1
|
Wang Z, Xie C, Chen X. Diagnostic and therapeutic role of non-coding RNAs regulating programmed cell death in melanoma. Front Oncol 2024; 14:1476684. [PMID: 39777348 PMCID: PMC11703721 DOI: 10.3389/fonc.2024.1476684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
lncRNAs (long non-coding RNAs) are heterogeneous RNA molecules that modulate various cellular processes, such as proliferation, differentiation, migration, invasion, and apoptosis, via different mechanisms. An increasing amount of research indicates that abnormal expression of lncRNA influences the development of drug resistance as well as the genesis and advancement of cancer, including melanoma. Furthermore, they are attractive biomarkers for non-invasive cancer diagnostics due to their strongly modulated expression and improved tissue and disease specificity. This review offers a succinct overview of the present understanding concerning the potential diagnostic biomarker potential of lncRNAs in melanoma. Cell death occurs frequently during growth and throughout life and is an active, organized, and genetically determined process. It is essential for the regulation of homeostasis. Controlled cell death and non-programmed cell death are both forms of cell death. The most prevalent forms of regulatory cell death are pyroptosis, ferroptosis, autophagy, necroptosis, necrosis, and apoptosis. Ferroptosis, pyroptosis, and autophagy are less common forms of cell death compared to necrosis, apoptosis, and necroptosis. ncRNAs are regulatory RNA molecules that are not involved in encoding proteins. They primarily consist of circular RNAs (circ RNAs), lncRNAs, and microRNAs (miRNAs). Moreover, non-coding RNAs have the ability to modulate tumor cell autophagy, pyroptosis, and ferroptosis at the transcriptional or post-transcriptional stage, as well as function as oncogenes and tumor suppressor genes, which can have considerable effects on the incidence and growth of tumors. This review concentrated on the recent advancements in the research of the diagnostic and therapeutic functions of ncRNAs in the regulation of programmed cell death in melanoma.
Collapse
Affiliation(s)
- Zixu Wang
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cong Xie
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiao Chen
- Office for Postgraduate Student Studies, Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Atnaf A, Akelew Y, Abebaw D, Muche Y, Getachew M, Mengist HM, Tsegaye A. The role of long noncoding RNAs in the diagnosis, prognosis and therapeutic biomarkers of acute myeloid leukemia. Ann Hematol 2024; 103:4931-4942. [PMID: 39264436 DOI: 10.1007/s00277-024-05987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Acute myeloid leukemia (AML) is the abnormal proliferation of immature myeloid blast cells in the bone marrow. Currently, there are no universally recognized biomarkers for the early diagnosis, prognosis and effective treatment of AML to improve the overall survival of patients. Recent studies, however, have demonstrated that long noncoding RNAs (lncRNAs) are promising targets for the early diagnosis, prognosis and treatment of AML. A critical review of available data would be important to identify study gaps and provide perspectives. In this review, we explored comprehensive information on the potential use of lncRNAs as targets for the diagnosis, prognosis, and treatment of AML. LncRNAs are nonprotein-coding RNAs that are approximately 200 nucleotides long and play important roles in the regulation, metabolism and differentiation of tissues. In addition, they play important roles in the diagnosis, prognosis and treatment of different cancers, including AML. LncRNAs play multifaceted roles as oncogenes or tumor suppressor genes. Recently, deregulated lncRNAs were identified as novel players in the development of AML, making them promising prognostic indicators. Given that lncRNAs could have potential diagnostic marker roles, the lack of sufficient evidence identifying specific lncRNAs expressed in specific cancers hampers the use of lncRNAs as diagnostic markers of AML. The complex roles of lncRNAs in the pathophysiology of AML require further scrutiny to identify specific lncRNAs. This review, despite the lack of sufficient literature, discusses the therapeutic, diagnostic and prognostic roles of lncRNAs in AML and provides future insights that will contribute to studies targeting lncRNAs in the diagnosis, treatment, and management of AML.
Collapse
Affiliation(s)
- Aytenew Atnaf
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia.
