through direct ubiquitination degradation of autophagy marker Beclin1 but via CXCR4/CXCL12/AKT/ERK/Beclin1 signal transduction axis. In summary, we found a new miR-197/RNF113 A/CXCR4/CXCL12/AKT/ERK/Beclin1 regulation pathway that plays an important part in the survival and progression of CC.
Collapse
Affiliation(s)
- Qingwei Zhang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Jiayu Song
- Department of Pharmacology, Luohe Medical College, Luohe, 462000, Henan, China; School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, China.
| | - Liejia Cao
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Mingzheng Sun
- Department of Pharmacology, Luohe Medical College, Luohe, 462000, Henan, China
| | - Tenghan Xu
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Shaozhe Yang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Suhong Li
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Huifen Wang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Xiuhong Fu
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China.
| |
Collapse
|
23
|
Ren Y, Pan K, Wang Y, Zhang S, Wang Y, Zhou X, Dan H, Chen Q, Ji N, Li J. circFANCA accelerates the malignant process of OSCC by modulating miR-34a/PA28γ signaling. Biochem Biophys Res Commun 2023; 665:45-54. [PMID: 37148744 DOI: 10.1016/j.bbrc.2023.04.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVES To investigate the upstream regulatory molecules of proteasomal activator 28γ (PA28γ), and explore its specific regulatory mechanism and potential clinical significance in OSCC. MATERIALS AND METHODS qPCR was used to examine miR-34a, circFANCA and PSME3 expression. Western blotting was adopted to detect PA28γ expression. Transwell experiments were conducted to evaluate OSCC cell migration and invasion ability. FISH was used to evaluate the subcellular localization of circFANCA and miR-34a, and RNA pull-down verified the interaction between them. The expression of circFANCA and miR-34a in clinical cohorts was assessed by ISH, and the results were subjected to survival analysis using Kaplan-Meier analysis. RESULTS Here, we proved that miR-34a expression is lower in highly aggressive OSCC tissues and cell lines. Notably, miR-34a can downregulate PA28γ expression and inhibit OSCC invasion and migration. Next, we confirmed that circFANCA promoted OSCC cell metastatic ability by sponging miR-34a. Importantly, interfering with miR-34a rescued the malignant progression of OSCC induced by silencing circFANCA. Finally, clinical data showed lower miR-34a expression and higher circFANCA expression were associated with poor prognosis in OSCC patients. CONCLUSION The circFANCA/miR-34a/PA28γ axis facilitates the metastasis of OSCC, and circFANCA and miR-34a have potential to serve as prognostic markers for OSCC patients.
Collapse
Affiliation(s)
- Yuan Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Keran Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Shiyu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yimei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - HongXia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
24
|
El-Mahdy HA, Mohamadin AM, Abulsoud AI, Khidr EG, El-Husseiny AA, Ismail A, Elsakka EGE, Mokhlis HA, El-Husseiny HM, Doghish AS. miRNAs as potential game-changers in head and neck cancer: Future clinical and medicinal uses. Pathol Res Pract 2023; 245:154457. [PMID: 37058745 DOI: 10.1016/j.prp.2023.154457] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
Head and neck cancers (HNCs) are a group of heterogeneous tumors formed most frequently from epithelial cells of the larynx, lips, oropharynx, nasopharynx, and mouth. Numerous epigenetic components, including miRNAs, have been demonstrated to have an impact on HNCs characteristics like progression, angiogenesis, initiation, and resistance to therapeutic interventions. The miRNAs may control the production of numerous genes linked to HNCs pathogenesis. The roles that miRNAs play in angiogenesis, invasion, metastasis, cell cycle, proliferation, and apoptosis are responsible for this impact. The miRNAs also have an impact on crucial HNCs-related mechanistic networks like the WNT/β-catenin signaling, PTEN/Akt/mTOR pathway, TGFβ, and KRAS mutations. miRNAs may affect how the HNCs respond to treatments like radiation and chemotherapy in addition to pathophysiology. This review aims to demonstrate the relationship between miRNAs and HNCs with a particular emphasis on how miRNAs impact HNCs signaling networks.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed M Mohamadin
