1
|
He C, Dong W, Lyu Y, Qin Y, Zhong S, Jiang X, Xiao J. Molecular characteristics, clinical significance and cancer‑immune interactions of pyroptosis‑related genes in colorectal cancer. Oncol Lett 2025; 29:89. [PMID: 39677414 PMCID: PMC11638898 DOI: 10.3892/ol.2024.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor with poor prognosis. Pyroptosis is a newly discovered type of programmed cell death that is typically accompanied by a strong inflammatory response. Accumulating evidence suggests that pyroptosis-related genes (PRGs) may have important roles in the development of malignant tumors. However, the association between PRG expression and clinical outcomes in CRC remain unclear. In the present study, the genetic variations and transcriptional patterns of 52 PRGs were comprehensively analyzed using cohorts from The Cancer Genome Atlas and Gene Expression Omnibus and the mRNA expression levels of 7 PRGs in collected CRC samples were validated using reverse transcription-quantitative PCR. Using LASSO-Cox analysis, a PRG score was then generated and the relationship between the PRG score and prognosis, immune cell infiltration and drug sensitivity in CRC was uncovered. In the present study, the mutation and expression patterns of PRGs were analyzed and it was found that these genes were differentially expressed in CRC tissues compared with normal tissues. Based on the expression patterns of the PRGs, patients with CRC were divided into two subtypes (cluster A and B), of which cluster B had an improved prognosis and a higher abundance of immune cells. Next, differentially expressed genes between clusters A and B were identified and a PRG risk score closely related to the prognosis of CRC was constructed. Then, a nomogram for evaluating the overall survival of patients was constructed. Furthermore, a low PRG risk score was characterized by immune activation and closely related to the microsatellite instability-high pattern. Additionally, the PRG risk score was notably correlated with drug sensitivity. In conclusion, the mutation and expression characteristics of PRGs in CRC were comprehensively analyzed and a prognostic PRG signature was constructed in the present study. This signature may predict immune cell infiltration and therapeutic response in CRC, providing new insights into the prognosis and treatment of CRC.
Collapse
Affiliation(s)
- Chenglong He
- Department of Oncology, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Wenjing Dong
- Department of Oncology, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Yanhua Lyu
- Department of Oncology, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Yan Qin
- Department of Oncology, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Siquan Zhong
- Department of Oncology, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Xiaomei Jiang
- Department of Oncology, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Jianjun Xiao
- Department of Oncology, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| |
Collapse
|
2
|
Liu C, Sun R, Wang H, Xia Y, Wang Y. Rabeprazole inhibits lung cancer progression by triggering NLRP3/CASP-1/caspase-dependent pyroptosis. Int Immunopharmacol 2025; 146:113806. [PMID: 39681063 DOI: 10.1016/j.intimp.2024.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Gastric acid-related diseases could be treated using proton pump inhibitors (PPIs), which have been found to have anti-tumor ability. Rabeprazole is a type of PPI whose effect and mechanism in lung cancer remained to be clarified. METHODS Lung cancer cells and lung cancer mice were treated with different concentrations of Rabeprazole and then cell proliferation was detected by CCK-8 and colony formation assays. Pyroptosis was assessed by morphological observation and Lactate dehydrogenase (LDH) release assays. Western blot, immunofluorescence and immunohistochemistry were adopted to detect the expressions of GSDMD and NLRP3. Reactive oxygen species (ROS) level, lysosomal damage and autophagic flux were measured by flow cytometry. RESULTS Rabeprazole suppressed lung cancer cell proliferation and lung tumor growth in mice in a concentration-dependent manner. Lung cancer cells treated with Rabeprazole showed typical pyroptosis morphology and significantly increased LDH release. Rabeprazole upregulated the expression of GSDMD, NLRP3, and cleaved-Caspase 1, but such an effect was partially blocked by Z-LLSD-FMK. In lung cancer cells treated with Rabeprazole and lung cancer mice injected with Rabeprazole, the expressions of GSDMD, NLRP3 and caspase-1 were promoted, ROS-stained cells were increased significantly, lysosomal damage was aggravated, and autophagic flux was noticeably reduced. CONCLUSIONS Rabeprazole activated NLRP3/caspase 1/GSDMD cascade by promoting ROS accumulation and lysosomal destruction, thereby inducing pyroptosis to fulfill its anti-tumor effect on lung cancer.
Collapse
Affiliation(s)
- Chuan Liu
- Thoracic Surgery Department, Qingdao University Affiliated Hospital, Qingdao University Affiliated Hospital Laoshan Campus, Qingdao 266001, China
| | - Ruolan Sun
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao 266001, China
| | - Hanmei Wang
- Ultrasound Medicine Department, Yantai Zhifu Hospital, Yantai 264010, China
| | - Yuanhao Xia
- Yantai Yuhuangding Medical Imaging Department, Yantai Yuhuangding Hospital, Yantai Yuhuangding Hospital General Hospital, Yantai 264010, China
| | - Yongjie Wang
- Thoracic Surgery Department, Qingdao University Affiliated Hospital, Qingdao University Affiliated Hospital Laoshan Campus, Qingdao 266001, China.
| |
Collapse
|
3
|
Zhuang Y, Li X. Osteosarcoma biomarker analysis and drug targeting prediction based on pyroptosis-related genes. Medicine (Baltimore) 2025; 104:e40240. [PMID: 39833053 DOI: 10.1097/md.0000000000040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Osteosarcoma is a malignant bone tumor originating from mesenchymal tissue. Recent studies have found that the tumor inflammatory microenvironment plays an important role in promoting the malignant characteristics and metastatic potential of malignant tumors. Pyroptosis, an inflammatory programmed cell death, elicits immune responses that exhibit anti-tumor effects through released factors and contents. Therefore, improving anti-tumor immunity by targeting osteosarcoma-related pyroptosis genes and pathways may be of great significance in delaying early metastasis of osteosarcoma and improving patient survival rate. The study aimed to identify pyroptosis-related genes and biomarkers in osteosarcoma, predicting therapeutic drugs targeting these genes. Gene expression profiles of osteosarcoma were retrieved from Gene Expression Omnibus and cross-referenced with GeneCards and Comparative Toxicogenomics Database to identify differentially expressed pyroptosis-related genes. We conducted enrichment analysis on intersecting genes to identify their biological processes and signaling pathways and assessed immune cell composition in the tumor microenvironment through immune infiltration analysis. In addition, we further utilized Cytoscape software to screen out the top 10 genes with Degree values among the intersected genes as hub genes and performed GSEA analysis and drug prediction based on the hub genes. A total of 22 differentially expressed pyroptosis-related genes were identified in osteosarcoma, with 10 of them (TP53, CYCS, IL-1A, IL-1B, IL-18, CASP-3, CASP-8, IL-6, TNF, CASP-1) pinpointed as hub genes. Enrichment analysis found that the 22 intersection genes are mainly associated with pyroptosis, apoptosis, immune regulation, and related biological processes. The results of data validation targeting hub genes suggest that IL-18, CASP-1, and CASP-8 may be key genes involved in the regulation of pyroptosis in osteosarcoma. Immune infiltration analysis shows statistical differences in the distribution of immune cells like naive B cells, monocytes, M2 macrophages, and dendritic/mast cells, suggesting they play a role in the osteosarcoma tumor microenvironment. Hub gene drug targets suggest Triethyl phosphate, Plinabulin, and Siltuximab as potential osteosarcoma treatments. Our findings suggest potential mechanisms of action for 22 pyroptosis-related genes in osteosarcoma and preliminarily predicted that the occurrence of osteosarcoma is closely related to pyroptosis, apoptosis, and immune regulation. Predicted Triethyl phosphate, Plinabulin, Siltuximab as potential osteosarcoma treatments.
Collapse
Affiliation(s)
- Yuxiang Zhuang
- Department of Radiology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
4
|
Huang H, Ge J, Lu S, Deng X, Tian Y, Huang H, Wang Z, Yao Y, Hong H, Lin T. Comprehensive analyses reveal the promising value of gasdermins as prognostic biomarkers and immunotherapeutic targets in head and neck squamous cell carcinoma. Heliyon 2025; 11:e41213. [PMID: 39807507 PMCID: PMC11728984 DOI: 10.1016/j.heliyon.2024.e41213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background In several studies of head and neck squamous cell carcinoma (HNSC), the regulation of tumorigenesis and therapeutic sensitivity by pyroptosis has been observed. However, a systematic analysis of gasdermin family members (GSDMs, including GSDMA/B/C/D/E and PJVK), which are deterministic executors of pyroptosis, has not yet been reported in HNSC. Methods We performed comprehensive analyses of the expression profile, prognostic value, regulatory network, and immune infiltration modulation of GSDMs in HNSC on the basis of a computational approach and bioinformatic analysis of publicly available datasets. Results A total of 18.65 % (94/504) of HNSC patients harbored GSDM alterations, with the most dominant type being amplification. Compared with those in normal tissues, the mRNA and protein levels of GSDMs, especially GSDMD/E, were commonly elevated in HNSC (P < 0.05). Additionally, the expression of GSDMs differed significantly between the clinicopathological subgroups of HNSC patients. Overall survival of HNSC patients benefited from increased GSDMC expression (HR = 0.67, P = 0.0053) and decreased GSDME expression (HR = 1.42, P = 0.0140). Regulatory network analysis revealed several essential biological processes associated with GSDMs, including positive regulation of cytokine production involved in the immune response. Notably, almost all infiltrating immune cells and immune checkpoints were negatively correlated with GSDMA/C/E expression and positively related to GSDMB/D and PJVK expression. Conclusions We indicated the potential role of GSDMs (especially GSDME) in HNSC pathogenesis, progression and response to immunotherapy, providing important evidence for further prospective studies and molecular mechanism exploration.
Collapse
Affiliation(s)
- Huageng Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Jingjing Ge
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Shunzhen Lu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Xinyi Deng
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Ying Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - He Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Zhao Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Yuyi Yao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Huangming Hong
- Department of Medical Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, PR China
| | - Tongyu Lin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
- Department of Medical Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
5
|
Zhang G, Shang R, Zhong X, Lv S, Yi Y, Lu Y, Xu Z, Wang Y, Teng J. Natural products target pyroptosis for ameliorating neuroinflammation: A novel antidepressant strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156394. [PMID: 39826285 DOI: 10.1016/j.phymed.2025.156394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Depression is a common mental disorder characterized by prolonged loss of interest and low mood, accompanied by symptoms such as sleep disturbances and cognitive impairments. In severe cases, there may be a tendency toward suicide. Depression can be caused by a series of highly complex pathological mechanisms; However, its key pathogenic mechanism remains unclear. As a novel programmed cell death (PCD) pathway and inflammatory cell death mode, pyroptosis involves a series of tightly regulated gene expression events. It may play a significant role in the pathogenesis and management of depression by modulating neuroinflammatory processes. In addition, a large number of studies have shown that various pharmacologically active natural products can regulate pyroptosis through multiple targets and pathways, demonstrating significant potential in the treatment of depression. These natural products offer advantages such as low costs and minimal side effects, making them a viable supplement or alternative to traditional antidepressants. In this review, we summarized recent research on natural products that regulate pyroptosis and neuroinflammation to improve depression. The aim of this review was to contribute to a scientific basis for the discovery and development of more natural antidepressants in the future. METHODS To review the antidepressant effects of natural products targeting pyroptosis-mediated neuroinflammation, data were collected from the Web of Science, ScienceDirect databases, and PubMed to classify and summarize the relationship between pyroptosis and neuroinflammation in depression, as well as the pharmacological mechanisms of natural products. RESULTS Multiple researches have revealed that pyroptosis-mediated neuroinflammation serves as a pivotal contributory factor in the pathological process of depression. Natural products, such as terpenoids, terpenes, phenylethanol glycosides, and alkaloids, have antidepressant effects by regulating pyroptosis to alleviate neuroinflammation. CONCLUSION We comprehensively reviewed the regulatory effects of natural products in depression-related pyroptosis pathways, providing a uniquely insightful perspective for the research, development, and application of natural antidepressants. However, future research should further explore the modulatory mechanisms of natural products in regulating pyroptosis, which is of great importance for the genration of effective antidepressants.