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, 3168, Australia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Hylemariam Mihiretie Mengist
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Aster Tsegaye
- Department of Medical Laboratory Sciences, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Wilson C, Swaroop P, Kumar S, Chopra A, Sharawat SK. Molecular leveraging of HOX-embedded non-coding RNAs in the progression of acute myeloid leukemia. Hum Cell 2024; 38:24. [PMID: 39614990 DOI: 10.1007/s13577-024-01149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Acute myeloid leukemia (AML) is characterized by impaired differentiation of myeloid cells leading to hematopoietic failure. Despite advances, the molecular mechanisms driving AML remain incompletely understood, limiting the identification and targeting of critical vulnerabilities in leukemic cells. Homeobox (HOX) genes, encoding transcription factors essential for myeloid and lymphoid differentiation, are distributed across four clusters: HOXA (chromosome 7), HOXB (chromosome 17), HOXC (chromosome 12), and HOXD (chromosome 2). In addition to protein-coding sequences, HOX clusters encode non-coding RNAs (ncRNAs), which are functional as transcripts and do not translate into proteins. This is the first study wherein we comprehensively reviewed the literature for HOX-embedded ncRNAs, encompassing long non-coding RNAs (lncRNAs), microRNAs, circular RNAs (circRNAs), and piwiRNAs with a role in AML. To date, there is no evidence of circular RNAs and piwi RNAs encoded from the HOX gene clusters. Our review focuses on how leukemic cells harness the regulatory mechanisms of HOX-cluster-derived ncRNAs, (predominantly HOXA and HOXB) to modulate expression of HOX transcription factors facilitating leukemogenesis. HOX ncRNAs either regulate genes on the same chromosome (e.g., lncRNA HOTTIP) or influence expression of genes on different chromosomes (e.g., HOTAIR, HOX10-AS, miR-196b, and miR-10a). We discuss how specific HOX ncRNA networks are leveraged by leukemic cells, presenting an opportunity to explore targeted therapies and address the molecular heterogeneity of AML. Additionally, the aberrant expression of HOX ncRNAs such as HOXB derived ncRNAs in NPM1 mutated AML suggests their potential utility as improved biomarkers and for prognostication of patients with specific molecular aberrations.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Nucleophosmin/genetics
- Disease Progression
- Genes, Homeobox/genetics
- RNA, Untranslated/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/physiology
- MicroRNAs/genetics
- Homeodomain Proteins/genetics
- Multigene Family/genetics
- RNA, Circular/genetics
- RNA, Circular/physiology
- Cell Differentiation/genetics
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Christine Wilson
- Department of Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, Room No. 401, 4th Floor, New Delhi, India
| | - Priyanka Swaroop
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Kumar
- Department of Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, Room No. 401, 4th Floor, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Surender K Sharawat
- Department of Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, Room No. 401, 4th Floor, New Delhi, India.
| |
Collapse
|
4
|
Kubota Y, Kimura S. Current Understanding of the Role of Autophagy in the Treatment of Myeloid Leukemia. Int J Mol Sci 2024; 25:12219. [PMID: 39596291 PMCID: PMC11594995 DOI: 10.3390/ijms252212219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The most important issues in acute myeloid leukemia are preventing relapse and treating relapse. Although the remission rate has improved to approximately 80%, the 5-year survival rate is only around 30%. The main reasons for this are the high relapse rate and the limited treatment options. In chronic myeloid leukemia patients, when a deep molecular response is achieved for a certain period of time through tyrosine kinase inhibitor treatment, about half of them will reach treatment-free remission, but relapse is still a problem. Therefore, potential therapeutic targets for myeloid leukemias are eagerly awaited. Autophagy suppresses the development of cancer by maintaining cellular homeostasis; however, it also promotes cancer progression by helping cancer cells survive under various metabolic stresses. In addition, autophagy is promoted or suppressed in cancer cells by various genetic mutations. Therefore, the development of therapies that target autophagy is also being actively researched in the field of leukemia. In this review, studies of the role of autophagy in hematopoiesis, leukemogenesis, and myeloid leukemias are presented, and the impact of autophagy regulation on leukemia treatment and the clinical trials of autophagy-related drugs to date is discussed.