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Hamada Ahmed Mokhlis
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Al Qalyubia 13736, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| |
Collapse
|
25
|
Pan W, Chai B, Li L, Lu Z, Ma Z. p53/MicroRNA-34 axis in cancer and beyond. Heliyon 2023; 9:e15155. [PMID: 37095919 PMCID: PMC10121403 DOI: 10.1016/j.heliyon.2023.e15155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer is serious endangers human life. After a long period of research and accumulation, people's understanding of cancer and the corresponding treatment methods are constantly developing. p53 is an important tumor suppressor gene. With the more in-depth understanding of the structure and function of p53, the more importance of this tumor suppressor gene is realized in the process of inhibiting tumor formation. MicroRNAs (miRNAs) are important regulatory molecules with a length of about 22nucleotides (nt), which belong to non-coding RNA and play an important role in the occurrence and development of tumors. miR-34 is currently considered to be a master regulator of tumor suppression. The positive feedback regulatory network formed by p53 and miR-34 can inhibit the growth and metastasis of tumor cells and inhibit tumor stem cells. This review focuses on the latest progress of p53/miR-34 regulatory network, and discusses its application in tumor diagnosis and treatment.
Collapse
|
26
|
Wu YC, Kissner M, Momen-Heravi F. A comprehensive multiparameter flow cytometry panel for immune profiling and functional studies of frozen tissue, bone marrow, and spleen. J Immunol Methods 2023; 515:113444. [PMID: 36868498 PMCID: PMC10508641 DOI: 10.1016/j.jim.2023.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Flow cytometry (FC) is a highly informative technology that can provide valuable information about immune phenotype monitoring and immune cell states. However, there is a paucity of comprehensive panels developed and validated for use on frozen samples. Here, we developed a 17-plex flow cytometry panel to detect subtypes, frequencies, and functions of different immune cells that can be leveraged to study the different cellular characteristics in different disease models, physiological, and pathological conditions. This panel identifies surface markers to characterize T cells (CD8+, CD4+), natural killer (NK) cells and their subtypes (immature, cytotoxic, exhausted, activated),natural killer T (NKT) cells, neutrophils, macrophages (M1 (pro-inflammatory) and M2 (anti-inflammatory)), monocytes and their subtypes (classical and non-classical), dendritic cells (DC) and their subtypes (DC1, DC2), and eosinophils. The panel was designed to include only surface markers to avoid the necessity for fixation and permeabilization steps. This panel was optimized using cryopreserved cells. Immunophenotyping of spleen and bone marrow using the proposed panel was efficient in correctly differentiating the immune cell subtypes in inflammatory model of ligature-induced periodontitis, in which we found increased percentage of NKT cells, activated and mature/cytotoxic NK cells in the bone marrow of affected mice. This panel enables in-depth immunophenotyping of murine immune cells in bone marrow, spleen, tumors, and other non-immune tissues of mice. It could be a tool for systematic analysis of immune cell profiling in inflammatory conditions, systemic diseases, and tumor microenvironments.
Collapse
Affiliation(s)
- Yi-Chu Wu
- Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, NY, New York, USA; Cancer Biology and Immunology Laboratory, Columbia University Irving Medical Center, NY, New York, USA
| | - Michael Kissner
- Columbia Stem Cell Initiative Flow Cytometry Core, Columbia University Irving Medical Center, NY, New York, USA
| | - Fatemeh Momen-Heravi
- Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, NY, New York, USA; Cancer Biology and Immunology Laboratory, Columbia University Irving Medical Center, NY, New York, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, New York, USA.