Collapse
Affiliation(s)
- Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yunhao Yi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yitong Lu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Zhiwei Xu
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yilin Wang
- Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Jing Teng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China.
| |
Collapse
|
6
|
Chen F, Lang L, Yang J, Yang F, Tang S, Fu Z, Saba NF, Luo M, Teng Y. SMAC-armed oncolytic virotherapy enhances the anticancer activity of PD1 blockade by modulating PANoptosis. Biomark Res 2025; 13:8. [PMID: 39789615 PMCID: PMC11721257 DOI: 10.1186/s40364-025-00726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) are increasingly recognized as promising tools for cancer therapy, as they selectively infect and destroy tumor cells while leaving healthy cells unharmed. Despite considerable progress, the limited therapeutic efficacy of OV-based virotherapy continues to be a significant challenge in cancer treatment. METHODS The SMAC/DIABLO gene was inserted into the genome of vesicular stomatitis virus (VSV) to generate VSV-S. Head and neck squamous cell carcinoma (HNSCC) cell lines and orthotopic mouse models were employed for research. Morphological changes were observed using both light microscopy and transmission electron microscopy. Molecular alterations were analyzed through Western blotting and ELISA kits. The tumor secretome was characterized using a combination of biotinylation and LC-MS analysis. Immune cell changes were evaluated by flow cytometry and immunohistochemistry. RESULTS Compared to its parental virus, VSV-S not only increases apoptosis by overexpressing SMAC during VSV infection but also triggers elevated levels of PANoptosis (pyroptosis, apoptosis, and necroptosis) in HNSCC cells via activation of caspase-1/gasdermin D (GSDMD) signaling. As a result, VSV-S-induced PANoptosis promotes CD8+ T cell tumor infiltration and enhances their cytotoxic capacity, eventually potentiating T cell-mediated antitumor immunity. Moreover, VSV-S reduces PDL1 levels in HNSCC cells and, in combination with PD1 blockade, produces a more potent antitumor effect than either therapy alone. CONCLUSIONS Our findings demonstrate that the combination of VSV-S and PD1 blockade offers a synergistic therapeutic strategy for HNSCC, supporting the advancement of VSV-based virotherapy as a promising strategy to improve outcomes for HNSCC patients.
Collapse
Affiliation(s)
- Fanghui Chen
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Liwei Lang
- Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jianqiang Yang
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Fan Yang
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Sijia Tang
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Zhenzhen Fu
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Tian X, Yuan L, Zeng Y. Butyrate attenuates SA-AKI by inhibiting pyroptosis via the STING-GSDMD axis. Biochem Biophys Res Commun 2025; 743:151143. [PMID: 39693943 DOI: 10.1016/j.bbrc.2024.151143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a common and serious complication with high morbidity and mortality. The pathophysiology of SA-AKI is complex. The underlying mechanisms of SA-AKI remain unclear, and effective therapeutic strategies are limited. Butyrate is a type of short-chain fatty acid (SCFA) derived from the gut microbiota that plays a key role in kidney disease. However, the effect of butyrate on SA-AKI and its underlying mechanisms remain unclear. In this study, LPS was used to establish an SA-AKI model in C57BL/6 mice. Our results indicated that butyrate levels were substantially reduced in SA-AKI model mice. Notably, butyrate intervention attenuated kidney injury and inflammation in SA-AKI model mice. Moreover, the levels of NLRP3, STING, and GSDMD (a marker of pyroptosis) were significantly decreased by butyrate intervention. An in vitro model induced by LPS was established using HK-2 cells. Butyrate mitigated pyroptosis and reduced NLRP3, STING, and GSDMD protein expression. Furthermore, STING overexpression abrogated the downregulation of several proteins (NLRP3 and caspase 1) invovled in NLRP3 inflammsome-mediated pyroptosis and weakened the protective effect of butyrate. Hence, butyrate may attenuate SA-AKI by inhibiting pyroptosis via the STING-GSDMD axis, which provides a potential therapeutic strategy for preventing SA-AKI progression.
Collapse
Affiliation(s)
- Xiaofang Tian
- Department of Nephrology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000, Zunyi, Guizhou, China; Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000, Zunyi, Guizhou, China
| | - Liying Yuan
- Department of Nephrology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000, Zunyi, Guizhou, China; Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000, Zunyi, Guizhou, China
| | - Yizhou Zeng
- Department of Urology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000, Zunyi, China; Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000, Zunyi, Guizhou, China.
| |
Collapse
|
8
|
Wang J, Su H, Wang M, Ward R, An S, Xu TR. Pyroptosis and the fight against lung cancer. Med Res Rev 2025; 45:5-28. [PMID: 39132876 DOI: 10.1002/med.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Pyroptosis, a newly characterized type of inflammatory programmed cell death (PCD), is usually triggered by multiple inflammasomes which can recognize different danger or damage-associated molecular patterns (DAMPs), leading to the activation of caspase-1 and the cleavage of gasdermin D (GSDMD). Gasdermin family pore-forming proteins are the executers of pyroptosis and are normally maintained in an inactive state through auto-inhibition. Upon caspases mediated cleavage of gasdermins, the pro-pyroptotic N-terminal fragment is released from the auto-inhibition of C-terminal fragment and oligomerizes, forming pores in the plasma membrane. This results in the secretion of interleukin (IL)-1β, IL-18, and high-mobility group box 1 (HMGB1), generating osmotic swelling and lysis. Current therapeutic approaches including chemotherapy, radiotherapy, molecularly targeted therapy and immunotherapy for lung cancer treatment efficiently force the cancer cells to undergo pyroptosis, which then generates local and systemic antitumor immunity. Thus, pyroptosis is recognized as a new therapeutic regimen for the treatment of lung cancer. In this review, we briefly describe the signaling pathways involved in pyroptosis, and endeavor to discuss the antitumor effects of pyroptosis and its potential application in lung cancer therapy, focusing on the contribution of pyroptosis to microenvironmental reprogramming and evocation of antitumor immune response.
Collapse
Affiliation(s)
- Jiwei Wang
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huiling Su
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Min Wang
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Richard Ward
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, College of Medical, University of Glasgow, Glasgow, UK
| | - Su An
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tian-Rui Xu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
9
|
Shi Y, Zhao J, Xu S, Zhu H, Wang Y, Zhao B, Sun Z, He S, Hou X. A sodium alginate-based injectable hydrogel system for locoregional treatment of colorectal cancer by eliciting pyroptosis and apoptosis. Int J Biol Macromol 2024; 294:139345. [PMID: 39746425 DOI: 10.1016/j.ijbiomac.2024.139345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Effective delivery of sufficient doxorubicin (DOX) molecules in tumors is hindered by the complex biological barriers. Herein, a DOX-loaded sodium alginate-based injectable hydrogel (DOX@MHB-conj-SAgel) was designed by the Michael addition reactions between the sulfydryl in cross-linkers and the double bonds in a derivative of sodium alginate. The DOX@MHB-conj-SAgel was administrated to CT26 tumor-bearing mice via peritumoral injection for locoregional treatment of colorectal cancer by inducing apoptosis and pyroptosis. The released DOX molecules were localized within tumors, resulting in pronounced anti-tumor effects as evidenced by reduced tumor volumes, less tumor weight , higher inhibition rate, and diminished Ki67 staining . Meanwhile, DOX triggered pyroptosis in CT26 cells through the activation of caspase-3 to cleave gasdermin E, promoting potent anti-tumor immunity. The pyroptosis in CT26 cells was verified by characteristic cellular changes, including cell swelling, membrane blebbing, and cell rupture. Additionally, the immunogenicity of CT26 cells triggered by pyroptosis was demonstrated by the immunofluorescence imaging of GSDME, CD3, CD4, CD8 T cells, and CD31 in tumor sections. The hydrogel-based locoregional therapy represents a novel platform that combines the pyroptosis and apoptosis of DOX, thereby enhancing the therapeutic efficacy against colorectal cancer.
Collapse
Affiliation(s)
- Yongli Shi
- College of pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China.
| | - Jingya Zhao
- College of pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Suyue Xu
- College of pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Huiqing Zhu
- College of pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Yuxin Wang
- College of pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Bingqian Zhao
- Basic medicine college, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Zeyu Sun
- First clinical college, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Sisi He
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, 563000, Guizhou, PR China.
| | - Xueyan Hou
- College of pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China; Pingyuan Laboratory, 453007, Xinxiang, Henan, PR China.
| |
Collapse
|
10
|
Perini G, Minopoli A, Zambrano D, Cui L, Ferrara V, Perfili C, Artemi G, De Spirito M, Palmieri V, Rosenkranz A, Papi M. Impact of different 2D materials on the efficacy of photothermal and photodynamic therapy in 3D-bioprinted breast cancer. NANOSCALE 2024. [PMID: 39714201 DOI: 10.1039/d4nr05026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The convergence of nanotechnology and tissue engineering has paved the way for innovative cancer treatments that leverage the unique light absorption properties of nanomaterials. Indeed, photothermal therapy (PTT) and photodynamic therapy (PDT) utilize nanomaterials to convert near-infrared light into therapeutic energy for cancer treatment. This study focuses on the application of poly(lactic-co-glycolic acid) (PLGA) scaffolds, enhanced by graphene oxide, Ti3C2Tx MXene, and TiS2 transition metal dichalcogenides for PDT and PTT treatments evaluated within 3D-bioprinted breast cancers. Our scaffolds were designed to exploit the photothermal conversion efficiency and capability to generate reactive oxygen species (ROS) to compare the specific features of each 2D material. We demonstrated a reduction in tumor viability under scaffold irradiation, along with the exploration of biological responses to damage such as autophagy and pyroptosis, verifying that these scaffolds can differentially induce these processes depending on the light responsiveness of each material. The integration of these materials within 3D-printed scaffolds does not only enhance the therapeutic efficacy of PTT and PDT, but also offers a precise method to control the cellular environment after therapy, i.e. tissue regeneration and antibacterial effects, providing insights into the potential for these technologies to be adapted for personalized medicine for breast cancer treatment and reconstruction.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Antonio Minopoli
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Dario Zambrano
- Department of Chemical Engineering, Biotechnology and Materials (FCFM), Universidad de Chile, Santiago, Chile
| | - Lishan Cui
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Valeria Ferrara
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Caterina Perfili
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Giulia Artemi
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy.
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy.
| | - Andreas Rosenkranz
- ANID - Millennium Science Initiative Program, Millennium Nuclei of Advanced MXenes for Sustainable Applications (AMXSA), Santiago, Chile
- Department of Chemical Engineering, Biotechnology and Materials (FCFM), Universidad de Chile, Santiago, Chile
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
11
|
Xie X, Fang F. The METTL3/m6A Reader Protein YTHDF1 Regulates Endothelial Cell Pyroptosis by Enhancing NLRP3 Expression to Affect Soft Tissue Injury. J Inflamm Res 2024; 17:11331-11346. [PMID: 39722730 PMCID: PMC11669061 DOI: 10.2147/jir.s479276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Background Pyroptosis is inflammation-associated programmed cell death triggered by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, which plays a crucial role in acute soft tissue injury (ASTI). This study aimed to explore whether methyltransferase-like 3 (METTL3) can regulate NLRP3 expression through N6-methyladenosine (m6A) modification to mediate endothelial cell pyroptosis and thus affect soft tissue injury. Methods An experimental ASTI rat model was created by inducing muscle injury through striking the rat muscle. In vitro, an ASTI cell model was established using human umbilical vein endothelial cells (HUVECs) stimulated with lipopolysaccharide (LPS) and ATP. The severity of ASTI in rats was evaluated using H&E staining. To assess protein levels, Western blot and Immunohistochemistry (IHC) analyses were performed, focusing on METTL3, pyroptosis-associated proteins, and m6A reader proteins. Immunofluorescence (IF) assay was conducted to examine the expression of NLRP3 and CD31. The levels of inflammatory cytokines were measured using an ELISA assay, while flow cytometry was used to detect levels of ROS and cellular pyroptosis. The m6A levels in cells were analyzed by RNA m6A colorimetry. The interactions between METTL3 and NLRP3, and YTHDF1 and NLRP3 were analyzed using RIP and RNA pull-down assays, respectively. Results METTL3 and YTHDF1 were significantly upregulated in ASTI rats and LPS-ATP-induced HUVECs. Knockdown of METTL3 ameliorated ASTI and inhibited cellular pyroptosis. Knockdown of METTL3 reduced the levels of total m6A and NLRP3 m6A in HUVECs and suppressed NLRP3 expression. Meanwhile, knockdown of YTHDF1 decreased NLRP3 protein expression without affecting NLRP3 mRNA levels. In addition, overexpression of NLRP3 was able to reverse the effect of METTL3 on LPS-ATP-induced endothelial cell pyroptosis. Conclusion The METTL3/m6A reader protein YTHDF1 regulates endothelial cell pyroptosis by enhancing NLRP3 expression to affect soft tissue injury.