Collapse
MESH Headings
- Humans
- Autophagy
- Animals
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/therapy
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Hematopoiesis
Collapse
Affiliation(s)
- Yasushi Kubota
- Department of Clinical Laboratory Medicine, Saga-Ken Medical Centre Koseikan, Saga 840-8571, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| |
Collapse
|
5
|
Qin L, Li B, Wang S, Tang Y, Fahira A, Kou Y, Li T, Hu Z, Huang Z. Construction of an immune-related prognostic signature and lncRNA-miRNA-mRNA ceRNA network in acute myeloid leukemia. J Leukoc Biol 2024; 116:146-165. [PMID: 38393298 DOI: 10.1093/jleuko/qiae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The progression of acute myeloid leukemia (AML) is influenced by the immune microenvironment in the bone marrow and dysregulated intracellular competing endogenous RNA (ceRNA) networks. Our study utilized data from UCSC Xena, The Cancer Genome Atlas Program, the Gene Expression Omnibus, and the Immunology Database and Analysis Portal. Using Cox regression analysis, we identified an immune-related prognostic signature. Genomic analysis of prognostic messenger RNA (mRNA) was conducted through Gene Set Cancer Analysis (GSCA), and a prognostic ceRNA network was constructed using the Encyclopedia of RNA Interactomes. Correlations between signature mRNAs and immune cell infiltration, checkpoints, and drug sensitivity were assessed using R software, gene expression profiling interactive analysis (GEPIA), and CellMiner, respectively. Adhering to the ceRNA hypothesis, we established a potential long noncoding RNA (lncRNA)/microRNA (miRNA)/mRNA regulatory axis. Our findings pinpointed 9 immune-related prognostic mRNAs (KIR2DL1, CSRP1, APOBEC3G, CKLF, PLXNC1, PNOC, ANGPT1, IL1R2, and IL3RA). GSCA analysis revealed the impact of copy number variations and methylation on AML. The ceRNA network comprised 14 prognostic differentially expressed lncRNAs (DE-lncRNAs), 6 prognostic DE-miRNAs, and 3 prognostic immune-related DE-mRNAs. Correlation analyses linked these mRNAs' expression to 22 immune cell types and 6 immune checkpoints, with potential sensitivity to 27 antitumor drugs. Finally, we identified a potential LINC00963/hsa-miR-431-5p/CSRP1 axis. This study offers innovative insights for AML diagnosis and treatment through a novel immune-related signature and ceRNA axis. Identified novel biomarkers, including 2 mRNAs (CKLF, PNOC), 1 miRNA (hsa-miR-323a-3p), and 10 lncRNAs (SNHG25, LINC01857, AL390728.6, AC127024.5, Z83843.1, AP002884.1, AC007038.1, AC112512, AC020659.1, AC005921.3) present promising candidates as potential targets for precision medicine, contributing to the ongoing advancements in the field.
Collapse
Affiliation(s)
- Ling Qin
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Boya Li
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Shijie Wang
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Yulai Tang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake District, Dongguan 523808, Guangdong, China
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake District, Dongguan 523808, Guangdong, China
| | - Yanqi Kou
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Tong Li
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Zhigang Hu
- School of Medical Technology and Engineering, Henan University of Science and Technology, No.263 Kaiyuan Avenue, Luolong District, Luoyang 471000, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake District, Dongguan 523808, Guangdong, China
| |
Collapse
|
6
|
Han Z, Luo W, Shen J, Xie F, Luo J, Yang X, Pang T, Lv Y, Li Y, Tang X, He J. Non-coding RNAs are involved in tumor cell death and affect tumorigenesis, progression, and treatment: a systematic review. Front Cell Dev Biol 2024; 12:1284934. [PMID: 38481525 PMCID: PMC10936223 DOI: 10.3389/fcell.2024.1284934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 11/02/2024] Open
Abstract
Cell death is ubiquitous during development and throughout life and is a genetically determined active and ordered process that plays a crucial role in regulating homeostasis. Cell death includes regulated cell death and non-programmed cell death, and the common types of regulatory cell death are necrosis, apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis. Apoptosis, Necrosis and necroptosis are more common than autophagy, ferroptosis and pyroptosis among cell death. Non-coding RNAs are regulatory RNA molecules that do not encode proteins and include mainly microRNAs, long non-coding RNAs, and circular RNAs. Non-coding RNAs can act as oncogenes and tumor suppressor genes, with significant effects on tumor occurrence and development, and they can also regulate tumor cell autophagy, ferroptosis, and pyroptosis at the transcriptional or post-transcriptional level. This paper reviews the recent research progress on the effects of the non-coding RNAs involved in autophagy, ferroptosis, and pyroptosis on tumorigenesis, tumor development, and treatment, and looks forward to the future direction of this field, which will help to elucidate the molecular mechanisms of tumorigenesis and tumor development, as well as provide a new vision for the treatment of tumors.