| |
Collapse
|
27
|
Novel Insights of Anti-EGFR Therapy in HNSCC: Combined with Immunotherapy or Not? Curr Oncol Rep 2023; 25:93-105. [PMID: 36585960 DOI: 10.1007/s11912-022-01349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The efficacy of anti-EGFR therapy is still unfavorable in recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) patients. Disorder of antitumor immunity and aberrantly expressed checkpoint biomarkers had been validated to involve anti-EGFR therapy tolerance and efficacy. Here we review the immunomodulation of anti-EGFR therapy in the tumor immune microenvironment (TIME) of HNSCC and assist clinicians in finding the potential strategies to rescue anti-EGFR tolerance therapy in the era of immunotherapy for HNSCC. RECENT FINDINGS Anti-EGFR therapy, especially cetuximab, was validated to induce the innate and adaptive immune responses of HNSCC patients. It is mainly through inducing natural killer (NK) cells mediating antibody-dependent cell-mediated cytotoxicity (ADCC), recruiting multiple tumor-infiltrating immune cells, and finally remodeling the TIME. Moreover, mountains of preclinical models and clinical trials revealed that combining anti-EGFR agents with immunotherapy could enhance the antitumor effectiveness in HNSCC. Anti-EGFR therapy may usher in another dawn in the treatment of patients with HNSCC through combination with immunotherapy. We offer an overview of the ongoing efforts to make out the immunomodulation of the EGFR pathway in both innate and adaptive immune responses; update the constant preclinical models and clinical trials for the combination of anti-EGFR and immunotherapy in HNSCC; and finally evaluate the efficacy and advantages of the combination therapeutic strategies in clinical use.
Collapse
|
28
|
Pandey R, Yang FS, Sivasankaran VP, Lo YL, Wu YT, Chang CY, Chiu CC, Liao ZX, Wang LF. Comparing the Variants of Iron Oxide Nanoparticle-Mediated Delivery of miRNA34a for Efficiency in Silencing of PD-L1 Genes in Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15010215. [PMID: 36678844 PMCID: PMC9865708 DOI: 10.3390/pharmaceutics15010215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The blocking of programmed death-ligand 1 (PD-L1) in tumor cells represents a powerful strategy in cancer immunotherapy. Using viral vectors to deliver the cargo for inactivating the PD-L1 gene could be associated with host cell genotoxicity and concomitant immune attack. To develop an alternative safe gene delivery method, we designed a unique combination for miRNA34a delivery using a transgene carrier in the form of iron oxide magnetic nanoparticles (IONPs) via magnetofection to downregulate PD-L1 expression in cancer cells. We synthesized IONPs of multiple shapes (IONRs (iron oxide nanorods), IONSs (iron oxide nanospheres), and ITOHs (iron oxide truncated octahedrons)), surface-functionalized with polyethyleneimine (PEI) using the ligand exchange method, as gene delivery systems. Under the guidance of an external magnetic field, PEI@IONPs loaded with plasmid DNA (DNA/PEI@IONPs) encoding GFP showed high transfection efficiency at different weight ratios and time points in A549 and MDA-MB-231 cells. Additionally, the DNA/PEI@IONPs with miRNA34a inserts under a static magnetic field resulted in significant knockdown of the PD-L1 gene, as demonstrated via immunoblotting of the PD-L1 protein. Among the three shapes of IONPs, IONRs showed the highest PD-L1 knockdown efficiency. The genetic expression of miRNA34a was also studied using qPCR and it showed high expression of miRNA in cells treated with PEI@IONRs. Flow cytometry and a live/dead assay confirmed apoptosis after transfection with miRNA34a. To conclude, in this paper, a promising transgene carrier with low cost, negligible cytotoxicity, and high transfection efficiency has been successfully established for miRNA gene delivery in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Richa Pandey
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Feng-Shuo Yang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | | | - Yu-Lun Lo
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ting Wu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yu Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-2217
| |
Collapse
|
29
|
St-Cyr G, Penarroya D, Daniel L, Giguère H, Alkayyal AA, Tai LH. Remodeling the tumor immune microenvironment with oncolytic viruses expressing miRNAs. Front Immunol 2023; 13:1071223. [PMID: 36685574 PMCID: PMC9846254 DOI: 10.3389/fimmu.2022.1071223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
