1
|
Yang Y, Liu Y, Cheng Y, He H, Liang A, Pan Z, Liu Y, Chen Z. Multi-omics and experimental analysis unveil the key components in Scutellaria baicalensis Georgi to alleviate hepatic fibrosis via regulating cPLA2-mediated arachidonic acid metabolism. J Transl Med 2024; 22:1138. [PMID: 39716274 DOI: 10.1186/s12967-024-05955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Scutellaria baicalensis Georgi, a traditional Chinese herb, is known for its various biological effects, including antibacterial, anti-inflammatory, antioxidative, and antitumor properties. However, the function and mechanisms of methanol extract of Scutellaria baicalensis Georgi (MESB) in treating hepatic fibrosis remain unclear. METHODS This study utilized a CCl4-induced mouse model of hepatic fibrosis to assess the effects of MESB through histopathological analysis and serum tests. The anti-fibrosis mechanism of MESB was investigated using qPCR, Western blotting, RNA interference, proteomics, and metabolomics. Spatial metabolomics identified key components of MESB in liver tissue, while molecular docking determined their targets. RESULTS Treatment with MESB alleviated hepatic pathological changes and reversed hepatic fibrosis in the CCl4-induced models, as evidenced by decreased collagen fibers deposition, reduced expression of hepatic fibrosis markers COL1A1, FN, and PAI-1, and lowered serum levels of AST and ALT. In vitro, MESB inhibited the proliferation of LX-2 cells and the expression of hepatic fibrosis markers. Furthermore, MESB intervention modulated various pathways, particularly those involved in metabolic pathways. Subsequent metabolomics analysis demonstrated that MESB disrupted glycerophospholipid metabolism and suppressed arachidonic acid metabolism. MESB downregulated the expression of cPLA2 in LX-2 cells, leading to decreased production of arachidonic acid and its downstream inflammatory mediators. Meanwhile, MESB inhibited the expression of cPLA2 and its downstream NF-κB pathway in the liver tissues of models induced by CCl4. Additionally, silencing cPLA2 markedly reduced the expressions of COL1A1, FN, and PAI-1. Spatial metabolomics analysis confirmed the penetration of baicalein, wogonin and wogonoside into liver tissue. Further results indicated that baicalein and wogonin inhibited the expression of cPLA2, while baicalin and wogonoside do not exhibit this effect. Moreover, molecular docking suggested that baicalein and wogonin possess the potential to directly interact with cPLA2. CONCLUSION This study reveals that MESB is crucial in preventing hepatic fibrosis via the cPLA2-mediated arachidonic acid metabolic pathway, highlighting its key active components as potential drugs for fibrosis treatment.
Collapse
Affiliation(s)
- Yunheng Yang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yujie Cheng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Honglin He
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Liang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Pan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanyuan Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.
- College of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
2
|
Cioce M, Gatti V, Napolitano F, Giorgiano NM, Marra A, Portella G, Fiorelli A, Pentimalli F, Fazio VM. Mesothelioma-Associated Fibroblasts Modulate the Response of Mesothelioma Patient-Derived Organoids to Chemotherapy via Interleukin-6. Int J Mol Sci 2024; 25:5355. [PMID: 38791392 PMCID: PMC11121414 DOI: 10.3390/ijms25105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Malignant pleural mesothelioma (MPM) remains an incurable disease. This is partly due to the lack of experimental models that fully recapitulate the complexity and heterogeneity of MPM, a major challenge for therapeutic management of the disease. In addition, the contribution of the MPM microenvironment is relevant for the adaptive response to therapy. We established mesothelioma patient-derived organoid (mPDO) cultures from MPM pleural effusions and tested their response to pemetrexed and cisplatin. We aimed to evaluate the contribution of mesothelioma-associated fibroblasts (MAFs) to the response to pemetrexed and cisplatin (P+C). Organoid cultures were obtained from eight MPM patients using specific growth media and conditions to expand pleural effusion-derived cells. Flow cytometry was used to verify the similarity of the organoid cultures to the original samples. MAFs were isolated and co-cultured with mPDOs, and the addition of MAFs reduced the sensitivity of mPDOs to P+C. Organoid formation and expression of cancer stem cell markers such as ABCG2, NANOG, and CD44 were altered by conditioned media from treated MAFs. We identified IL-6 as the major contributor to the attenuated response to chemotherapy. IL-6 secretion by MAFs is correlated with increased resistance of mPDOs to pemetrexed and cisplatin.