Collapse
Affiliation(s)
- Zeping Han
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinggen Luo
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Xiang Yang
- Department of Gynaecology and Obstetrics, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Ting Pang
- Clinical Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yubing Lv
- Clinical Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yuguang Li
- He Xian Memorial Hospital, Southern Medical University, Guangzhou, China
| | - Xingkui Tang
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinhua He
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, China
| |
Collapse
|
7
|
Dong T, Yu C, Yang Z, He G, Wen Y, Roseng LE, Wei X, Jing W, Lin Q, Zhao L, Jiang Z. Nanotoxicity of tungsten trioxide nanosheets containing oxygen vacancy to human umbilical vein endothelial cells. Colloids Surf B Biointerfaces 2024; 234:113742. [PMID: 38271855 DOI: 10.1016/j.colsurfb.2023.113742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
Because of the excellent performance in photochemistry, WO3 is increasingly applied in the field of biology and medicine. However, little is known about the mechanism of WO3 cytotoxicity. In this work, WO3 nanosheets with oxygen vacancy are synthesized by solvothermal method, then characterized and added to culture medium of human umbilical vein endothelial cells (HUVECs) with different concentrations. We characterized and analyzed the morphology of nano-WO3 by transmission electron microscopy and calculated the specific data of oxygen vacancy by XPS. It is the first time the effect of WO3-x on cells that WO3-x can cause oxidative stress in HUVEC cells, resulting in DNA damage and thus promoting apoptosis. Transcriptome sequencing is performed on cells treated with low and high concentrations of WO3-x, and a series of key signals affecting cell proliferation and apoptosis are detected in differentially expressed genes, which indicates the research direction of nanotoxicity. The expression levels of key genes are also verified by quantitative PCR after cell treatment with different concentrations of WO3-x. This work fills the gap between the biocompatibility of nano WO3-x materials and molecular cytology and paves the way for investigating the mechanism and risks of oxygen vacancy in cancer therapy.
Collapse
Affiliation(s)
- Tao Dong
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-NanoSystems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-NanoSystems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-NanoSystems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
| | - Guozhen He
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-NanoSystems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway
| | - Yumei Wen
- Department of Instrumentation Science and Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, China
| | - Lars Eric Roseng
- Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway
| | - Xueyong Wei
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weixuan Jing
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qijing Lin
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Jung YY, Ahn KS, Shen M. Unveiling autophagy complexity in leukemia: The molecular landscape and possible interactions with apoptosis and ferroptosis. Cancer Lett 2024; 582:216518. [PMID: 38043785 DOI: 10.1016/j.canlet.2023.216518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Autophagy is a self-digestion multistep process in which causes the homeostasis through degradation of macromolecules and damaged organelles. The autophagy-mediated tumor progression regulation has been a critical point in recent years, revealing the function of this process in reduction or acceleration of carcinogenesis. Leukemia is a haematological malignancy in which abnormal expansion of hematopoietic cells occurs. The current and conventional therapies from chemotherapy to cell transplantation have failed to appropriately treat the leukemia patients. Among the mechanisms dysregulated in leukemia, autophagy is a prominent one in which can regulate the hallmarks of this tumor. The protective autophagy inhibits apoptosis and ferroptosis in leukemia, while toxic autophagy accelerates cell death. The proliferation and invasion of tumor cells are tightly regulated by the autophagy. The direction of regulation depends on the function of autophagy that is protective or lethal. The protective autophagy accelerates chemoresistance and radio-resistsance. The non-coding RNAs, histone transferases and other pathways such as PI3K/Akt/mTOR are among the regulators of autophagy in leukemia progression. The pharmacological intervention for the inhibition or induction of autophagy by the compounds including sesamine, tanshinone IIA and other synthetic compounds can chance progression of leukemia.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Sanya, China.
| |
Collapse
|
9
|
Fu G, Wu H, Wu X, Yang Y, Fan C. LncRNA LBX2-AS1 inhibits acute myeloid leukemia progression through miR-455-5p/MYLIP axis. Heliyon 2024; 10:e24812. [PMID: 38312562 PMCID: PMC10835375 DOI: 10.1016/j.heliyon.2024.e24812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a common blood cancer primarily affecting the bone marrow and blood cells, which is prevalent among adults. Long non-coding RNAs (lncRNAs) have been shown to play a crucial role in the development and progression of AML. LBX2-AS1 is a recently discovered lncRNA that has been linked to the pathogenesis and progression of several types of cancer. This study aimed to investigate the role and possible mechanisms of LBX2-AS1 in AML. Expression levels of LBX2-AS1, miR-455-5p, and their target genes were detected in AML samples and cells by RT-qPCR. Cell proliferation and apoptosis were determined by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays, and flow cytometry, respectively. LBX2-AS1 was downregulated in AML specimens and cells, and overexpression of LBX2-AS1 significantly inhibited cell proliferation and enhanced apoptosis in vitro. We also determined the effects of LBX2-AS1 overexpression in an AML mouse model by in vivo bioluminescence imaging. Mechanistically, LBX2-AS1 acts as a competitive endogenous RNA, which promotes myosin regulatory light chain interacting protein (MYLIP) expression by sponging miR-455-5p. Knockdown of MYLIP or upregulation of miR-455-5p antagonized the effect of LBX2-AS1 overexpression on the progression of AML. LBX2-AS1 may thus be a valuable therapeutic target for AML.