MiRNAs (miRNA, miR) play important functions in the tumor microenvironment (TME) by silencing gene expression through RNA interference. They are involved in regulating both tumor progression and tumor suppression. The pathways involved in miRNA processing and the miRNAs themselves are dysregulated in cancer. Consequently, they have become attractive therapeutic targets as underscored by the plethora of miRNA-based therapies currently in pre-clinical and clinical studies. It has been shown that miRNAs can be used to improve oncolytic viruses (OVs) and enable superior viral oncolysis, tumor suppression and immune modulation. In these cases, miRNAs are empirically selected to improve viral oncolysis, which translates into decreased tumor growth in multiple murine models. While this infectious process is critical to OV therapy, optimal immunomodulation is crucial for the establishment of a targeted and durable effect, resulting in cancer eradication. Through numerous mechanisms, OVs elicit a strong antitumor immune response that can also be further improved by miRNAs. They are known to regulate components of the immune TME and promote effector functions, antigen presentation, phenotypical polarization, and varying levels of immunosuppression. Reciprocally, OVs have the power to overcome the limitations encountered in canonical miRNA-based therapies. They deliver therapeutic payloads directly into the TME and facilitate their amplification through selective tumoral tropism and abundant viral replication. This way, off-target effects can be minimized. This review will explore the ways in which miRNAs can synergistically enhance OV immunotherapy to provide the basis for future therapeutics based on this versatile combination platform.
Collapse
Affiliation(s)
- Guillaume St-Cyr
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daphné Penarroya
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauren Daniel
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, Tabuk, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre of the Centre Hospitalier de l'Universite de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| |
Collapse
|
30
|
Inter-correlation of lncRNA THRIL with microRNA-34a and microRNA-125b and their relationship with childhood asthma risk, severity, and inflammation. Allergol Immunopathol (Madr) 2023; 51:187-194. [PMID: 36617839 DOI: 10.15586/aei.v51i1.736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/31/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) THRIL targets microRNA (miR)-34a and miR-125b to modify immunity, inflammation, and respiratory injury. The current study aimed to determine the inter-correlation of lncRNA THRIL with miR-34a and miR-125b and their relationship with childhood asthma risk, severity, and inflammation. METHODS Exacerbated asthma children (N=65), remissive asthma children (N=65), and healthy controls (N=65) were enrolled in this case-control study. LncRNA THRIL, miR-34a, and miR-125b in peripheral blood mononuclear cells, as well as inflammatory cytokines in serum, were detected by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RESULTS LncRNA THRIL was highest in exacerbated asthma children, then in remissive asthma children, and lowest in healthy controls (P<0.001); reversely, miR-34a (P<0.001) and miR-125b (P=0.004) exhibited the opposite treads. LncRNA THRIL (area under curve (AUC)=0.686) and miR-34a (AUC=0.614) could predict exacerbation risk of asthma, while miR-125b failed. Interestingly, lncRNA THRIL was negatively related to miR-34a and miR-125b in exacerbated asthma children and remissive asthma children (all P<0.05) but not in healthy controls (both P>0.05). Specifically, in exacerbated asthma children: lncRNA THRIL is related to increased eosinophil count (P=0.013), immunoglobulin E (P=0.020), tumor necrosis factor-α (P=0.002), interleukin-1β (P=0.004), interleukin-6 (P=0.012), interleukin-17 (P=0.004) and exacerbated severity (P=0.030); Meanwhile, miR-34a and miR-125b linked with decreased levels of most of the above indexes (most P<0.05). CONCLUSION LncRNA THRIL negatively relates to miR-34a and miR-125b, correlate with inflammatory cytokines, and exacerbated the risk and severity of childhood asthma, indicating their potential as biomarkers for childhood asthma management.