Collapse
Affiliation(s)
- Mario Cioce
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University of Campus-Biomedico of Rome, 00128 Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| | - Veronica Gatti
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University of Campus-Biomedico of Rome, 00128 Rome, Italy
| | - Fabiana Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 81025 Naples, Italy
| | - Noemi Maria Giorgiano
- Thoracic Surgery Unity, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Andrea Marra
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University of Campus-Biomedico of Rome, 00128 Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples Federico II, 81025 Naples, Italy
| | - Alfonso Fiorelli
- Thoracic Surgery Unity, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University of Campus-Biomedico of Rome, 00128 Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| |
Collapse
|
3
|
Sun J, Xie X, Song Y, Sun T, Liu X, Yuan H, Shen C. Selenomethionine in gelatin methacryloyl hydrogels: Modulating ferroptosis to attenuate skin aging. Bioact Mater 2024; 35:495-516. [PMID: 38404642 PMCID: PMC10885793 DOI: 10.1016/j.bioactmat.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
During skin aging, the degeneration of epidermal stem cells (EpiSCs) leads to diminished wound healing capabilities and epidermal disintegration. This study tackles this issue through a comprehensive analysis combining transcriptomics and untargeted metabolomics, revealing age-dependent alterations in the Gpx gene family and arachidonic acid (AA) metabolic networks, resulting in enhanced ferroptosis. Selenomethionine (Se-Met) could enhance GPX4 expression, thereby assisting EpiSCs in countering AA-induced mitochondrial damage and ferroptosis. Additionally, Se-Met demonstrates antioxidative characteristics and extensive ultraviolet absorption. For the sustained and controllable release of Se-Met, it was covalently grafted to UV-responsive GelMA hydrogels via AC-PEG-NHS tethers. The Se-Met@GelMA hydrogel effectively accelerated wound healing in a chronological aging mice model, by inhibiting lipid peroxidation and ferroptosis with augmented GPX4 expression. Moreover, in a photoaging model, this hydrogel significantly mitigated inflammatory responses, extracellular matrix remodeling, and ferroptosis in UV-exposed mice. These characteristics render Se-Met@GelMA hydrogel valuable in practical clinical applications.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Xiaoye Xie
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Yaoyao Song
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Tianjun Sun
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Xinzhu Liu
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Huageng Yuan
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Chuanan Shen
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
4
|
Li S, Yuan J, Cheng Z, Li Y, Cheng S, Liu X, Huang S, Xu Z, Wu A, Liu L, Dong J. Hsa_circ_0021205 enhances lipolysis via regulating miR-195-5p/HSL axis and drives malignant progression of glioblastoma. Cell Death Discov 2024; 10:71. [PMID: 38341418 DOI: 10.1038/s41420-024-01841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Abnormal lipid metabolism is an essential hallmark of glioblastoma. Hormone sensitive lipase (HSL), an important rate-limiting enzyme contributed to lipolysis, which was involved in aberrant lipolysis of glioblastoma, however, its definite roles and the relevant regulatory pathway have not been fully elucidated. Our investigations disclosed high expression of HSL in glioblastoma. Knock-down of HSL restrained proliferation, migration, and invasion of glioblastoma cells while adding to FAs could significantly rescue the inhibitory effect of si-HSL on tumor cells. Overexpression of HSL further promoted tumor cell proliferation and invasion. Bioinformatics analysis and dual-luciferase reporter assay were performed to predict and verify the regulatory role of ncRNAs on HSL. Mechanistically, hsa_circ_0021205 regulated HSL expression by sponging miR-195-5p, which further promoted lipolysis and drove the malignant progression of glioblastoma. Besides, hsa_circ_0021205/miR-195-5p/HSL axis activated the epithelial-mesenchymal transition (EMT) signaling pathway. These findings suggested that hsa_circ_0021205 promoted tumorigenesis of glioblastoma through regulation of HSL, and targeting hsa_circ_0021205/miR-195-5p/HSL axis can serve as a promising new strategy against glioblastoma.