Collapse
Affiliation(s)
- Gongli Fu
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Hao Wu
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Xiaomiao Wu
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Yang Yang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cuihua Fan
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Yan JH, Liao KQ, Yao L, Chen JL, Xiong LF, Tao XZ. LncRNA AL645608.3 mediates malignant progression of acute myeloid leukemia. Am J Transl Res 2024; 16:342-355. [PMID: 38322561 PMCID: PMC10839383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVE To investigate the role of lncRNA AL645608.3 in the malignant progression of acute myeloid leukemia (AML) cells and explore relevant molecular mechanisms. METHODS The expression level of AL645608.3 was measured in AML cell lines (THP-1, HL-60, KG-1, and AML-193) via real-time quantitative polymerase chain reaction (RT-qPCR). Small hairpin RNA (shRNA) and open reading frame of AL645608.3 were cloned into lentiviral vectors and were infected into THP-1 and AML-193 cells. The expression of casitas B-lineage lymphoma (CBL), interferon regulatory factor 6 (IRF6), and interferon beta 1 (IFNB1) was detected through RT-qPCR, and western blot. Co-immunoprecipitation (Co-IP) on IRF6 was conducted. Matrix metalloprotease-9 (MMP-9) activity was evaluated via gelatin zymography assay. RESULTS LncRNA AL645608.3 was expressed in the four AML cell lines (THP-1, HL-60, KG-1, and AML-193). Silencing AL645608.3 mitigated the expression of IRF6 and IFNB1 but elevated the expression of CBL in THP-1 cells. Oppositely, AL645608.3 overexpression up-regulated the expression of IRF6 and IFNB1 but decreased the expression of CBL in AML-193 cells. Co-IP results proved that AL645608.3 could directly mediate IRF6 activity in THP-1 and AML-193 cells. MMP-9 activity was decreased by AL645608.3 knockdown and was improved by AL645608.3 overexpression in AML-193 cells. CONCLUSION AL645608.3 is expressed in different AML cell lines, and mediates the expression of CBL, IRF6, IFNB1, and MMP-9. These findings might deepen our comprehension of the molecular mechanisms underlying AML.
Collapse
Affiliation(s)
- Jin-Hua Yan
- School of Information Management, Jiangxi University of Finance and EconomicsNanchang 330013, Jiangxi, China
| | - Kai-Qiong Liao
- Department of Hematology, The First Hospital of NanchangNanchang 330008, Jiangxi, China
| | - Ling Yao
- Department of Gastroenterology, The First Hospital of NanchangNanchang 330008, Jiangxi, China
| | - Jian-Lan Chen
- Department of Hematology, The First Hospital of NanchangNanchang 330008, Jiangxi, China
| | - Li-Fang Xiong
- Department of Hematology, The First Hospital of NanchangNanchang 330008, Jiangxi, China
| | - Xu-Zhang Tao
- Department of Nuclear Medicine, The First Hospital of NanchangNanchang 330008, Jiangxi, China
| |
Collapse
|
11
|
Zhang N, Shen MY, Meng QL, Sun HP, Fan FY, Yi H, Yang YJ. FAT1 inhibits AML autophagy and proliferation via downregulating ATG4B expression. Biochim Biophys Acta Gen Subj 2024; 1868:130519. [PMID: 37952564 DOI: 10.1016/j.bbagen.2023.130519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Emerging studies have shown that FAT atypical cadherin 1 (FAT1) and autophagy separately inhibits and promotes acute myeloid leukemia (AML) proliferation. However, it is unknown whether FAT1 were associated with autophagy in regulating AML proliferation. METHODS AML cell lines, 6-week-old male nude mice and AML patient samples were used in this study. qPCR/Western blot and cell viability/3H-TdR incorporation assays were separately used to detect mRNA/protein levels and cell activity/proliferation. Luciferase reporter assay was used to examine gene promoter activity. Co-IP analysis was used to detect the binding of proteins. RESULTS In this study, we for the first time demonstrated that FAT1 inhibited AML proliferation by decreasing AML autophagy level. Moreover, FAT1 weakened AML autophagy level via decreasing autophagy related 4B (ATG4B) expression. Mechanistically, we found that FAT1 reduced the phosphorylated and intranuclear SMAD family member 2/3 (smad2/3) protein levels, thus decreasing the activity of ATG4B gene promoter. Furthermore, we found that FAT1 competitively bound to TGF-βR II which decreased the binding of TGF-βR II to TGF-βR I and the subsequent phosphorylation of TGF-βR I, thus reducing the phosphorylation and intranuclear smad2/3. The experiments in nude mice showed that knockdown of FAT1 promoted AML autophagy and proliferation in vivo. CONCLUSIONS Collectively, these results revealed that FAT1 downregulates ATG4B expression via inhibiting TGFβ-smad2/3 signaling activity, thus decreasing the autophagy level and proliferation activity of AML cells. GENERAL SIGNIFICANCE Our study suggested that the "FAT1-TGFβ-smad2/3-ATG4B-autophagy" pathway may be a novel target for developing new targeted drugs to AML treatment.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Meng-Yu Shen
- Department of Medical Laboratory Center, People's Liberation Army The General Hospital of Central Theater Command, Wuhan 430012, China
| | - Qing-Li Meng
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Hao-Ping Sun
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Fang-Yi Fan
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Hai Yi
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yong-Jian Yang
- Department of Cardiology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China.