Collapse
Affiliation(s)
- Xuesong Xie
- Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, 411100, People’s Republic of China
| | - Fang Fang
- Department of Anorectal, Xiangtan Central Hospital, Xiangtan, 411100, People’s Republic of China
| |
Collapse
|
12
|
Xie J, Du X, Li Y, Wu C, Li R, Zhao M, Shi S. Berberine shaping the tumor immune landscape via pyroptosis. Cell Immunol 2024; 408:104908. [PMID: 39701005 DOI: 10.1016/j.cellimm.2024.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Pyroptosis is a programmed cell death (PCD) mainly mediated by the Gasdermin family of proteins, among which Gasdermin E (GSDME) is considered a tumor suppressor gene. GSDME can recruit immune cells to the tumor microenvironment (TME) and promote their effects. Activating and enhancing adaptive immunity through GSDME is a potential solution for anti-tumor therapy. Here we reported that berberine (BBR), a small molecule from traditional Chinese medicine, as a GSDME activator, induced caspase-3 (C-3)/GSDME pathway-mediated pyroptosis through the mitochondrial pathway, improved the immunosuppressive state of the tumor microenvironment, and thus promoted anti-tumor immunity. We determined the induction of pyroptosis of 4 T1 cells by BBR through various experiments, and investigated the immune activation effect of BBR by co-culture in vitro, which induced DCs maturation and macrophage polarization. Zebrafish embryo toxicity experiments were used to evaluate the in vivo safety of berberine. Furthermore, the in vivo antitumor and immune activation effects of BBR were investigated using 4 T1 orthotopic model mice, and the results showed that BBR could eliminate orthotopic tumor cells by activating local and systemic immunity. Moreover, we observed that BBR significantly inhibited breast cancer lung metastasis. In summary, our results showd the role of BBR as a GSDME activator stimulated both local and systemic antitumor immune responses by inducing pyroptosis, effectively preventing tumor development and metastasis.
Collapse
Affiliation(s)
- Jinjin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengyu Wu
- Department of Pharmacy, Shenzhen Technology University, Shenzhen, China.
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
13
|
Feng L, Wu YJ, Yang YR, Yue BJ, Peng C, Chen C, Peng F, Du JR, Long FY. QBT improved cognitive dysfunction in rats with vascular dementia by regulating the Nrf2/xCT/GPX4 and NLRP3/Caspase-1/GSDMD pathways to inhibit ferroptosis and pyroptosis of neurons. Int Immunopharmacol 2024; 142:113070. [PMID: 39265351 DOI: 10.1016/j.intimp.2024.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The novel phthalein component QBT, extracted from Ligusticum chuanxiong, shows promising biological activity against cerebrovascular diseases. This study focused on ferroptosis and pyroptosis to explore the effects of QBT on nerve injury, cognitive dysfunction, and related mechanisms in a rat model of vascular dementia (VaD). METHODS We established a rat model of VaD and administered QBT as a treatment. Cognitive dysfunction in VaD rats was evaluated using novel object recognition and Morris water maze tests. Neuronal damage and loss in the brain tissues of VaD rats were assessed with Nissl staining and immunofluorescence. Furthermore, we investigated the neuroprotective mechanisms of QBT by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/cystine-glutamate antiporter (xCT)/glutathione peroxidase 4 (GPX4) and Nod-like receptor family pyrin domain-containing 3 (NLRP3)/cysteine-requiring aspartate protease-1 (Caspase-1)/Gasdermin D (GSDMD) pathways to inhibit ferroptosis and pyroptosis both in vivo and in vitro. RESULTS Our findings indicated that QBT significantly ameliorated neuronal damage and cognitive dysfunction in VaD rats. Additionally, QBT reversed abnormal changes associated with ferroptosis and pyroptosis in the brains of VaD rats, concurrently up-regulating the Nrf2/xCT/GPX4 pathway and down-regulating the NLRP3/Caspase-1/GSDMD pathway to inhibit ferroptosis and pyroptosis in neuronal cells, thereby exerting a neuroprotective role. CONCLUSION In summary, QBT effectively mitigated neuronal damage and cognitive dysfunction in VaD rats, demonstrating a neuroprotective effect by inhibiting ferroptosis and pyroptosis in neuronal cells. This study offers a novel perspective and theoretical foundation for the future development of drugs targeting VaD.
Collapse
Affiliation(s)
- Lu Feng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yi-Jin Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yan-Rong Yang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Bing-Jie Yue
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| | - Chu Chen
- Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine, Chengdu, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Fang-Yi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Liu Y, Wang D, Liu X, Yuan H, Liu D, Hu Y, Ning S. Biological and pharmacological roles of pyroptosis in pulmonary inflammation and fibrosis: recent advances and future directions. Cell Commun Signal 2024; 22:586. [PMID: 39639365 PMCID: PMC11619304 DOI: 10.1186/s12964-024-01966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Pyroptosis, an inflammatory regulated cell death (RCD) mechanism, is characterized by cellular swelling, membrane rupture, and subsequent discharge of cellular contents, exerting robust proinflammatory effects. Recent studies have significantly advanced our understanding of pyroptosis, revealing that it can be triggered through inflammasome- and caspase-independent pathways, and interacts intricately with other RCD pathways (e.g., pyroptosis, necroptosis, ferroptosis, and cuproptosis). The pathogenesis of pulmonary fibrosis (PF), including idiopathic pulmonary fibrosis (IPF) and other interstitial lung diseases, involves a multifaceted interplay of factors such as pathogen infections, environmental pollutants, genetic variations, and immune dysfunction. This chronic and progressive interstitial lung disease is characterized by persistent inflammation, extracellular matrix (ECM) accumulation, and fibrotic alveolar wall thickening, which potentially contribute to deteriorated lung function. Despite recent advances in understanding pyroptosis, the mechanisms by which it regulates PF are not entirely elucidated, and effective strategies to improve clinical outcomes remain unclear. This review strives to deliver a comprehensive overview of the biological functions and molecular mechanisms of pyroptosis, exploring its roles in the pathogenesis of PF. Furthermore, it examines potential biomarkers and therapeutic agents for anti-fibrotic treatments.
Collapse
Affiliation(s)
- Ya Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital (The Affiliated Hospital of Hunan University), Xiangtan, 411100, China
| | - Danxia Wang
- Department of Pharmacy, People's Hospital of Ningxiang City, Hunan University of Chinese Medicine, Changsha, 410600, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital (The Affiliated Hospital of Hunan University), Xiangtan, 411100, China
| | - Haibin Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Dan Liu
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Yixiang Hu
- Department of Clinical Pharmacy, Xiangtan Central Hospital (The Affiliated Hospital of Hunan University), Xiangtan, 411100, China.
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
15
|
Huang Q, Tao Y, Zhang Y, Chen Y, Tan F, Ou Y. Pyropheophorbide-α methyl ester-mediated photodynamic therapy triggers pyroptosis in osteosarcoma cells via the ROS/caspase-3/GSDME pathway. Photodiagnosis Photodyn Ther 2024; 50:104427. [PMID: 39615558 DOI: 10.1016/j.pdpdt.2024.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Pyropheophorbide-α methyl ester-mediated photodynamic therapy(MPPa-PDT) is a candidate treatment for solid tumors, including osteosarcoma. Pyroptosis has garnered significant attention in cancer research due to its pro-inflammatory and immunomodulatory nature. This study investigated the mechanism and role of MPPa-PDT-induced pyroptosis in osteosarcoma cells. METHODS We treated human osteosarcoma 143b and HOS cells with MPPa at concentrations of 0.5 μM and 0.25 μM, respectively, then irradiated the cells with LED light at 630 nm wavelength with an energy density of 4.8 J/cm2. Cell viability and apoptosis ratio were detected using CCK-8 and Annexin V-Propidium Iodide staining, respectively. Intracellular reactive oxygen species (ROS) levels and mitochondrial membrane potential (MtΔψ) were assessed using 2',7'-Dichlorofluorescin diacetate, and JC-1 staining kits, respectively. Scanning Electron Microscopy (SEM) was utilized to examine cell ultrastructure. The morphological changes of the cells were observed by an inverted microscope. Western blotting analysis was conducted to measure protein levels. To elucidate the mechanism and role, we re-evaluated relevant parameters after pretreating with NAC,Si caspase-3, and Si GSDME. RESULTS MPPa-PDT inhibited the activity of osteosarcoma 143b and HOS cells and induced pyroptosis with mitochondrial damage, ROS aggregation, and activation of Caspase-3 and GSDME. The effects of MPPa-PDT on the activity and apoptosis of osteosarcoma cells were partially reversed after pretreating with Si GSDME. After NAC pretreatment, the activation of pyroptosis and Caspase-3 induced by MPPa-PDT was partially reversed. After Si Caspase-3 pretreatment, the pyroptosis induced by MPPa-PDT was partially reversed. CONCLUSION MPPa-PDT can induce pyroptosis in osteosarcoma cells, which has the effect of enhancing apoptotic processes. Mitochondrial damage and ROS/caspase-3/GSDME pathway are the possible mechanisms of pyroptosis induced by MPPa-PDT.
Collapse
Affiliation(s)
- Qiu Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Department of Orthopaedics, People's Hospital of Leshan, Leshan, Sichuan, 614000, China
| | - Yong Tao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Ye Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Yuxing Chen
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Fuqiang Tan
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Yunsheng Ou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China.
| |
Collapse
|
16
|
Ji Y, Ma Y, Ma Y, Wang Y, Zhao X, Xu L, Ge S. An Amino Acids and Dipeptide Injection Inhibits the TNF-α/HMGB1 Inflammatory Signaling Pathway to Reduce Pyroptosis and M1 Microglial Polarization in POCD Mice: the Gut to the Brain. Mol Neurobiol 2024; 61:10097-10114. [PMID: 38700653 DOI: 10.1007/s12035-024-04209-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/27/2024] [Indexed: 11/24/2024]
Abstract
Peripheral surgery-induced neural inflammation is a key pathogenic mechanism of postoperative cognitive dysfunction (POCD). However, the mechanism underlying neuroinflammation and associated neural injury remains elusive. Surgery itself can lead to gut damage, and the occurrence of POCD is accompanied by high levels of TNF-α in the serum and blood‒brain barrier (BBB) damage. Reductions in stress, inflammation and protein loss have been emphasized as strategies for enhanced recovery after surgery (ERAS). We designed an amino acids and dipeptide (AAD) formula for injection that could provide intestinal protection during surgery. Through the intraoperative infusion of AAD based on the ERAS concept, we aimed to explore the effect of AAD injection on POCD and its underlying mechanism from the gut to the brain. Here, we observed that AAD injection ameliorated neural injury in POCD, in addition to restoring the function of the intestinal barrier and BBB. We also found that TNF-α levels decreased in the ileum, blood and hippocampus. Intestinal barrier protectors and TNF-α inhibitors also alleviated neural damage. AAD injection treatment decreased HMGB1 production, pyroptosis, and M1 microglial polarization and increased M2 polarization. In vitro, AAD injection protected the impaired gut barrier and decreased TNF-α production, alleviating damage to the BBB by stimulating cytokine transport in the body. HMGB1 and Caspase-1 inhibitors decreased pyroptosis and M1 microglial polarization and increased M2 polarization to protect TNF-α-stimulated microglia in vitro. Collectively, these findings suggest that the gut barrier-TNF-α-BBB-HMGB1-Caspase-1 inflammasome-pyroptosis-M1 microglia pathway is a novel mechanism of POCD related to the gut-brain axis and that intraoperative AAD infusion is a potential treatment for POCD.