Collapse
|
31
|
De Palma FDE, Carbonnier V, Salvatore F, Kroemer G, Pol JG, Maiuri MC. Systematic Investigation of the Diagnostic and Prognostic Impact of LINC01087 in Human Cancers. Cancers (Basel) 2022; 14:cancers14235980. [PMID: 36497462 PMCID: PMC9738797 DOI: 10.3390/cancers14235980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Long non-coding RNAs may constitute epigenetic biomarkers for the diagnosis, prognosis, and therapeutic response of a variety of tumors. In this context, we aimed at assessing the diagnostic and prognostic value of the recently described long intergenic non-coding RNA 01087 (LINC01087) in human cancers. (2) Methods: We studied the expression of LINC01087 across 30 oncological indications by interrogating public resources. Data extracted from the TCGA and GTEx databases were exploited to plot receiver operating characteristic curves (ROC) and determine the diagnostic performance of LINC01087. Survival data from TCGA and KM-Plotter directories allowed us to graph Kaplan-Meier curves and evaluate the prognostic value of LINC01087. To investigate the function of LINC01087, gene ontology (GO) annotation and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed. Furthermore, interactions between LINC01087 and both miRNA and mRNA were studied by means of bioinformatics tools. (3) Results: LINC01087 was significantly deregulated in 7 out of 30 cancers, showing a predominant upregulation. Notably, it was overexpressed in breast (BC), esophageal (ESCA), and ovarian (OV) cancers, as well as lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD), and uterine carcinosarcoma (UCS). By contrast, LINC01087 displayed downregulation in testicular germ cell tumors (TGCT). ROC curve analyses identified LINC01087 as a potential diagnostic indicator in BC, ESCA, OV, STAD, and TGCT. Moreover, high and low expression of LINC01087 predicted a favorable prognosis in BC and papillary cell carcinoma, respectively. In silico analyses indicated that deregulation of LINC01087 in cancer was associated with a modulation of genes related to ion channel, transporter, and peptide receptor activity. (4) Conclusions: the quantification of an altered abundance of LINC01087 in tissue specimens might be clinically useful for the diagnosis and prognosis of some hormone-related tumors, including BC, OV, and TGCT, as well as other cancer types such as ESCA and STAD. Moreover, our study revealed the potential of LINC01087 (and perhaps other lncRNAs) to regulate neuroactive molecules in cancer.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Vincent Carbonnier
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e Loro Modelli Animali (Federico II, 80131, Napoli, Tor Vergata, Rome and “G. D’Annunzio”, Chieti-Pescara), 80131 Napoli, Italy
| | - Guido Kroemer
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, 75004 Paris, France
| | - Jonathan G. Pol
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| | - Maria Chiara Maiuri
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| |
Collapse
|
32
|
Deng Y, Xiao M, Wan AH, Li J, Sun L, Liang H, Wang QP, Yin S, Bu X, Wan G. RNA and RNA Derivatives: Light and Dark Sides in Cancer Immunotherapy. Antioxid Redox Signal 2022; 37:1266-1290. [PMID: 35369726 DOI: 10.1089/ars.2022.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Immunotherapy, which utilizes the patient's immune system to fight tumor cells, has been approved for the treatment of some types of advanced cancer. Recent Advances: The complexity and diversity of tumor immunity are responsible for the varying response rates toward current immunotherapy strategies and highlight the importance of exploring regulators in tumor immunotherapy. Several genetic factors have proved to be critical regulators of tumor immunotherapy. RNAs, including messenger RNAs and non-coding RNAs, play vital and diverse roles in tumorigenesis, metastasis, drug resistance, and immunotherapy response. RNA modifications, including N6-methyladenosine methylation, are involved in tumor immunity. Critical Issues: A critical issue is the lack of summary of the regulatory RNA molecules and their derivatives in mediating immune activities in human cancers that could provide potential applications for tumor immunotherapeutic strategy. Future Directions: This review summarizes the dual roles (the light and dark sides) of RNA and its derivatives in tumor immunotherapy and discusses the development of RNA-based therapies as novel immunotherapeutic strategies for cancer treatment. Antioxid. Redox Signal. 37, 1266-1290.