| |
Collapse
|
12
|
Wallace L, Obeng EA. Noncoding rules of survival: epigenetic regulation of normal and malignant hematopoiesis. Front Mol Biosci 2023; 10:1273046. [PMID: 38028538 PMCID: PMC10644717 DOI: 10.3389/fmolb.2023.1273046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Hematopoiesis is an essential process for organismal development and homeostasis. Epigenetic regulation of gene expression is critical for stem cell self-renewal and differentiation in normal hematopoiesis. Increasing evidence shows that disrupting the balance between self-renewal and cell fate decisions can give rise to hematological diseases such as bone marrow failure and leukemia. Consequently, next-generation sequencing studies have identified various aberrations in histone modifications, DNA methylation, RNA splicing, and RNA modifications in hematologic diseases. Favorable outcomes after targeting epigenetic regulators during disease states have further emphasized their importance in hematological malignancy. However, these targeted therapies are only effective in some patients, suggesting that further research is needed to decipher the complexity of epigenetic regulation during hematopoiesis. In this review, an update on the impact of the epigenome on normal hematopoiesis, disease initiation and progression, and current therapeutic advancements will be discussed.
Collapse
Affiliation(s)
| | - Esther A. Obeng
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
13
|
Gao L, Zhang X, Cui J, Liu L, Tai D, Wang S, Huang L. Transcription factor TP63 mediates LncRNA CNTFR-AS1 to promote DNA damage induced by neodymium oxide nanoparticles via homologous recombination repair. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122191. [PMID: 37451587 DOI: 10.1016/j.envpol.2023.122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The widespread use of neodymium oxide nanoparticles (NPs-Nd2O3) has caused environmental pollution and human health problems, thus attracting significant attention. Understanding the mechanisms of NPs- Nd2O3-induced genetic damage is of great significance for identifying early markers for NPs- Nd2O3-induced lung injury. At present, the mechanisms underlying DNA damage induced by NPs- Nd2O3 remain unclear. In this study, we performed functional assays on human bronchial epithelial cells (16HBEs) exposed to various concentrations of NPs-Nd2O3 and SD rats administered with a single intratracheal instillation with NPs-Nd2O3. Exposure to NPs-Nd2O3 could lead to DNA damage in 16HBE cells and rat lung tissue cells. We found a novel long non-coding RNA, named CNTFR-AS1, which was highly expressed after exposure to NPs-Nd2O3. Our data verified that transcription factor TP63 mediates the high expression levels of CNTFR-AS1, which in turn regulates NPs-Nd2O3-induced DNA damage in cells by inhibiting HR repair. Moreover, the levels of CNTFR-AS1 were correlated with the number of years worked by occupational workers. Collectively, these results demonstrate that CNTFR-AS1 acts as a novel DNA damage regulator in bronchial epithelial cells exposed to NPs-Nd2O3. Hence, our data provide a basis for the identification of lncRNAs as early diagnostic markers for rare earth lung injury.
Collapse
Affiliation(s)
- Lei Gao
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China
| | - Xia Zhang
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China
| | - Jinjin Cui
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China
| | - Ling Liu
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China
| | - Dapeng Tai
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China.