Collapse
Affiliation(s)
- Yelong Ji
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanyuan Ma
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yimei Ma
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Ying Wang
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Xining Zhao
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Li Xu
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Shengjin Ge
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
17
|
Huang Y, Yuan X. Significance of pyroptosis-related genes in the diagnosis and classification of diabetic kidney disease. Ren Fail 2024; 46:2409331. [PMID: 39378104 PMCID: PMC11463007 DOI: 10.1080/0886022x.2024.2409331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE This study aimed to identify the potential biomarkers associated with pyroptosis in diabetic kidney disease (DKD). METHODS Three datasets from the Gene Expression Omnibus (GEO) were downloaded and merged into an integrated dataset. Differentially expressed genes (DEGs) were filtered and intersected with pyroptosis-related genes (PRGs). Pyroptosis-related DEGs (PRDEGs) were obtained and analyzed using functional enrichment analysis. Random forest, Least Absolute Shrinkage and Selection Operator, and logistic regression analyses were used to select the features of PRDEGs. These feature genes were used to build a diagnostic prediction model, identify the subtypes of the disease, and analyze their interactions with transcription factors (TFs)/miRNAs/drugs and small molecules. We conducted a comparative analysis of immune cell infiltration at different risk levels of pyroptosis. qRT-PCR was used to validate the expression of the feature genes. RESULTS A total of 25 PRDEGs were obtained. These genes were coenriched in biological processes and pathways, such as the regulation of inflammatory responses. Five key genes (CASP1, CITED2, HTRA1, PTGS2, S100A12) were identified and verified using qRT-PCR. The diagnostic model based on key genes has a good diagnostic prediction ability. Five key genes interacted with TFs and miRNAs in 67 and 80 pairs, respectively, and interacted with 113 types of drugs or molecules. Immune infiltration of samples with different pyroptosis risk levels showed significant differences. Thus, CASP1, CITED2, HTRA1, PTGS2 and S100A12 are potential DKD biomarkers. CONCLUSION Genes that regulate pyroptosis can be used as predictors of DKD. Early diagnosis of DKD can aid in its effective treatment.
Collapse
Affiliation(s)
- Yixiong Huang
- Department of Laboratory Medicine, Blood Transfusion Department, Hunan Second People’s Hospital (Hunan Brain Hospital), Changsha, Hunan, China
| | - Xinke Yuan
- Department of Nephrology, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan, China
| |
Collapse
|
18
|
Peng C, Wang Y, Guo Y, Li J, Liu F, Fu Y, Yu Y, Zhang C, Fu J, Han F. A literature review on signaling pathways of cervical cancer cell death-apoptosis induced by Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118491. [PMID: 38936644 DOI: 10.1016/j.jep.2024.118491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cervical cancer (CC) is a potentially lethal disorder that can have serious consequences for a woman's health. Because early symptoms are typically only present in the middle to late stages of the disease, clinical diagnosis and treatment can be challenging. Traditional Chinese medicine (TCM) has been shown to have unique benefits in terms of alleviating cancer clinical symptoms, lowering the risk of recurrence after surgery, and reducing toxic side effects and medication resistance after radiation therapy. It has also been shown to improve the quality of life for patients. Because of its improved anti-tumor effectiveness and biosafety, it could be considered an alternative therapy option. This study examines how TCM causes apoptosis in CC cells via signal transduction, including the active components and medicinal tonics. It also intends to provide a reliable clinical basis and protocol selection for the TCM therapy of CC. METHODS The following search terms were employed in PubMed, Web of Science, Embase, CNKI, Wanfang, VIP, SinoMed, and other scientific databases to retrieve pertinent literature on "cervical cancer," "apoptosis," "signaling pathway," "traditional Chinese medicine," "herbal monomers," "herbal components," "herbal extracts," and "herbal formulas." RESULTS It has been demonstrated that herbal medicines can induce apoptosis in cells of the cervix, a type of cancer, by influencing the signaling pathways involved. CONCLUSION A comprehensive literature search was conducted, and 148 papers from the period between January 2017 and December 2023 were identified as eligible for inclusion. After a meticulous process of screening, elimination and summary, generalization, and analysis, it was found that TCM can regulate multiple intracellular signaling pathways and related molecular targets, such as STAT3, PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB, p53, HIF-1α, Fas/FasL and so forth. This regulatory capacity was observed to induce apoptosis in cervical cancer cells. The study of the mechanism of TCM against cervical cancer and the screening of new drug targets is of great significance for future research in this field. The results of this study will provide ideas and references for the future development of Chinese medicine in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ying Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Chengxin Zhang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jiangmei Fu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
19
|
Ge Y, Jiang L, Yang C, Dong Q, Tang C, Xu Y, Zhong X. Interactions between tumor-associated macrophages and regulated cell death: therapeutic implications in immuno-oncology. Front Oncol 2024; 14:1449696. [PMID: 39575419 PMCID: PMC11578871 DOI: 10.3389/fonc.2024.1449696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in sculpting the tumor microenvironment and influencing cancer progression, particularly through their interactions with various forms of regulated cell death (RCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis. This review examines the interplay between TAMs and these RCD pathways, exploring the mechanisms through which they interact to promote tumor growth and advancement. We examine the underlying mechanisms of these intricate interactions, emphasizing their importance in cancer progression and treatment. Moreover, we present potential therapeutic strategies for targeting TAMs and manipulating RCD to enhance anti-tumor responses. These strategies encompass reprogramming TAMs, inhibiting their recruitment, and selectively eliminating them to enhance anti-tumor functions, alongside modulating RCD pathways to amplify immune responses. These insights offer a novel perspective on tumor biology and provide a foundation for the development of more efficacious cancer therapies.
Collapse
Affiliation(s)
- Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixue Jiang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengwu Tang
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
20
|
Xia Y, Huang P, Qian YY, Wang Z, Jin N, Li X, Pan W, Wang SY, Jin P, Drokow EK, Li X, Zhang Q, Zhang Z, Li P, Fang Y, Yang XP, Han Z, Gao QL. PARP inhibitors enhance antitumor immune responses by triggering pyroptosis via TNF-caspase 8-GSDMD/E axis in ovarian cancer. J Immunother Cancer 2024; 12:e009032. [PMID: 39366751 PMCID: PMC11459312 DOI: 10.1136/jitc-2024-009032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND In addition to their established action of synthetic lethality in tumor cells, poly(ADP-ribose) polymerase inhibitors (PARPis) also orchestrate tumor immune microenvironment (TIME) that contributes to suppressing tumor growth. However, it remains not fully understood whether and how PARPis trigger tumor-targeting immune responses. METHODS To decode the immune responses reshaped by PARPis, we conducted T-cell receptor (TCR) sequencing and immunohistochemical (IHC) analyses of paired clinical specimens before and after niraparib monotherapy obtained from a prospective study, as well as ID8 mouse ovarian tumors. To validate the induction of immunogenic cell death (ICD) by PARPis, we performed immunofluorescence/IHC staining with homologous recombination deficiency tumor cells and patient-derived xenograft tumor tissues, respectively. To substantiate that PARPis elicited tumor cell pyroptosis, we undertook comprehensive assessments of the cellular morphological features, cleavage of gasdermin (GSDM) proteins, and activation of TNF-caspase signaling pathways through genetic downregulation/depletion and selective inhibition. We also evaluated the critical role of pyroptosis in tumor suppression and immune activation following niraparib treatment using a syngeneic mouse model with implanting CRISPR/Cas9 edited Gsdme-/ - ID8 tumor cells into C57BL/6 mice. RESULTS Our findings revealed that PARPis augmented the proportion of neoantigen-recognized TCR clones and TCR clonal expansion, and induced an inflamed TIME characterized by increased infiltration of both innate and adaptive immune cells. This PARPis-strengthened immune response was associated with the induction of ICD, specifically identified as pyroptosis, which possessed distinctive morphological features and GSDMD/E cleavage. It was validated that the cleavage of GSDMD/E was due to elevated caspase 8 activity downstream of the TNFR1, rather than FAS and TRAIL-R. On PARP inhibition, the NF-κB signaling pathway was activated, leading to increased secretion of TNF-α and subsequent initiation of the TNFR1-caspase 8 cascade. Impeding pyroptosis through the depletion of Gsdme significantly compromised the tumor-suppressing effects of PARP inhibition and undermined the anti-immune response in the syngeneic ID8 mouse model. CONCLUSIONS PARPis induce a specific type of ICD called pyroptosis via TNF-caspase 8-GSDMD/E axis, resulting in an inflamed TIME and augmentation of tumor-targeting immune responses. These findings deepen our understanding of PARPis activities and point toward a promising avenue for synergizing PARPis with immunotherapeutic interventions. TRIAL REGISTRATION NUMBER NCT04507841.
Collapse
Affiliation(s)
- Yu Xia
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pu Huang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi-yu Qian
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zanhong Wang
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Ning Jin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Pan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si-Yuan Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Jin
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Emmanuel Kwateng Drokow
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Zhengmao Zhang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingfei Li
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yong Fang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Han
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Qing-lei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Xiao F, Li HL, Yang B, Che H, Xu F, Li G, Zhou CH, Wang S. Disulfidptosis: A new type of cell death. Apoptosis 2024; 29:1309-1329. [PMID: 38886311 PMCID: PMC11416406 DOI: 10.1007/s10495-024-01989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Disulfidptosis is a novel form of cell death that is distinguishable from established programmed cell death pathways such as apoptosis, pyroptosis, autophagy, ferroptosis, and oxeiptosis. This process is characterized by the rapid depletion of nicotinamide adenine dinucleotide phosphate (NADPH) in cells and high expression of solute carrier family 7 member 11 (SLC7A11) during glucose starvation, resulting in abnormal cystine accumulation, which subsequently induces andabnormal disulfide bond formation in actin cytoskeleton proteins, culminating in actin network collapse and disulfidptosis. This review aimed to summarize the underlying mechanisms, influencing factors, comparisons with traditional cell death pathways, associations with related diseases, application prospects, and future research directions related to disulfidptosis.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui-Li Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Emergency, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bei Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hao Che
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fei Xu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Gang Li
- Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Cheng-Hui Zhou
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
22
|
Di Grazia A, Franzè E, Frascatani R, Laudisi F, Pacifico T, Tomassini L, Di Fusco D, Formica V, Sica G, Stolfi C, Monteleone I, Monteleone G. Targeting hepcidin in colorectal cancer triggers a TNF-dependent-gasdermin E-driven immunogenic cell death response. Exp Hematol Oncol 2024; 13:95. [PMID: 39334507 PMCID: PMC11437719 DOI: 10.1186/s40164-024-00562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Interactions between colorectal cancer (CRC) cells and the noncancerous cells in the tumor microenvironment (TME) induce mechanisms for the escape of tumor cells from immune attack. Hepcidin, a peptide that controls immune cell functions, is overproduced by CRC cells. This study aimed to evaluate whether hepcidin acts as a regulator of anti-tumor immunity in CRC. Hepcidin silencing in CRC cells was followed by enhanced TNF-driven caspase-dependent cleavage of GSDM E and death. Mice engrafted with hepcidin-deficient CT26 cells developed fewer and smaller tumors than control mice as a result of the action of tumor-infiltrating CD8+ T lymphocytes and were protected from the development of tumors in a vaccination model and exhibited long-lasting tumor protection. Additionally, hepcidin deficiency enhanced the response of mice bearing CT26-derived tumors to anti-PD-1 therapy. These results suggest that targeting hepcidin in CRC cells enhances the production of TNF thereby triggering a caspase/GSDM E-driven lytic cell death with the downstream effect of boosting a robust immune response against tumor antigens.
Collapse
Affiliation(s)
- Antonio Di Grazia
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Rachele Frascatani
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Teresa Pacifico
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Lorenzo Tomassini
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Vincenzo Formica
- Medical Oncology Unit, Fondazione Policlinico "Tor Vergata", Rome, Italy
| | - Giuseppe Sica
- Department of Surgery, University Rome of "Tor Vergata", Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy.