Collapse
Affiliation(s)
- Suwen Li
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaqi Yuan
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, the Zhangjiagang Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Zhe Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, the Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yongdong Li
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinglei Liu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shilu Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhipeng Xu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Anyi Wu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Dong
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Huang X, Wang Y, Huang Z, Chen X, Lin Q, Huang H, Fan L. Low serum apolipoprotein A1 level predicts poor prognosis of patients with diffuse large B-cell lymphoma in the real world: a retrospective study. BMC Cancer 2024; 24:62. [PMID: 38212711 PMCID: PMC10785512 DOI: 10.1186/s12885-024-11818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Apolipoprotein A1 (ApoA1) is a member of the apolipoprotein family with diverse functions. It is associated with the pathogenesis and prognosis of several types of tumors. However, the role of serum apolipoprotein A1 (ApoA1) in the prognosis of patients with diffuse large B-cell lymphoma (DLBCL) remains unclear. This study aimed to elucidate its influence on clinical outcomes in patients with DLBCL. METHODS We retrospectively analyzed a cohort of 1583 consecutive DLBCL patients admitted to the Fujian Medical University Union Hospital between January 2011 and December 2021. 949 newly diagnosed DLBCL patients who met the inclusion criteria were enrolled for statistical analysis. Receiver operating characteristic curve analysis was performed to determine the optimal cut-off value for serum ApoA1 levels for prognostic prediction among patients with DLBCL. The correlations between serum ApoA1 levels and clinical and laboratory parameters were analyzed. Prognostic significance was analyzed using univariate and multivariate Cox proportional hazards models. RESULTS Newly diagnosed patients with DLBCL demonstrated low serum ApoA1 levels (< 0.925 g/L), had more B symptoms, higher levels of serum lactate dehydrogenase (LDH) (>upper limit of normal), poorer performance status (Eastern Cooperative Oncology Group score of 2-4), higher percentage of advanced stage and non-germinal center B-cell (non-GCB) subtype, more cases of > 1 extranodal site, higher International Prognostic Index (IPI) score (3-5), and higher incidence of relapse or refractory diseases compared with those with high serum ApoA1 levels (≥ 0.925 g/L). Low serum ApoA1 levels were an independent adverse prognostic factor for overall survival (OS) but not progression-free survival (PFS). CONCLUSIONS Low serum ApoA1 levels were associated with poor treatment response and inferior survival in newly diagnosed patients with DLBCL.