| |
Collapse
|
14
|
Wang Y, Wang T, Han Z, Wang R, Hu Y, Yang Z, Shen T, Zheng Y, Luo J, Ma Y, Luo Y, Jiao L. Explore the role of long noncoding RNAs and mRNAs in intracranial atherosclerotic stenosis: From the perspective of neutrophils. Brain Circ 2023; 9:240-250. [PMID: 38284107 PMCID: PMC10821680 DOI: 10.4103/bc.bc_63_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024] Open
Abstract
CONTEXT Circulating neutrophils and long noncoding RNAs (lncRNAs) play various roles in intracranial atherosclerotic stenosis (ICAS). OBJECTIVE Our study aimed to detect differentially expressed (DE) lncRNAs and mRNAs in circulating neutrophils and explore the pathogenesis of atherosclerosis from the perspective of neutrophils. METHODS Nineteen patients with ICAS and 15 healthy controls were enrolled. The peripheral blood of the participants was collected, and neutrophils were separated. The expression profiles of lncRNAs and mRNAs in neutrophils from five patients and five healthy controls were obtained, and DE lncRNAs and mRNAs were selected. Six lncRNAs were selected and validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and ceRNA and lncRNA-RNA binding protein (RBP)-mRNA networks were constructed. Correlation analysis between lncRNAs and mRNAs was performed. Functional enrichment annotations were also performed. RESULTS Volcano plots and heat maps displayed the expression profiles and DE lncRNAs and mRNAs, respectively. The qRT-PCR results revealed that the four lncRNAs showed a tendency consistent with the expression profile, with statistical significance. The ceRNA network revealed three pairs of regulatory networks: lncRNA RP3-406A7.3-NAGLU, lncRNA HOTAIRM1-MVK/IL-25/GBF1/CNOT4/ANKK1/PLEKHG6, and lncRNA RP11-701H16.4-ZNF416. The lncRNA-RBP-mRNA network showed five pairs of regulatory networks: lncRNA RP11-701H16.4-TEK, lncRNA RP11-701H16.4-MED17, lncRNA SNHG19-NADH-ubiquinone oxidoreductase core subunit V1, lncRNA RP3-406A7.3-Angel1, and lncRNA HOTAIRM1-CARD16. CONCLUSIONS Our study identified and verified four lncRNAs in neutrophils derived from peripheral blood, which may explain the transcriptional alteration of neutrophils during the pathophysiological process of ICAS. Our results provide insights for research related to the pathogenic mechanisms and drug design of ICAS.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yue Hu
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tong Shen
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Ma
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Yu X, Duan W, Wu F, Yang D, Wang X, Wu J, Zhou D, Shen Y. LncRNA-HOTAIRM1 promotes aerobic glycolysis and proliferation in osteosarcoma via the miR-664b-3p/Rheb/mTOR pathway. Cancer Sci 2023; 114:3537-3552. [PMID: 37316683 PMCID: PMC10475784 DOI: 10.1111/cas.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/08/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
Osteosarcoma (OS), which is a common and aggressive primary bone malignancy, occurs mainly in children and adolescent. Long noncoding RNAs (lncRNAs) are reported to play a pivotal role in various cancers. Here, we found that the lncRNA HOTAIRM1 is upregulated in OS cells and tissues. A set of functional experiments suggested that HOTAIRM1 knockdown attenuated the proliferation and stimulated the apoptosis of OS cells. A subsequent mechanistic study revealed that HOTAIRM1 functions as a competing endogenous RNA to elevate ras homologue enriched in brain (Rheb) expression by sponging miR-664b-3p. Immediately afterward, upregulated Rheb facilitates proliferation and suppresses apoptosis by promoting the mTOR pathway-mediated Warburg effect in OS. In summary, our findings demonstrated that HOTAIRM1 promotes the proliferation and suppresses the apoptosis of OS cells by enhancing the Warburg effect via the miR-664b-3p/Rheb/mTOR axis. Understanding the underlying mechanisms and targeting the HOTAIRM1/miR-664b-3p/Rheb/mTOR axis are essential for OS clinical treatment.
Collapse
Affiliation(s)
- Xuecheng Yu
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Weihao Duan
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Furen Wu
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
- Dalian Medical UniversityDalianChina
| | - Daibin Yang
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
- Dalian Medical UniversityDalianChina
| | - Xin Wang
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Jingbin Wu
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Dong Zhou
- Changzhou No.6 People's HospitalNanjing Medical UniversityChangzhouChina
- Changzhou Medical CenterNanjing Medical UniversityChangzhouChina
- Department of OrthopedicsWuqia People's HospitalXinjiangChina
| | - Yifei Shen
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| |
Collapse
|
16
|
Ma Q, Zhao M, Long B, Li H. Super-enhancer-associated gene CAPG promotes AML progression. Commun Biol 2023; 6:622. [PMID: 37296281 PMCID: PMC10256737 DOI: 10.1038/s42003-023-04973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukemia is the most common acute leukemia in adults, the barrier of refractory and drug resistance has yet to be conquered in the clinical. Abnormal gene expression and epigenetic changes play an important role in pathogenesis and treatment. A super-enhancer is an epigenetic modifier that promotes pro-tumor genes and drug resistance by activating oncogene transcription. Multi-omics integrative analysis identifies the super-enhancer-associated gene CAPG and its high expression level was correlated with poor prognosis in AML. CAPG is a cytoskeleton protein but has an unclear function in AML. Here we show the molecular function of CAPG in regulating NF-κB signaling pathway by proteomic and epigenomic analysis. Knockdown of Capg in the AML murine model resulted in exhausted AML cells and prolonged survival of AML mice. In conclusion, SEs-associated gene CAPG can contributes to AML progression through NF-κB.