Collapse
Affiliation(s)
- Yuan Deng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Min Xiao
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Arabella H Wan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiarui Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lei Sun
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Heng Liang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Sheng Yin
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xianzhang Bu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
33
|
Liu H, Wang D, Yang Z, Li S, Wu H, Xiang J, Kan S, Hao M, Liu W. Regulation of epigenetic modifications in the head and neck tumour microenvironment. Front Immunol 2022; 13:1050982. [DOI: 10.3389/fimmu.2022.1050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck tumours are common malignancies that are associated with high mortality. The low rate of early diagnosis and the high rates of local recurrence and distant metastasis are the main reasons for treatment failure. Recent studies have established that the tumour microenvironment (TME) can affect the proliferation and metastasis of head and neck tumours via several mechanisms, including altered expressions of certain genes and cytokines. Increasing evidence has shown that epigenetic modifications, such as DNA methylation, histone modification, RNA modification, and non-coding RNAs, can regulate the head and neck TME and thereby influence tumour development. Epigenetic modifications can regulate the expression of different genes and subsequently alter the TME to affect the progression of head and neck tumours. In addition, the cell components in the TME are regulated by epigenetic modifications, which, in turn, affect the behaviour of head and neck tumour cells. In this review, we have discussed the functions of epigenetic modifications in the head and neck TME. We have further examined the roles of such modifications in the malignancy and metastasis of head and neck tumours.
Collapse
|
34
|
Dioguardi M, Cantore S, Sovereto D, La Femina L, Spirito F, Caloro GA, Caroprese M, Maci M, Scacco S, Lo Muzio L, Di Cosola M, Troiano G, Ballini A. Does miR-197 Represent a Valid Prognostic Biomarker in Head and Neck Squamous Cell Carcinoma (HNSCC)? A Systematic Review and Trial Sequential Analysis. J Pers Med 2022; 12:jpm12091436. [PMID: 36143221 PMCID: PMC9501311 DOI: 10.3390/jpm12091436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Between tumors of the head and neck region, the squamous cell variant (HNSCC) is the most common and represents one of the main neoplasms affecting humans. At the base of carcinogenesis processes, there are genetic alterations whose regulation can be influenced by changes in the expression of microRNA (miR). Consequently, despite recent studies indicating miR-197 as a potential prognostic biomarker of survival for many varieties of cancer, there are currently no systematic reviews and trial sequential/bioinformatics/meta-analysis regarding the role of miR-197 in HNSCC. Our hypothesis was that with the existing literature, it is possible to clarify whether the different expressions of miR-197 in neoplastic tissues can represent a prognostic biomarker of survival in head and neck tumors. (2) Methods: The systematic review was reported following the indications of PRISMA and by consulting six electronic databases (including one register). Moreover, this review was carried out using the Kaplan–Meier plotter database portal, and hazard ratio (HR) data were extracted. Finally, a trial sequential analysis (TSA) was conducted to test the robustness of the proposed meta-analysis. (3) Results: This search identified 1119 articles and outcomes of the meta-analysis, reporting an aggregate HR for overall survival (OS) between the highest and lowest miR-197 expression of 1.01, 95% CI: [1.00, 1.02]. (4) Conclusions: We can state that, from the literature data included in the present meta-analysis, and from the TSA and bioinformatics analysis data, miR-197 does not currently represent a valid prognostic biomarker for HNSCC, although the data provided by the Kaplan–Meier plotter suggest that miR-197 can serve as a putative biomarker in short-term (5 years) survival.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
- Correspondence: (M.D.); (S.C.); (S.S.)