Collapse
Affiliation(s)
- Xiaoling Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Ying Wang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Zhenyu Huang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing County, Fuzhou City, 350300, Fujian Province, China
| | - Xuzheng Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou City, 350122, Fujian Province, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou City, 350122, Fujian Province, China
| | - Qiuyan Lin
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Liping Fan
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
6
|
Zhang YH, Liu B, Meng Q, Zhang D, Yang H, Li G, Wang Y, Zhou H, Xu ZX, Wang Y. Targeted changes in blood lipids improves fibrosis in renal allografts. Lipids Health Dis 2023; 22:215. [PMID: 38049842 PMCID: PMC10694909 DOI: 10.1186/s12944-023-01978-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Chronic interstitial fibrosis is the primary barrier against the long-term survival of transplanted kidneys. Extending the lifespan of allografts is vital for ensuring the long-term health of patients undergoing kidney transplants. However, few targets and their clinical applications have been identified. Moreover, whether dyslipidemia facilitates fibrosis in renal allograft remains unclear. METHODS Blood samples were collected from patients who underwent kidney transplantation. Correlation analyses were conducted between the Banff score and body mass index, and serum levels of triacylglycerol, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. A rat model of renal transplantation was treated with the lipid-lowering drug, fenofibrate, and kidney fibrosis levels were determined by histochemical staining. Targeted metabolomic detection was conducted in blood samples from patients who underwent kidney transplantation and were divided into fibrotic and non-fibrotic groups. Rats undergoing renal transplantation were fed either an n-3 or n-6 polyunsaturated fatty acid (PUFA)-enriched diet. Immunohistochemical and Masson's trichrome staining were used to determine the degree of fibrosis. RESULTS Hyperlipidemia was associated with fibrosis development. Treatment with fenofibrate contributed to improve fibrosis in a rat model of renal transplantation. Moreover, n-3 PUFAs from fibrotic group showed significant downregulation compared to patients without fibrotic renal allografts, and n-3 PUFAs-enriched diet contributed to delayed fibrosis in a rat model of renal transplantation. CONCLUSIONS This study suggests that hyperlipidemia facilitates fibrosis of renal allografts. Importantly, a new therapeutic approach was provided that may delay chronic interstitial fibrosis in transplanted kidneys by augmenting the n-3 PUFA content in the diet.
Collapse
Affiliation(s)
- Yang-He Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (Beijing) 2023; 4:e363. [PMID: 37746665 PMCID: PMC10511835 DOI: 10.1002/mco2.363] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Arachidonic acid (AA), an n-6 essential fatty acid, is a major component of mammalian cells and can be released by phospholipase A2. Accumulating evidence indicates that AA plays essential biochemical roles, as it is the direct precursor of bioactive lipid metabolites of eicosanoids such as prostaglandins, leukotrienes, and epoxyeicosatrienoic acid obtained from three distinct enzymatic metabolic pathways: the cyclooxygenase pathway, lipoxygenase pathway, and cytochrome P450 pathway. AA metabolism is involved not only in cell differentiation, tissue development, and organ function but also in the progression of diseases, such as hepatic fibrosis, neurodegeneration, obesity, diabetes, and cancers. These eicosanoids are generally considered proinflammatory molecules, as they can trigger oxidative stress and stimulate the immune response. Therefore, interventions in AA metabolic pathways are effective ways to manage inflammatory-related diseases in the clinic. Currently, inhibitors targeting enzymes related to AA metabolic pathways are an important area of drug discovery. Moreover, many advances have also been made in clinical studies of AA metabolic inhibitors in combination with chemotherapy and immunotherapy. Herein, we review the discovery of AA and focus on AA metabolism in relation to health and diseases. Furthermore, inhibitors targeting AA metabolism are summarized, and potential clinical applications are discussed.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Yingxiang Liu
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Jin Sun
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Zheng Guo
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Qiong Ma
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| |
Collapse
|
8
|