- Gastroenterology Unit, Fondazione Policlinico "Tor Vergata", Rome, Italy.
| |
Collapse
|
23
|
Gong X, Wang Z, You J, Gao J, Chen K, Chu J, Sui X, Dang J, Liu X. Pyroptosis-associated genes and tumor immune response in endometrial cancer. Discov Oncol 2024; 15:433. [PMID: 39264524 PMCID: PMC11393226 DOI: 10.1007/s12672-024-01315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
The occurrence and progression of tumors are linked to the process of pyroptosis. However, the precise involvement of pyroptosis-associated genes (PRGs) in endometrial cancer (EC) remains uncertain. 29 PRGs were identified as being either up-regulated or down-regulated in EC. PRGs subgroup analysis demonstrated distinct survival outcomes and diverse responses to chemotherapy and immune checkpoint blockade therapy. A higher expression of GPX4 and NOD2, coupled with lower levels of CASP6, PRKACA, and NLRP2, were found to be significantly associated with higher overall survival (OS) rates (p < 0.05). Conversely, lower expression of NOD2 was linked to lower progression-free survival (p = 0.021) and advanced tumor stage(p = 0.0024). NOD2, NLRP2, and TNM stages were identified as independent prognostic factors (p < 0.001). The LASSO prognostic model exhibited a notable decrease in OS among EC patients in the high-risk score group (ROC-AUC10-years: 0.799, p = 0.00644). Furthermore, NOD2 displayed a positive correlation with the infiltration of immune cells and the expression of immune checkpoints (p < 0.001). GPX4 and CASP6 are significantly associated with TMB and MSI (RTMB = 0.39; RMSI = 0.23). Additionally, a substantial upregulation of NOD2 was confirmed in both EC cells and tissue, indicating a positive relationship between advanced TNM stage (p < 0.0001) and infiltration of M1 phenotype macrophages. Nonetheless, its impact on patient OS did not reach statistical significance (p = 0.141). Our findings have contributed to the advancement of a prognostic model for EC patients. NOD2 receptor-mediated pyroptosis mechanism potentially regulates tumor immunity and promotes the transformation of macrophages from the M2 phenotype to the M1 phenotype, which significantly impacts the progression of EC.
Collapse
Affiliation(s)
- Xiaodi Gong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zhifeng Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jiahao You
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jinghai Gao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Kun Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jing Chu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxin Sui
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jianhong Dang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Xiaojun Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
24
|
Shao C, Yan X, Li H, Nian D, Ren L, Pang S, Sun J. Intranuclear Irradiation Inhibits Solid Tumor Growth by Upregulating Caspase8 and Activating Apoptosis. Mol Pharm 2024; 21:4259-4271. [PMID: 39077844 DOI: 10.1021/acs.molpharmaceut.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Radioimmunotherapy (RIT) is a novel and promising cancer treatment method, with ongoing research focusing on RIT antibody selection, radionuclides, treatment options, and benefited patient groups. As we dive into the mechanisms of tumor biology, a deeper exploration of how RIT affects tumor tissue is needed to provide new ways to improve clinical treatment outcome and patient prognosis. We labeled the anti-PD-L1 monoclonal antibody atezolizumab with iodine-131 (131I), separated and purified the labeled mAb with Sephadex G-25 medium gel filtration resin, and tested product stability. We detected the in vivo activity of 131I-PD-L1 mAb by analyzing its in vivo biodistribution and performing SPECT imaging and then set different treatment groups to study the effect of 131I-atezolizumab on the survival of tumor-bearing mice. Western blot, real-time quantitative PCR, and immunohistochemistry were used to detect the expression level of Caspase8 and Nlrp3 in tumor. TUNEL fluorescence staining was used to detect the apoptosis in the tumor. The radiopharmaceutical molecular probe 131I-atezolizumab showed high stability and in vivo biological activity. The treatment regimen adopted had a positive effect on the survival of tumor-bearing mice. 131I internal irradiation upregulated Caspase8 in tumor and ultimately inhibited solid tumor growth by activating apoptosis pathways. We also found a significant increase in the expression of NLRP3, which plays an important role in the pyroptosis pathway, in tumor. In summary, our data demonstrated that radiopharmaceuticals combined with immunotherapy affected tumor tissue by modulating relevant biological pathways, thereby achieving better antitumor effects compared with single therapy and providing new insights for promoting better patient prognosis and combination treatment strategies.
Collapse
Affiliation(s)
- Chenxu Shao
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, Anhui Province, P. R. China
| | - Xiaoping Yan
- Department of Radiology, The People's Hospital of Jiangyou, Jiangyou 621799, P. R. China
| | - Hui Li
- Department of Nuclear Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, P. R. China
| | - Di Nian
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, Anhui Province, P. R. China
| | - Li Ren
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, Anhui Province, P. R. China
| | - Shangjie Pang
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, Anhui Province, P. R. China
| | - Junjie Sun
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, Anhui Province, P. R. China
| |
Collapse
|
25
|
Nagano T, Takada K, Narutomi F, Kinoshita F, Akamine T, Kohno M, Shimokawa M, Takenaka T, Oda Y, Yoshizumi T. Clinical Significance of SIRPα Expression on Tumor-Associated Macrophages in Patients with Lung Squamous Cell Carcinoma. Ann Surg Oncol 2024; 31:6309-6319. [PMID: 38951413 DOI: 10.1245/s10434-024-15649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Signal-regulatory protein alpha (SIRPα) is an immune checkpoint molecule expressed on macrophages that functions to inhibit phagocytosis by binding to CD47 expressed on tumor cells. SIRPα has attracted increasing attention as a novel target for cancer immunotherapy; however, the expression and immune function of SIRPα in lung squamous cell carcinoma (LUSC) remain unclear. Therefore, this study aimed to identify the clinical importance of SIRPα expression in LUSC and to explore the factors that elevate SIRPα expression. PATIENTS AND METHODS Primary LUSC specimens surgically resected from 172 patients underwent immunohistochemical evaluation of the association of SIRPα expression on tumor-associated macrophages with clinicopathological features and clinical outcomes. Furthermore, we analyzed the association of SIRPα expression with tumor-infiltrating lymphocytes and the expression of programmed cell death ligand 1 (PD-L1). In vitro, monocytes were treated with cytokines, and SIRPα protein expression was assessed by flow cytometry. RESULTS There were no differences in SIRPα expression and clinicopathological factors. High SIRPα expression was significantly associated with PD-L1-positive expression, and high CD8, PD-1, and CD163 expression. The high SIRPα expression group showed significantly shorter recurrence-free survival (RFS) and overall survival (OS). On multivariate analysis, high SIRPα expression was an independent poor prognostic factor for RFS and OS. The expression of SIRPα protein in monocytes was upregulated by treatment with IFNγ. CONCLUSION Our analysis revealed that high SIRPα expression significantly predicts poor prognosis in patients with surgically resected LUSC.
Collapse
Affiliation(s)
- Taichi Nagano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Fumiya Narutomi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Kinoshita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikihiro Kohno
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Wu Q, Du J, Bae EJ, Choi Y. Pyroptosis in Skeleton Diseases: A Potential Therapeutic Target Based on Inflammatory Cell Death. Int J Mol Sci 2024; 25:9068. [PMID: 39201755 PMCID: PMC11354934 DOI: 10.3390/ijms25169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Skeletal disorders, including fractures, osteoporosis, osteoarthritis, rheumatoid arthritis, and spinal degenerative conditions, along with associated spinal cord injuries, significantly impair daily life and impose a substantial burden. Many of these conditions are notably linked to inflammation, with some classified as inflammatory diseases. Pyroptosis, a newly recognized form of inflammatory cell death, is primarily triggered by inflammasomes and executed by caspases, leading to inflammation and cell death through gasdermin proteins. Emerging research underscores the pivotal role of pyroptosis in skeletal disorders. This review explores the pyroptosis signaling pathways and their involvement in skeletal diseases, the modulation of pyroptosis by other signals in these conditions, and the current evidence supporting the therapeutic potential of targeting pyroptosis in treating skeletal disorders, aiming to offer novel insights for their management.
Collapse
Affiliation(s)
- Qian Wu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Jiacheng Du
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yunjung Choi
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
27
|
Kong J, Zhang Y, Ju X, Wang B, Diao X, Li J, Qi G, Jin Y. Electrostimulation Evokes Caspase-3-Activated Fast Cancer Cell Pyroptosis and Its Nuclear Stress Response Pathways. Anal Chem 2024; 96:13438-13446. [PMID: 39129352 DOI: 10.1021/acs.analchem.4c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Pyroptosis of programmed cell death has been recognized as a more effective way to inhibit the occurrence and development of tumors than the better-studied apoptosis. However, it is still challenging to quickly and effectively trigger pyroptosis of cancer cells for high-efficacy cancer treatment. Here, we report on the first use of mild constant-potential electrostimulation (cp-ES) to quickly trigger cancer cell pyroptosis with a probability up to ∼91.4% and significantly shortened time (within 1 h), ∼3-6 times faster than typical drug stimulation to induce pyroptosis. We find that the ES-induced cancer cell pyroptosis is through the activated caspase-3 (pathway) cleavage of gasdermin E (GSDME) to form an N-terminal fragment (GSDME-N) and observe nuclear shrinkage and reduction of the number of nucleoli as well as down-/up-regulated expression of two important nucleoproteins of nucleolin and nucleophosmin (NPM1). The study enriches the basic understanding of pyroptosis and provides a new avenue for potential effective treatment of cancer.
Collapse
Affiliation(s)
- Jiao Kong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xingkai Ju
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bo Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xingkang Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
28
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
29
|
Wang X, Tang Y, Li Y, Qi Z. A Pyroptosis-Inducing Arsenic(III) Nanomicelle Platform for Synergistic Cancer Immunotherapy. Adv Healthc Mater 2024:e2401904. [PMID: 39101289 DOI: 10.1002/adhm.202401904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Immunogenic cell death (ICD) could activate anti-tumor immune responses, which is highly attractive for improving cancer treatment effectiveness. Here, this work reports a multifunctional arsenic(III) allosteric inhibitor Mech02, which induces excessive accumulation of 1O2 through sensitized biocatalytic reactions, leading to cell pyroptosis and amplified ICD effect. After Mech02 is converted to Mech03, it could actualize stronger binding effects on the allosteric pocket of pyruvate kinase M2, further interfering with the anaerobic glycolysis pathway of tumors. The enhanced DNA damage triggered by Mech02 and the pyroptosis of cancer stem cells provide assurance for complete tumor clearance. In vivo experiments prove nanomicelle Mech02-HA NPs is able to activate immune memory effects and raise the persistence of anti-tumor immunity. In summary, this study for the first time to introduce the arsenic(III) pharmacophore as an enhanced ICD effect initiator into nitrogen mustard, providing insights for the development of efficient multimodal tumor therapy agents.
Collapse
Affiliation(s)
- Xing Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yuqi Tang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yuanhang Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
30
|
Lu J, Tai Z, Wu J, Li L, Zhang T, Liu J, Zhu Q, Chen Z. Nanomedicine-induced programmed cell death enhances tumor immunotherapy. J Adv Res 2024; 62:199-217. [PMID: 37743016 PMCID: PMC11331180 DOI: 10.1016/j.jare.2023.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND There has been widespread concern about the high cancer mortality rate and the shortcomings of conventional cancer treatments. Immunotherapy is a novel oncology therapy with high efficiency and low side effects, which is a revolutionary direction for clinical oncology treatment. However, its clinical effectiveness is uneven. Based on the redefinition and reclassification of programmed cell death (PCD) (divided into necroptosis, ferroptosis, pyroptosis, and autophagy), the role of nanomedicine-induced PCD in cancer therapy has also received significant attention. Clinical and preclinical studies have begun to combine PCD with immunotherapy. AIM OF REVIEW In this article, we present recent research in tumor immunotherapy, provide an overview of how nanomedicine-induced PCD is involved in tumor therapy, and review how nanomedicine-induced PCD can improve the limitations of immunotherapy to enhance tumor immunotherapy. The future development of nanomedicine-mediated PCD tumor therapy and tumor immunotherapy is also proposed Key scientific concepts of overview Nanomedicine-induced PCD is a prospective method of tumor immunotherapy. Nanomedicines increase tumor site penetration and targeting ability, and nanomedicine-mediated PCD activation can stimulate powerful anti-tumor immune effects, which has a good contribution to immunotherapy of tumors.