| | - Stefania Cantore
- Independent Researcher, 70129 Bari, Italy
- Correspondence: (M.D.); (S.C.); (S.S.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Lucia La Femina
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Giorgia Apollonia Caloro
- Unità Operativa Nefrologia e Dialisi, Presidio Ospedaliero Scorrano, ASL (Azienda Sanitaria Locale) Lecce, Via Giuseppina Delli Ponti, 73020 Scorrano, Italy
| | - Marino Caroprese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Marta Maci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: (M.D.); (S.C.); (S.S.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
35
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
36
|
Overby SJ, Cerro-Herreros E, González-Martínez I, Varela MA, Seoane-Miraz D, Jad Y, Raz R, Møller T, Pérez-Alonso M, Wood MJ, Llamusí B, Artero R. Proof of concept of peptide-linked blockmiR-induced MBNL functional rescue in myotonic dystrophy type 1 mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1146-1155. [PMID: 35282418 PMCID: PMC8888893 DOI: 10.1016/j.omtn.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/06/2022] [Indexed: 01/25/2023]
Abstract
Myotonic dystrophy type 1 is a debilitating neuromuscular disease causing muscle weakness, myotonia, and cardiac dysfunction. The phenotypes are caused by muscleblind-like (MBNL) protein sequestration by toxic RNA in the DM1 protein kinase (DMPK) gene. DM1 patients exhibit a pathogenic number of repetitions in DMPK, which leads to downstream symptoms. Another disease characteristic is altered microRNA (miRNA) expression. It was previously shown that miR-23b regulates the translation of MBNL1 into protein. Antisense oligonucleotide (AON) treatment targeting this miRNA can improve disease symptoms. Here, we present a refinement of this strategy targeting a miR-23b binding site on the MBNL1 3' UTR in DM1 model cells and mice by using AONs called blockmiRs. BlockmiRs linked to novel cell-penetrating peptide chemistry showed an increase in MBNL1 protein in DM1 model cells and HSALR mice. They also showed an increase in muscle strength and significant rescue of downstream splicing and histological phenotypes in mice without disturbing the endogenous levels of other miR-23b target transcripts.
Collapse
Affiliation(s)
- Sarah J Overby
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Estefanía Cerro-Herreros
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Irene González-Martínez
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Miguel A Varela
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - David Seoane-Miraz
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yahya Jad
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Richard Raz
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | | | - Manuel Pérez-Alonso
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Matthew J Wood
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Beatriz Llamusí
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Rubén Artero
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
37
|
Muthusami S, Sabanayagam R, Periyasamy L, Muruganantham B, Park WY. A review on the role of epidermal growth factor signaling in the development, progression and treatment of cervical cancer. Int J Biol Macromol 2022; 194:179-187. [PMID: 34848237 DOI: 10.1016/j.ijbiomac.2021.11.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022]
Abstract
The sub-committee constituted by the Indian Council of Medical Research (ICMR) for the management of cervical cancer (CC) detailed in the consensus document (2016) reported CC as a significant cause of morbidity and mortality in women. The incidence of an increase in CC and associated mortality in women is a major cause of cancer. To date, human papilloma viral (HPV) infection accounts for more than 99% of CC. However, there are individuals infected with HPV do not develop CC. There is a greater correlation between HPV infection and upregulation of the epidermal growth factor receptor (EGFR) signaling cascade during the initiation, sustenance, and progression of CC. Therefore, EGFR is often targeted to treat CC using tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAB). The current review analyzed the existing clinical/pre-clinical studies and the significance of EGFR abundance using the Kaplan-Meier (KM) survival plot analysis for disease-free survival (DFS) and overall survival (OS). We performed a series of bioinformatics analyses to screen the crucial role of the EGFR gene in CC. Further, different transcription factors that are dysregulated due to EGFR abundance and their relevance were determined using computational tools in this review. Endogenous microRNAs (miRNA) that undergo changes due to alterations in EGFR during CC were identified using computational database and consolidated the information obtained with the published in the area of miRNA and EGFR with special reference to the initiation, sustenance and progression of CC. The current review aims to consolidate contemporary approaches for targeting CC using EGFR and highlight the current role of miRNA and genes that are differently regulated during CC involving EGFR mutations. Potential resistance to the available EGFR therapies such as TKIs and mABs and the need for better therapies are also extensively reviewed for the development of newer therapeutic molecules with better efficacy.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India; Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore 641021, India.
| | | | - Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Woo Yoon Park
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
38
|
Sayyed AA, Gondaliya P, Bhat P, Mali M, Arya N, Khairnar A, Kalia K. Role of miRNAs In Cancer Diagnostics And Therapy: A Recent Update. Curr Pharm Des 2021; 28:471-487. [PMID: 34751112 DOI: 10.2174/1381612827666211109113305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
The discovery of miRNAs has been one of the revolutionary developments and has led to the advent of new diagnostic and therapeutic opportunities for the management of cancer. In this regard, miRNA dysregulation has been shown to play a critical role in various stages of tumorigenesis, including tumor invasion, metastasis as well as angiogenesis. Therefore, miRNA profiling can provide accurate fingerprints for the development of diagnostic and therapeutic platforms. This review discusses the recent discoveries of miRNA-based tools for early detection of cancer as well as disease monitoring in cancers that are common, like breast, lung, hepatic, colorectal, oral and brain cancer. Based on the involvement of miRNA in different cancers as oncogenic miRNA or tumor suppressor miRNA, the treatment with miRNA inhibitors or mimics is recommended. However, the stability and targeted delivery of miRNA remain the major limitations of miRNA delivery. In relation to this, several nanoparticle-based delivery systems have been reported which have effectively delivered the miRNA mimics or inhibitors and showed the potential for transforming these advanced delivery systems from bench to bedside in the treatment of cancer metastasis and chemoresistance. Based on this, we attempted to uncover recently reported advanced nanotherapeutic approaches to deliver the miRNAs in the management of different cancers.
Collapse
Affiliation(s)
- Adil A Sayyed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Palak Bhat
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Mukund Mali
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Neha Arya
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| |
Collapse
|
39
|
Ye W, Chen L, Feng C, Liang T. CircMYLK promotes the growth, migration, invasion, and survival of bladder cancer cells by upregulating CCND3 level via competitively binding to miR-34a. Drug Dev Res 2021; 82:1206-1216. [PMID: 34056735 DOI: 10.1002/ddr.21835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023]
Abstract
Bladder cancer is one of the most common types of urothelial carcinoma with a rising incidence rate worldwide. Circular RNAs (circRNAs) are involved in the development of numerous cancers, including bladder cancer. We aimed to uncover the role and associated mechanism of circMYLK in bladder cancer. The expression levels of circMYLK, miRNA-34a (miR-34a) and Cyclin D3 (CCND3) mRNA were investigated using real-time quantitative polymerase chain reaction. The protein level of CCND3 was investigated using western blot. In functional assays, flow cytometry assays were utilized for cell cycle analysis and cell apoptosis analysis. Transwell assays were used for cell migration and invasion analysis. Caspase-3 activity was examined to monitor cell apoptosis. The putative relationship between miR-34a and circMYLK or CCND3 was validated by dual-luciferase reporter assay and RNA immunoprecipitation assay. CircMYLK was highly expressed in bladder cancer tissues and cells. CircMYLK downregulation inhibited bladder cancer cell migration and invasion, and promoted cancer cell apoptosis and cell cycle arrest. MiR-34a, a target of circMYLK, was downregulated in bladder cancer tissues and cells. MiR-34a inhibition reversed the effects of circMYLK downregulation and then recovered bladder cell malignant behaviors. Further analysis showed that CCND3 was a downstream target of miR-34a, and CCND3 was upregulated in bladder cancer tissues and cells. MiR-34a overexpression blocked bladder cancer cell migration and invasion, and induced cell apoptosis and cycle arrest, while these effects were abolished by CCND3 overexpression. CircMYLK contributed to the malignant development of bladder cancer cells partly through the miR-34a/CCND3 regulatory network, showing the significance of circMYLK in bladder cancer pathogenesis.
Collapse
Affiliation(s)
- Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Li Chen
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chao Feng
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Tiejun Liang
- Department of Urology, Xinchang County People's Hospital, Xinchang, China
| |
Collapse
|