Cioce M, Fumagalli MR, Donzelli S, Goeman F, Canu V, Rutigliano D, Orlandi G, Sacconi A, Pulito C, Palcau AC, Fanciulli M, Morrone A, Diodoro MG, Caricato M, Crescenzi A, Verri M, Fazio VM, Zapperi S, Levrero M, Strano S, Grazi GL, La Porta C, Blandino G. Interrogating colorectal cancer metastasis to liver: a search for clinically viable compounds and mechanistic insights in colorectal cancer Patient Derived Organoids. J Exp Clin Cancer Res 2023; 42:170. [PMID: 37460938 DOI: 10.1186/s13046-023-02754-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Approximately 20-50% of patients presenting with localized colorectal cancer progress to stage IV metastatic disease (mCRC) following initial treatment and this is a major prognostic determinant. Here, we have interrogated a heterogeneous set of primary colorectal cancer (CRC), liver CRC metastases and adjacent liver tissue to identify molecular determinants of the colon to liver spreading. Screening Food and Drug Administration (FDA) approved drugs for their ability to interfere with an identified colon to liver metastasis signature may help filling an unmet therapeutic need. METHODS RNA sequencing of primary colorectal cancer specimens vs adjacent liver tissue vs synchronous and asynchronous liver metastases. Pathways enrichment analyses. The Library of Integrated Network-based Cellular Signatures (LINCS)-based and Connectivity Map (CMAP)-mediated identification of FDA-approved compounds capable to interfere with a 22 gene signature from primary CRC and liver metastases. Testing the identified compounds on CRC-Patient Derived Organoid (PDO) cultures. Microscopy and Fluorescence Activated Cell Sorting (FACS) based analysis of the treated PDOs. RESULTS We have found that liver metastases acquire features of the adjacent liver tissue while partially losing those of the primary tumors they derived from. We have identified a 22-gene signature differentially expressed among primary tumors and metastases and validated in public databases. A pharmacogenomic screening for FDA-approved compounds capable of interfering with this signature has been performed. We have validated some of the identified representative compounds in CRC-Patient Derived Organoid cultures (PDOs) and found that pentoxyfilline and, to a minor extent, dexketoprofen and desloratadine, can variably interfere with number, size and viability of the CRC -PDOs in a patient-specific way. We explored the pentoxifylline mechanism of action and found that pentoxifylline treatment attenuated the 5-FU elicited increase of ALDHhigh cells by attenuating the IL-6 mediated STAT3 (tyr705) phosphorylation. CONCLUSIONS Pentoxifylline synergizes with 5-Fluorouracil (5-FU) in attenuating organoid formation. It does so by interfering with an IL-6-STAT3 axis leading to the emergence of chemoresistant ALDHhigh cell subpopulations in 5-FU treated PDOs. A larger cohort of CRC-PDOs will be required to validate and expand on the findings of this proof-of-concept study.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy.
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy.
| | - Maria Rita Fumagalli
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milano, Italy
- CNR - Consiglio Nazionale Delle Ricerche, Biophysics Institute, Via De Marini 6, 16149, Genoa, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Frauke Goeman
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Valeria Canu
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Daniela Rutigliano
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Giulia Orlandi
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Alina Catalina Palcau
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Maurizio Fanciulli
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Aldo Morrone
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Caricato
- Colorectal Surgery Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Università Campus Bio-Medico, Rome, Italy
| | - Anna Crescenzi
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy
- Unit of Endocrine Organs and Neuromuscular Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Martina Verri
- Unit of Endocrine Organs and Neuromuscular Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vito Michele Fazio
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milano, Italy
- Istituto Di Chimica Della Materia Condensata E Di Tecnologie Per L'Energia, CNR - Consiglio Nazionale Delle Ricerche, Via R. Cozzi 53, 20125, Milano, Italy
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm, CNRS 5286 Mixte CLB, Université de Lyon, 1 (UCBL1), 69003, Lyon, France
| | - Sabrina Strano
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Gian Luca Grazi
- Department of Experimental and Clinical Medicine, Hepato-Biliary Pancreatic Surgery, University of Florence, Florence, Italy
| | - Caterina La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milano, Italy
- CNR - Consiglio Nazionale Delle Ricerche, Istituto Di Biofisica, Via Celoria 26, 20133, Milano, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
9
|
Ma Q, Sun J, Wang H, Zhou C, Li C, Wu Y, Wen Y, Zhang X, Ren X, Guo Z, Gong L, Zhang W. Far upstream element-binding protein 1 confers lobaplatin resistance by transcriptionally activating PTGES and facilitating the arachidonic acid metabolic pathway in osteosarcoma. MedComm (Beijing) 2023; 4:e257. [PMID: 37180822 PMCID: PMC10170244 DOI: 10.1002/mco2.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 05/16/2023] Open