Collapse
Affiliation(s)
- Jiaye Lu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Junchao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China.
| | - Zhongjian Chen
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
31
|
Li LG, Hu J, Han N, Chen NN, Yu TT, Ren T, Xu HZ, Peng XC, Li XY, Ma TQ, Chen H, Zhang L, Chen X, Wang MF, Li TF. Dihydroartemisinin-driven TOM70 inhibition leads to mitochondrial destabilization to induce pyroptosis against lung cancer. Phytother Res 2024; 38:3856-3876. [PMID: 38761036 DOI: 10.1002/ptr.8242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.
Collapse
Affiliation(s)
- Liu-Gen Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jun Hu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ning Han
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Nan-Nan Chen
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ting-Ting Yu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Pathology, Renmin Hospital of Shiyan, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tao Ren
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xing-Chun Peng
- Department of Pathology, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou, China
| | - Xian-Yu Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tian-Qi Ma
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hao Chen
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Zhang
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mei-Fang Wang
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tong-Fei Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
32
|
Ye B, Hu W, Yu G, Yang H, Gao B, Ji J, Mao Z, Huang F, Wang W, Ding Y. A Cascade-Amplified Pyroptosis Inducer: Optimizing Oxidative Stress Microenvironment by Self-Supplying Reactive Nitrogen Species Enables Potent Cancer Immunotherapy. ACS NANO 2024; 18:16967-16981. [PMID: 38888082 DOI: 10.1021/acsnano.4c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Selective generation of sufficient pyroptosis inducers at the tumor site without external stimulation holds immense significance for a longer duration of immunotherapy. Here, we report a cascade-amplified pyroptosis inducer CSCCPT/SNAP that utilizes reactive nitrogen species (RNS), self-supplied from the diffusion-controlled reaction between reactive oxygen species (ROS) and nitric oxide (NO) to potentiate pyroptosis and immunotherapy, while both endogenous mitochondrial ROS stimulated by released camptothecin and released NO initiate pyroptosis. Mechanistically, cascade amplification of the antitumor immune response is prompted by the cooperation of ROS and NO and enhanced by RNS with a long lifetime, which could be used as a pyroptosis trigger to effectively compensate for the inherent drawbacks of ROS, resulting in long-lasting pyroptosis for favoring immunotherapy. Tumor growth is efficiently inhibited in mouse melanoma tumors through the facilitation of reactive oxygen/nitrogen species (RONS)-NO synergy. In summary, our therapeutic approach utilizes supramolecular engineering and nanotechnology to integrate ROS producers and NO donors of tumor-specific stimulus responses into a system that guarantees synchronous generation of these two reactive species to elicit pyroptosis-evoked immune response, while using self-supplied RNS as a pyroptosis amplifier. RONS-NO synergy achieves enhanced and sustained pyroptosis and antitumor immune responses for robust cancer immunotherapy.
Collapse
Affiliation(s)
- Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang 310009, China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang 310009, China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang 310009, China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang 310009, China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
33
|
Gao J, Xiong A, Liu J, Li X, Wang J, Zhang L, Liu Y, Xiong Y, Li G, He X. PANoptosis: bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment. Cancer Gene Ther 2024; 31:970-983. [PMID: 38553639 PMCID: PMC11257964 DOI: 10.1038/s41417-024-00765-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 07/20/2024]
Abstract
This comprehensive review explores the intricate mechanisms of PANoptosis and its implications in cancer. PANoptosis, a convergence of apoptosis, pyroptosis, and necroptosis, plays a crucial role in cell death and immune response regulation. The study delves into the molecular pathways of each cell death mechanism and their crosstalk within PANoptosis, emphasizing the shared components like caspases and the PANoptosome complex. It highlights the significant role of PANoptosis in various cancers, including respiratory, digestive, genitourinary, gliomas, and breast cancers, showing its impact on tumorigenesis and patient survival rates. We further discuss the interwoven relationship between PANoptosis and the tumor microenvironment (TME), illustrating how PANoptosis influences immune cell behavior and tumor progression. It underscores the dynamic interplay between tumors and their microenvironments, focusing on the roles of different immune cells and their interactions with cancer cells. Moreover, the review presents new breakthroughs in cancer therapy, emphasizing the potential of targeting PANoptosis to enhance anti-tumor immunity. It outlines various strategies to manipulate PANoptosis pathways for therapeutic purposes, such as targeting key signaling molecules like caspases, NLRP3, RIPK1, and RIPK3. The potential of novel treatments like immunogenic PANoptosis-initiated therapies and nanoparticle-based strategies is also explored.
Collapse
Affiliation(s)
- Jie Gao
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Jiliu Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Xiaolan Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, The First Affiliated Hospital of Medical University, Guangzhou, Guangdong, 510120, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan friendship hospital, Chengdu, 610000, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China.
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China.
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, The First Affiliated Hospital of Medical University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
34
|
Ji C, Shrestha S, Jumuddin FA. To Establish a Nomogram Prediction of Prostate Cancer Based on Pyroptosis-Related Genes that Affect the Immune Microenvironment. Asian Pac J Cancer Prev 2024; 25:2319-2327. [PMID: 39068564 PMCID: PMC11480613 DOI: 10.31557/apjcp.2024.25.7.2319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Prostate cancer is the most common tumor in men worldwide with a poor prognosis. In recent years, studies have revealed that pyroptosis can affect the tumor immune microenvironment. However, the relationship between the immune microenvironment regulated by pyroptosis-related genes and the prognosis of prostate cancer is still unclear. METHODS Thirty-three cell death-associated genes were selected from a literature review. The "DESeq2" R package was used to identify differentially expressed cell death-associated genes between normal prostate tissue (GTEx) and prostate cancer tissue (TCGA) samples. Biological functional enrichment analysis of differentially expressed cell death genes was performed using R statistical software packages, such as "clusterProfiler," "org.Hs.eg.db," "enrichplot," "ggplot2," and "GOplot." Univariate Cox and LASSO Cox regression analyses were conducted to identify prognostic genes associated with the immune microenvironment using the "survival" package. Finally, a predictive model was established based on Gleason score, T stage, and cell death-associated genes.odel was established based on Gleason score, T stage, and cell death-associated genes. RESULTS Seventeen differentially expressed genes related to pyroptosis were screened out. Based on these differentially expressed genes, biological function enrichment analysis showed that they were related to pyroptosis of prostate cells. Based on univariate Cox and (LASSO) Cox regression analysis, four pyroptosis-related genes (CASP3, PLCG1, GSDMB, GPX4) were determined to be related to the prognosis of prostate cancer, and the immune correlation analysis of the four pyroptosis-related genes was performed. The expression of CASP3, PLCG1 and GSDMB was positively correlated with the proportion of immune cells, and the expression of GPX4 was negatively correlated with the proportion of immune cells. A predictive nomogram was established by combining Gleason score, T and pyroptosis genes. The nomogram was accompanied by a calibration curve and used to predict 1 -, 2 -, and 5-year survival in PAAD patients. CONCLUSION Cell death-associated genes (CASP3, PLCG1, GSDMB, GPX4) play crucial roles in modulating the immune microenvironment and can be used to predict the prognosis of prostate cancer.
Collapse
Affiliation(s)
| | | | - Farra Aidah Jumuddin
- Department of Histology and Pathology, Faculty of Medicine, Lincoln University College, Malaysia.
| |
Collapse
|
35
|
Huang SY, Gong S, Zhao Y, Ye ML, Li JY, He QM, Qiao H, Tan XR, Wang JY, Liang YL, Huang SW, He SW, Li YQ, Xu S, Li YQ, Liu N. PJA1-mediated suppression of pyroptosis as a driver of docetaxel resistance in nasopharyngeal carcinoma. Nat Commun 2024; 15:5300. [PMID: 38906860 PMCID: PMC11192944 DOI: 10.1038/s41467-024-49675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Ming-Liang Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Jun-Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Jing-Yun Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Sai-Wei Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Ying-Qing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| |
Collapse
|
36
|
Gao L, Shay C, Teng Y. Cell death shapes cancer immunity: spotlighting PANoptosis. J Exp Clin Cancer Res 2024; 43:168. [PMID: 38877579 PMCID: PMC11179218 DOI: 10.1186/s13046-024-03089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate elements of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multimeric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANoptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvironment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.
Collapse
Affiliation(s)
- Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Yong Teng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
37
|
Yin Q, Song SY, Bian Y, Wang Y, Deng A, Lv J, Wang Y. Unlocking the potential of pyroptosis in tumor immunotherapy: a new horizon in cancer treatment. Front Immunol 2024; 15:1381778. [PMID: 38947336 PMCID: PMC11211258 DOI: 10.3389/fimmu.2024.1381778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background The interaction between pyroptosis-a form of programmed cell death-and tumor immunity represents a burgeoning field of interest. Pyroptosis exhibits a dual role in cancer: it can both promote tumor development and counteract it by activating immune responses that inhibit tumor evasion and encourage cell death. Current tumor immunotherapy strategies, notably CAR-T cell therapy and immune checkpoint inhibitors (ICIs), alongside the potential of certain traditional Chinese medicinal compounds, highlight the intricate relationship between pyroptosis and cancer immunity. As research delves deeper into pyroptosis mechanisms within tumor therapy, its application in enhancing tumor immune responses emerges as a novel research avenue. Purpose This review aims to elucidate the mechanisms underlying pyroptosis, its impact on tumor biology, and the advancements in tumor immunotherapy research. Methods A comprehensive literature review was conducted across PubMed, Embase, CNKI, and Wanfang Database from the inception of the study until August 22, 2023. The search employed keywords such as "pyroptosis", "cancer", "tumor", "mechanism", "immunity", "gasdermin", "ICB", "CAR-T", "PD-1", "PD-L1", "herbal medicine", "botanical medicine", "Chinese medicine", "traditional Chinese medicine", "immunotherapy", linked by AND/OR, to capture the latest findings in pyroptosis and tumor immunotherapy. Results Pyroptosis is governed by a complex mechanism, with the Gasdermin family playing a pivotal role. While promising for tumor immunotherapy application, research into pyroptosis's effect on tumor immunity is still evolving. Notably, certain traditional Chinese medicine ingredients have been identified as potential pyroptosis inducers, meriting further exploration. Conclusion This review consolidates current knowledge on pyroptosis's role in tumor immunotherapy. It reveals pyroptosis as a beneficial factor in the immunotherapeutic landscape, suggesting that leveraging pyroptosis for developing novel cancer treatment strategies, including those involving traditional Chinese medicine, represents a forward-looking approach in oncology.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si-Yuan Song
- Baylor College of Medicine, Houston, TX, United States
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anchen Deng
- Department of Neuroscience, Chengdu Shishi School, Chengdu, China
| | - Jianzhen Lv
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Ban W, Chen Z, Zhang T, Du T, Huo D, Zhu G, He Z, Sun J, Sun M. Boarding pyroptosis onto nanotechnology for cancer therapy. J Control Release 2024; 370:653-676. [PMID: 38735396 DOI: 10.1016/j.jconrel.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Pyroptosis, a non-apoptotic programmed cellular inflammatory death mechanism characterized by gasdermin (GSDM) family proteins, has gathered significant attention in the cancer treatment. However, the alarming clinical trial data indicates that pyroptosis-mediated cancer therapeutic efficiency is still unsatisfactory. It is essential to integrate the burgeoning biomedical findings and innovations with potent technology to hasten the development of pyroptosis-based antitumor drugs. Considering the rapid development of pyroptosis-driven cancer nanotherapeutics, here we aim to summarize the recent advances in this field at the intersection of pyroptosis and nanotechnology. First, the foundation of pyroptosis-based nanomedicines (NMs) is outlined to illustrate the reliability and effectiveness for the treatment of tumor. Next, the emerging nanotherapeutics designed to induce pyroptosis are overviewed. Moreover, the cross-talk between pyroptosis and other cell death modalities are discussed, aiming to explore the mechanistic level relationships to provide guidance strategies for the combination of different types of antitumor drugs. Last but not least, the opportunities and challenges of employing pyroptosis-based NMs in potential clinical cancer therapy are highlighted.
Collapse
Affiliation(s)
- Weiyue Ban
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhichao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tengda Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Dianqiu Huo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Guorui Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| | - Mengchi Sun
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| |
Collapse
|
39
|
Hu D, Cui L, Zhang S, He S, Zhuo Y, Li D, Zhang L, Wang Y, Yang L, Wang X. Antitumor effect of tubeimoside-I on murine colorectal cancers through PKM2-dependent pyroptosis and immunomodulation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4069-4087. [PMID: 38010398 DOI: 10.1007/s00210-023-02855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Induction of cancer cell death is an established treatment strategy, but chemotherapy drug-mediated apoptosis can be evaded by many tumors. Pyroptosis is a type of inflammatory programmed cell death (PCD) that is important for organism immunity. Tubeimoside-I (TBMS1) is a plant-derived component that exhibits antitumor activity. However, it is unclear how TBMS1 induces pyroptosis to inhibit colorectal cancer (CRC). In this study, we demonstrated that TBMS1 is able to induce pyroptosis in murine CRC cells and releases pro-inflammatory cytokines. Mechanistically, we found that TBMS1 inhibits CRC cell proliferation and migration and induces pyroptosis by activating caspase-3 and cleaving gasdermin E (GSDME) through the inhibition of PKM2. In the animal experiments, TBMS1 attenuated the weight of solid tumors, increased the proportion of CD8+ cytotoxic T cells, and reduced the content of M2-type macrophages in the spleen of tumor-bearing mice. Furthermore, TBMS1 inhibited M2-type polarization by blocking STAT6 pathway activation in RAW 264.7 cells. To sum up, our findings suggest that TBMS1 triggers pyroptosis in CRC by acting on the PKM2/caspase-3/GSDME signaling pathway. Additionally, it modulates the antitumor immune response in CRC murine models. This study provides a promising basis for the potential use of TBMS1 in treating CRC.
Collapse
Affiliation(s)
- Dongsheng Hu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Lingzhi Cui
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Sijia Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Siqi He
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Yanli Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China.
| | - Ximo Wang
- Graduate School, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin University, Tianjin, China.
| |
Collapse
|
40
|
Liu RJ, Yu XD, Yan SS, Guo ZW, Zao XB, Zhang YS. Ferroptosis, pyroptosis and necroptosis in hepatocellular carcinoma immunotherapy: Mechanisms and immunologic landscape (Review). Int J Oncol 2024; 64:63. [PMID: 38757345 PMCID: PMC11095606 DOI: 10.3892/ijo.2024.5651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of cancer‑related mortality worldwide, is challenging to identify in its early stages and prone to metastasis, and the prognosis of patients with this disease is poor. Treatment options for HCC are limited, with even radical treatments being associated with a risk of recurrence or transformation in the short term. Furthermore, the multi‑tyrosine kinase inhibitors approved for first‑line therapy have marked drawbacks, including drug resistance and side effects. The rise and breakthrough of immune checkpoint inhibitors (ICIs) have provided a novel direction for HCC immunotherapy but these have the drawback of low response rates. Since avoiding apoptosis is a universal feature of cancer, the induction of non‑apoptotic regulatory cell death (NARCD) is a novel strategy for HCC immunotherapy. At present, NARCD pathways, including ferroptosis, pyroptosis and necroptosis, are novel potential forms of immunogenic cell death, which have synergistic effects with antitumor immunity, transforming immune 'cold' tumors into immune 'hot' tumors and exerting antitumor effects. Therefore, these pathways may be targeted as a novel treatment strategy for HCC. In the present review, the roles of ferroptosis, pyroptosis and necroptosis in antitumor immunity in HCC are discussed, and the relevant targets and signaling pathways, and the current status of combined therapy with ICIs are summarized. The prospects of targeting ferroptosis, pyroptosis and necroptosis in HCC immunotherapy are also considered.
Collapse
Affiliation(s)
- Rui-Jia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Xu-Dong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
- Beijing Tumor Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Beijing 101121, P.R. China
| | - Shao-Shuai Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Zi-Wei Guo
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing 100053, P.R. China
| | - Xiao-Bin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Yao-Sheng Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
- Beijing Tumor Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Beijing 101121, P.R. China
| |
Collapse
|
41
|
Lin T, Peng M, Zhu Q, Pan X. S1PR2 participates in intestinal injury in severe acute pancreatitis by regulating macrophage pyroptosis. Front Immunol 2024; 15:1405622. [PMID: 38827741 PMCID: PMC11140028 DOI: 10.3389/fimmu.2024.1405622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Background Severe acute pancreatitis (SAP) is an inflammatory disorder affecting the gastrointestinal system. Intestinal injury plays an important role in the treatment of severe acute pancreatitis. In this study, we mainly investigated the role of S1PR2 in regulating macrophage pyroptosis in the intestinal injury of severe acute pancreatitis. Methods The SAP model was constructed using cerulein and lipopolysaccharide, and the expression of S1PR2 was inhibited by JTE-013 to detect the degree of pancreatitis and intestinal tissue damage in mice. Meanwhile, the level of pyroptosis-related protein was detected by western blot, the level of related mRNA was detected by PCR, and the level of serum inflammatory factors was detected by ELISA. In vitro experiments, LPS+ATP was used to construct the pyroptosis model of THP-1. After knockdown and overexpression of S1PR2, the pyroptosis proteins level was detected by western blot, the related mRNA level was detected by PCR, and the level of cell supernatant inflammatory factors were detected by ELISA. A rescue experiment was used to verify the sufficient necessity of the RhoA/ROCK pathway in S1PR2-induced pyroptosis. Meanwhile, THP-1 and FHC were co-cultured to verify that cytokines released by THP-1 after damage could regulate FHC damage. Results Our results demonstrated that JTE-013 effectively attenuated intestinal injury and inflammation in mice with SAP. Furthermore, we observed a significant reduction in the expression of pyroptosis-related proteins within the intestinal tissue of SAP mice upon treatment with JTE-013. We confirmed the involvement of S1PR2 in THP-1 cell pyroptosis in vitro. Specifically, activation of S1PR2 triggered pyroptosis in THP-1 cells through the RhoA/ROCK signaling pathway. Moreover, it was observed that inflammatory factors released during THP-1 cell pyroptosis exerted an impact on cohesin expression in FHC cells. Conclusion The involvement of S1PR2 in SAP-induced intestinal mucosal injury may be attributed to its regulation of macrophage pyroptosis.
Collapse
Affiliation(s)
| | | | | | - Xinting Pan
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
42
|
Xing Y, Zhang F, Yang T, Yin C, Yang A, Yan B, Zhao J. Augmented antitumor immune responses of HER2-targeted pyroptotic induction by long-lasting recombinant immunopyroptotins. Heliyon 2024; 10:e30444. [PMID: 38737283 PMCID: PMC11088320 DOI: 10.1016/j.heliyon.2024.e30444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Pyroptosis is a well-documented form of programmed cell death caused by the gasdermin-driven perforation of cell membranes. Selective induction of pyroptosis in tumor cells represents a promising antitumor strategy to enhance the efficacy of immunotherapy. In this study, we established a recombinant protein-based immunopyroptotin strategy that led to the intratumoral induction of pyroptosis for HER2-directed therapy. Long-lasting immunopyroptotins were constructed by sequentially fusing the humanized anti-HER2 single-chain antibody P1h3, albumin-binding peptide (ABD035 or dAb7h8), cathepsin B-cleavable peptide B2, endosome-disruptive peptide E5C3, and active pyroptotic effector gasdermin D-N fragment (GN). After purification, we evaluated the cytotoxicity and antitumor immune responses primarily induced by the immunopyroptotins in HER2-overexpressing breast cancer cells. The resulting ABD035-immunoGN and dAb7h8-immunoGN showed improved in vitro cytotoxicity in HER2-overexpressing cancer cells compared with that in the immunotBid that we previously generated to induce tumor cell apoptosis. The binding of long-lasting immunopyroptotins to albumin increased the half-life by approximately 7-fold in nude mice. The enhanced antitumor efficacy of long-lasting immunopyroptotins was confirmed in both N87 tumor-bearing T cell-deficient mice and 4T1-hHER2 bilateral tumor-bearing immunocompetent mice. Immunopyroptotin treatment elicited systemic antitumor immune responses involving CD8+ T cells and mature dendritic cells and upregulated the expression of proinflammatory cytokines, leading to sustained remission of non-injected distant tumors. This study extends the repertoire of antibody-based therapeutics through the tumor-targeted delivery of a constitutively active pore-forming gasdermin-N fragment, which shows great potential for pyroptosis-based antitumor therapy.
Collapse
Affiliation(s)
- Yuqi Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Feiyu Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tian Yang
- Department of Intensive Care Medicine, Bethune International Peace Hospital, Hebei, 050082, China
| | - Chunhui Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Angang Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
43
|
Zou C, Shen J, Xu F, Ye Y, Wu Y, Xu S. Immunoreactive Microenvironment Modulator GBP5 Suppresses Ovarian Cancer Progression by Inducing Canonical Pyroptosis. J Cancer 2024; 15:3510-3530. [PMID: 38817865 PMCID: PMC11134437 DOI: 10.7150/jca.94616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
Ovarian cancer has the highest mortality among gynecological malignancies, and exploring effective strategies to reverse the immunosuppressive tumor microenvironment in patients remains a pressing scientific challenge. In this study, we identified a pyroptosis-related protective factor, GBP5, which significantly inhibits the growth of ovarian cancer cells and patient-derived ovarian cancer organoids, impeding the invasion and migration of ovarian cancer cells. Results of immunohistochemistry and external single-cell data verification were consistent. Further research confirmed that GBP5 in ovarian cancer cell can induce canonical pyroptosis through JAK2/STAT1 pathway, thereby restraining the progression of ovarian cancer. Interestingly, in this study, we also discovered that ovarian cancer cells with high GBP5 expression exhibit increased expressions of CXCL9/10/11 in a co-culture assay. Subsequent immune cell infiltration analyses revealed the remodeling of immunosuppressive microenvironment in ovarian cancer patients, characterized by increased infiltration and polarization of M1 macrophages. External immunotherapy database analysis showed profound potential for the application of GBP5 in immunotherapy strategies for ovarian cancer. Overall, our study demonstrates that the protective factor GBP5 significantly inhibits ovarian cancer progression, triggering canonical pyroptosis through the JAK2-STAT1 pathway. Driven by its pro-inflammatory nature, it can also enhance M1 macrophages polarization and reverse immunosuppressive microenvironment, thus providing new insights for ovarian cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yuanyuan Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shaohua Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
44
|
Meybodi SM, Ejlalidiz M, Manshadi MR, Raeisi M, Zarin M, Kalhor Z, Saberiyan M, Hamblin MR. Crosstalk between hypoxia-induced pyroptosis and immune escape in cancer: From mechanisms to therapy. Crit Rev Oncol Hematol 2024; 197:104340. [PMID: 38570176 DOI: 10.1016/j.critrevonc.2024.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Pyroptosis can be triggered through both canonical and non-canonical inflammasome pathways, involving the cleavage of gasdermin (GSDM) protein family members, like GSDMD and GSDME. The impact of pyroptosis on tumors is nuanced, because its role in regulating cancer progression and anti-tumor immunity may vary depending on the tumor type, stage, location, and immune status. However, pyroptosis cannot be simply categorized as promoting or inhibiting tumors based solely on whether it is acute or chronic in nature. The interplay between pyroptosis and cancer is intricate, with some evidence suggesting that chronic pyroptosis may facilitate tumor growth, while the acute induction of pyroptosis could stimulate anti-cancer immune responses. Tumor hypoxia activates hypoxia inducible factor (HIF) signaling to modulate pyroptosis and immune checkpoint expression. Targeting this hypoxia-pyroptosis-immune escape axis could be a promising therapeutic strategy. This review highlights the complex crosstalk between hypoxia, pyroptosis, and immune evasion in the TME.