Abstract
Drug resistance is a major obstacle in cancer treatment and recurrence prevention and leads to poor outcomes in patients suffering from osteosarcoma. Clarification of the mechanism of drug resistance and exploration of effective strategies to overcome this obstacle could lead to clinical benefits for these patients. The expression of far upstream element-binding protein 1 (FUBP1) was found to be markedly elevated in osteosarcoma cell lines and clinical specimens compared with osteoblast cells and normal bone specimens. High expression of FUBP1 was correlated with a more aggressive phenotype and a poor prognosis in osteosarcoma patients. We found that overexpression of FUBP1 confers lobaplatin resistance, whereas the inhibition of FUBP1 sensitizes osteosarcoma cells to lobaplatin-induced cytotoxicity both in vivo and in vitro. Chromatin immunoprecipitation-seq and RNA-seq were performed to explore the potential mechanism. It was revealed that FUBP1 could regulate the transcription of prostaglandin E synthase (PTGES) and subsequently activate the arachidonic acid (AA) metabolic pathway, which leads to resistance to lobaplatin. Our investigation provides evidence that FUBP1 is a potential therapeutic target for osteosarcoma patients. Targeting FUBP1, its downstream target PTGES and the AA metabolic pathway may be promising strategies for sensitizing chemoresistant osteosarcoma cells to lobaplatin.
Collapse
Affiliation(s)
- Qiong Ma
- Department of PathologyTangdu HospitalAir Force Medical UniversityXi'anChina
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Jin Sun
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Huan Wang
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Chengpei Zhou
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Chenyu Li
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Yonghong Wu
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Yanhua Wen
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Xiaoyu Zhang
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Xingguang Ren
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Zheng Guo
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Li Gong
- Department of PathologyTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyTangdu HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
10
|
Tőkés AM, Vári-Kakas S, Kulka J, Törőcsik B. Tumor Glucose and Fatty Acid Metabolism in the Context of Anthracycline and Taxane-Based (Neo)Adjuvant Chemotherapy in Breast Carcinomas. Front Oncol 2022; 12:850401. [PMID: 35433453 PMCID: PMC9008716 DOI: 10.3389/fonc.2022.850401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is characterized by considerable metabolic diversity. A relatively high percentage of patients diagnosed with breast carcinoma do not respond to standard-of-care treatment, and alteration in metabolic pathways nowadays is considered one of the major mechanisms responsible for therapeutic resistance. Consequently, there is an emerging need to understand how metabolism shapes therapy response, therapy resistance and not ultimately to analyze the metabolic changes occurring after different treatment regimens. The most commonly applied neoadjuvant chemotherapy regimens in breast cancer contain an anthracycline (doxorubicin or epirubicin) in combination or sequentially administered with taxanes (paclitaxel or docetaxel). Despite several efforts, drug resistance is still frequent in many types of breast cancer, decreasing patients’ survival. Understanding how tumor cells rapidly rewire their signaling pathways to persist after neoadjuvant cancer treatment have to be analyzed in detail and in a more complex system to enable scientists to design novel treatment strategies that target different aspects of tumor cells and tumor resistance. Tumor heterogeneity, the rapidly changing environmental context, differences in nutrient use among different cell types, the cooperative or competitive relationships between cells pose additional challenges in profound analyzes of metabolic changes in different breast carcinoma subtypes and treatment protocols. Delineating the contribution of metabolic pathways to tumor differentiation, progression, and resistance to different drugs is also the focus of research. The present review discusses the changes in glucose and fatty acid pathways associated with the most frequently applied chemotherapeutic drugs in breast cancer, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies.
Collapse
Affiliation(s)
- Anna Mária Tőkés
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
- *Correspondence: Anna Mária Tőkés,
| | - Stefan Vári-Kakas
- Department of Computers and Information Technology, Faculty of Electrical Engineering and Information Technology, University of Oradea, Oradea, Romania
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
| | - Beáta Törőcsik
- Department of Biochemistry, Semmelweis University Budapest, Budapest, Hungary
| |
Collapse
|