Collapse
Affiliation(s)
| | - Mahsa Ejlalidiz
- Medical Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadsadegh Rezaeian Manshadi
- Clinical Research Development Center, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Raeisi
- Clinical Research Developmental Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Zarin
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Kalhor
- Department of Anatomical Sciences, Factulty of Medicine, Kurdistan University of Medical Scidnces, Sanandaj, Iran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa.
| |
Collapse
|
45
|
Favale G, Donnarumma F, Capone V, Della Torre L, Beato A, Carannante D, Verrilli G, Nawaz A, Grimaldi F, De Simone MC, Del Gaudio N, Megchelenbrink WL, Caraglia M, Benedetti R, Altucci L, Carafa V. Deregulation of New Cell Death Mechanisms in Leukemia. Cancers (Basel) 2024; 16:1657. [PMID: 38730609 PMCID: PMC11083363 DOI: 10.3390/cancers16091657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Hematological malignancies are among the top five most frequent forms of cancer in developed countries worldwide. Although the new therapeutic approaches have improved the quality and the life expectancy of patients, the high rate of recurrence and drug resistance are the main issues for counteracting blood disorders. Chemotherapy-resistant leukemic clones activate molecular processes for biological survival, preventing the activation of regulated cell death pathways, leading to cancer progression. In the past decade, leukemia research has predominantly centered around modulating the well-established processes of apoptosis (type I cell death) and autophagy (type II cell death). However, the development of therapy resistance and the adaptive nature of leukemic clones have rendered targeting these cell death pathways ineffective. The identification of novel cell death mechanisms, as categorized by the Nomenclature Committee on Cell Death (NCCD), has provided researchers with new tools to overcome survival mechanisms and activate alternative molecular pathways. This review aims to synthesize information on these recently discovered RCD mechanisms in the major types of leukemia, providing researchers with a comprehensive overview of cell death and its modulation.
Collapse
Affiliation(s)
- Gregorio Favale
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Federica Donnarumma
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Vincenza Capone
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Laura Della Torre
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Antonio Beato
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Daniela Carannante
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Giulia Verrilli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Asmat Nawaz
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| | - Francesco Grimaldi
- Dipartimento di Medicina Clinica e Chirurgia, Divisione di Ematologia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | | | - Nunzio Del Gaudio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Wouter Leonard Megchelenbrink
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Michele Caraglia
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| | - Rosaria Benedetti
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), 80131 Napoli, Italy
- Programma di Epigenetica Medica, A.O.U. “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| |
Collapse
|
46
|
Qiu Y, Meng L, Xing Y, Peng J, Zhou Y, Yu Z, Liu H, Peng F. The Role of Pyroptosis in Coronary Heart Disease. Anatol J Cardiol 2024; 28:318-328. [PMID: 38661060 PMCID: PMC11230581 DOI: 10.14744/anatoljcardiol.2024.4001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The incidence and mortality of cardiovascular diseases, of which coronary heart disease (CHD) is a significant cardiovascular burden, are on the rise. Pyroptosis as an incipient programmed cell death mediated by inflammasomes can sense cytoplasmic contamination or interference and is typically marked by intracellular swelling, plasma membrane blistering and intense inflammatory cytokine release. As research on pyroptosis continues to progress, there is mounting evidence that pyroptosis is a vital participant in the pathophysiological basis of CHD. Atherosclerosis is the major pathophysiological basis of CHD and involves pyroptosis of endothelial cells, macrophages, vascular smooth muscle cells, and other immune cells, often in association with the release of pro-inflammatory factors. When cardiomyocytes are damaged, it will eventually lead to heart failure. Previous studies have covered that pyroptosis plays a critical role in CHD. In this review, we describe the properties of pyroptosis, summarize its contribution and related targets to diseases involving angina pectoris, myocardial infarction, myocardial ischemia in perfusion injury and heart failure, and highlight potential drugs for different heart diseases.
Collapse
Affiliation(s)
- Yinyin Qiu
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| | - Yangbo Xing
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| | - Jiahao Peng
- Loma Linda University School of Public Health, Loma Linda, CA, USA
| | - Yan Zhou
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| | - Zhangjie Yu
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| | - Hanxuan Liu
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| | - Fang Peng
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
47
|
Ge J, Zhang Z, Zhao S, Chen Y, Min X, Cai Y, Zhao H, Wu X, Zhao F, Chen B. Nanomedicine-induced cell pyroptosis to enhance antitumor immunotherapy. J Mater Chem B 2024; 12:3857-3880. [PMID: 38563315 DOI: 10.1039/d3tb03017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Immunotherapy is a therapeutic modality designed to elicit or augment an immune response against malignancies. Despite the immune system's ability to detect and eradicate neoplastic cells, certain neoplastic cells can elude immune surveillance and elimination through diverse mechanisms. Therefore, antitumor immunotherapy has emerged as a propitious strategy. Pyroptosis, a type of programmed cell death (PCD) regulated by Gasdermin (GSDM), is associated with cytomembrane rupture due to continuous cell expansion, which results in the release of cellular contents that can trigger robust inflammatory and immune responses. The field of nanomedicine has made promising progress, enabling the application of nanotechnology to enhance the effectiveness and specificity of cancer therapy by potentiating, enabling, or augmenting pyroptosis. In this review, we comprehensively examine the paradigms underlying antitumor immunity, particularly paradigms related to nanotherapeutics combined with pyroptosis; these treatments include chemotherapy (CT), hyperthermia therapy, photodynamic therapy (PDT), chemodynamic therapy (CDT), ion-interference therapy (IIT), biomimetic therapy, and combination therapy. Furthermore, we thoroughly discuss the coordinated mechanisms that regulate these paradigms. This review is expected to enhance the understanding of the interplay between pyroptosis and antitumor immunotherapy, broaden the utilization of diverse nanomaterials in pyroptosis-based antitumor immunotherapy, and facilitate advancements in clinical tumor therapy.
Collapse
Affiliation(s)
- Jingwen Ge
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Zheng Zhang
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Shuangshuang Zhao
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Yanwei Chen
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Xin Min
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Yun Cai
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Huajiao Zhao
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Xincai Wu
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Feng Zhao
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Baoding Chen
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| |
Collapse
|
48
|
Luo S, Cai S, Zhao R, Xu L, Zhang X, Gong X, Zhang Z, Liu Q. Comparison of left- and right-sided colorectal cancer to explore prognostic signatures related to pyroptosis. Heliyon 2024; 10:e28091. [PMID: 38571659 PMCID: PMC10987941 DOI: 10.1016/j.heliyon.2024.e28091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignancies, and pyroptosis exerts an immunoregulatory role in CRC. Although the location of the primary tumor is a prognostic factor for patients with CRC, the mechanisms of pyroptosis in left- and right-sided CRC remain unclear. Methods Expression and clinical data were collected from The Cancer Genome Atlas and Gene Expression Omnibus databases. Differences in clinical characteristics, immune cell infiltration, and somatic mutations between left- and right-sided CRC were then compared. After screening for differentially expressed genes, Pearson correlation analysis was performed to select pyroptosis-related genes, followed by a gene set enrichment analysis. Univariate and multivariate Cox regression analyses were used to construct and validate the prognostic model and nomogram for predicting prognosis. Collected left- and right-sided CRC samples were subjected to reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to validate the expression of key pyroptosis-related genes. Results Left- and right-sided CRC exhibited significant differences in clinical features and immune cell infiltration. Five prognostic signatures were identified from among 134 pyroptosis-related differentially expressed genes to construct a risk score-based prognostic model, and adverse outcomes for high-risk patients were further verified using an external cohort. A nomogram was also generated based on three independent prognostic factors to predict survival probabilities, while calibration curves confirmed the consistency between the predicted and actual survival. Experiment data confirmed the significant differential expression of five genes between left- and right-sided CRC. Conclusion The five identified pyroptosis-related gene signatures may be potential biomarkers for predicting prognosis in left- and right-sided CRC and may help improve the clinical outcomes of patients with CRC.
Collapse
Affiliation(s)
- Shibi Luo
- Department of General Surgery, Ganmei Affiliated Hospital of Kunming Medical University (First People's Hospital of Kunming), Kunming, Yunnan, 650034, China
| | - Shenggang Cai
- Department of General Surgery, Ganmei Affiliated Hospital of Kunming Medical University (First People's Hospital of Kunming), Kunming, Yunnan, 650034, China
| | - Rong Zhao
- Department of General Surgery, Ganmei Affiliated Hospital of Kunming Medical University (First People's Hospital of Kunming), Kunming, Yunnan, 650034, China
| | - Lin Xu
- Department of General Surgery, Ganmei Affiliated Hospital of Kunming Medical University (First People's Hospital of Kunming), Kunming, Yunnan, 650034, China
| | - Xiaolong Zhang
- Department of General Surgery, Ganmei Affiliated Hospital of Kunming Medical University (First People's Hospital of Kunming), Kunming, Yunnan, 650034, China
| | - Xiaolei Gong
- Department of General Surgery, Ganmei Affiliated Hospital of Kunming Medical University (First People's Hospital of Kunming), Kunming, Yunnan, 650034, China
| | - Zhiping Zhang
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, 650031, China
| | - Qiyu Liu
- Department of General Surgery, Ganmei Affiliated Hospital of Kunming Medical University (First People's Hospital of Kunming), Kunming, Yunnan, 650034, China
| |
Collapse
|
49
|
Zhang Y, Zhao H, Fu X, Wang K, Yang J, Zhang X, Wang H. The role of hydrogen sulfide regulation of pyroptosis in different pathological processes. Eur J Med Chem 2024; 268:116254. [PMID: 38377826 DOI: 10.1016/j.ejmech.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Pyroptosis is one kind of programmed cell death in which the cell membrane ruptures and subsequently releases cell contents and pro-inflammatory cytokines including IL-1β and IL-18. Pyroptosis is caused by many types of pathological stimuli, such as hyperglycemia (HG), oxidative stress, and inflammation, and is mediated by gasdermin (GSDM) protein family. Increasing evidence indicates that pyroptosis plays an important role in multiple diseases, such as cancer, kidney diseases, inflammatory diseases, and cardiovascular diseases. Therefore, the regulation of pyroptosis is crucial for the occurrence, development, and treatment of many diseases. Hydrogen sulfide (H2S) is a biologically active gasotransmitter following carbon monoxide (CO) and nitrogen oxide (NO) in mammalian tissues. So far, three enzymes, including 3-mercaptopyruvate sulphurtransferase (3-MST), cystathionine γ- Lyase (CSE), and Cystine β-synthesis enzyme (CBS), have been found to catalyze the production of endogenous H2S in mammals. H2S has been reported to have multiple biological functions including anti-inflammation, anti-oxidative stress, anti-apoptosis and so on. Hence, H2S is involved in various physiological and pathological processes. In recent years, many studies have demonstrated that H2S plays a critical role by regulating pyroptosis in various pathological processes, such as ischemia-reperfusion injury, alcoholic liver disease, and diabetes cardiomyopathy. However, the relevant mechanism has not been completely understood. Therefore, elucidating the mechanism by which H2S regulates pyroptosis in diseases will help understand the pathogenesis of multiple diseases and provide important new avenues for the treatment of many diseases. Here, we reviewed the progress of H2S regulation of pyroptosis in different pathological processes, and analyzed the molecular mechanism in detail to provide a theoretical reference for future related research.
Collapse
Affiliation(s)
- Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Kexiao Wang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Jiahao Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | | | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
50
|
Ning J, Chen L, Zeng Y, Xiao G, Tian W, Wu Q, Tang J, He S, Tanzhu G, Zhou R. The scheme, and regulative mechanism of pyroptosis, ferroptosis, and necroptosis in radiation injury. Int J Biol Sci 2024; 20:1871-1883. [PMID: 38481804 PMCID: PMC10929204 DOI: 10.7150/ijbs.91112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/29/2024] [Indexed: 08/26/2024] Open
Abstract
Radiotherapy (RT) stands as the primary treatment for tumors, but it inevitably causes damage to normal cells. Consequently, radiation injury is a crucial consideration for radiation oncologists during therapy planning. Cell death including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis play significant roles in tumor treatment. While previous studies elucidated the induction of apoptosis and autophagy by ionizing radiation (IR), recent attention has shifted to pyroptosis, ferroptosis, and necroptosis, revealing their effects induced by IR. This review aims to summarize the strategies employed by IR, either alone or in combination therapy, to induce pyroptosis, ferroptosis, and necroptosis in radiation injury. Furthermore, we explore their effects and molecular pathways, shedding light on their roles in radiation injury. Finally, we summarize the regulative agents for these three types of cell death and their mechanisms. In summary, optimizing radiation dose, dose rate, and combined treatment plans to minimize radiation damage and enhance the killing effect of RT is a key focus.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu Zeng
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Wu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiyuan Tang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shuangshuang He
- Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| |
Collapse
|