Collapse
Affiliation(s)
- Qian Ma
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Minyi Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China.
| |
Collapse
|
17
|
Huang Z, Zhou J, Jiang Y, Han Y, Wang X, Li F, Jiang S, Yu K, Zhang S. Combined inhibition of XIAP and autophagy induces apoptosis and differentiation in acute myeloid leukaemia. J Cell Mol Med 2023; 27:1682-1696. [PMID: 37154878 PMCID: PMC10273072 DOI: 10.1111/jcmm.17765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Perturbations in autophagy, apoptosis and differentiation have greatly affected the progression and therapy of acute myeloid leukaemia (AML). The role of X-linked inhibitor of apoptosis (XIAP)-related autophagy remains unclear in AML therapeutics. Here, we found that XIAP was highly expressed and associated with poor overall survival in patients with AML. Furthermore, pharmacologic inhibition of XIAP using birinapant or XIAP knockdown via siRNA impaired the proliferation and clonogenic capacity by inducing autophagy and apoptosis in AML cells. Intriguingly, birinapant-induced cell death was aggravated in combination with ATG5 siRNA or an autophagy inhibitor spautin-1, suggesting that autophagy may be a pro-survival signalling. Spautin-1 further enhanced the ROS level and myeloid differentiation in THP-1 cells treated with birinapant. The mechanism analysis showed that XIAP interacted with MDM2 and p53, and XIAP inhibition notably downregulated p53, substantially increased the AMPKα1 phosphorylation and downregulated the mTOR phosphorylation. Combined treatment using birinapant and chloroquine significantly retarded AML progression in both a subcutaneous xenograft model injected with HEL cells and an orthotopic xenograft model injected intravenously with C1498 cells. Collectively, our data suggested that XIAP inhibition can induce autophagy, apoptosis and differentiation, and combined inhibition of XIAP and autophagy may be a promising therapeutic strategy for AML.
Collapse
Affiliation(s)
- Ziyang Huang
- Department of HematologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Institute of HematologyWenzhou Medical UniversityWenzhouZhejiangChina
- Wenzhou Key Laboratory of HematologyWenzhouZhejiangChina
| | - Jifan Zhou
- Department of HematologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Institute of HematologyWenzhou Medical UniversityWenzhouZhejiangChina
- Wenzhou Key Laboratory of HematologyWenzhouZhejiangChina
| | - Yinyan Jiang
- Department of HematologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Institute of HematologyWenzhou Medical UniversityWenzhouZhejiangChina
- Wenzhou Key Laboratory of HematologyWenzhouZhejiangChina
| | - Yixiang Han
- Institute of HematologyWenzhou Medical UniversityWenzhouZhejiangChina
- Wenzhou Key Laboratory of HematologyWenzhouZhejiangChina
- Central LaboratoryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Xiaofang Wang
- Department of HematologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Institute of HematologyWenzhou Medical UniversityWenzhouZhejiangChina
- Wenzhou Key Laboratory of HematologyWenzhouZhejiangChina
| | - Fanfan Li
- Department of HematologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Institute of HematologyWenzhou Medical UniversityWenzhouZhejiangChina
- Wenzhou Key Laboratory of HematologyWenzhouZhejiangChina
| | - Songfu Jiang
- Department of HematologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Institute of HematologyWenzhou Medical UniversityWenzhouZhejiangChina
- Wenzhou Key Laboratory of HematologyWenzhouZhejiangChina
| | - Kang Yu
- Department of HematologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Institute of HematologyWenzhou Medical UniversityWenzhouZhejiangChina
- Wenzhou Key Laboratory of HematologyWenzhouZhejiangChina
| | - Shenghui Zhang
- Department of HematologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Institute of HematologyWenzhou Medical UniversityWenzhouZhejiangChina
- Wenzhou Key Laboratory of HematologyWenzhouZhejiangChina
- Laboratory Animal CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
18
|
Gu D, Tong M, Wang J, Zhang B, Liu J, Song G, Zhu B. Overexpression of the lncRNA HOTAIRM1 promotes lenvatinib resistance by downregulating miR-34a and activating autophagy in hepatocellular carcinoma. Discov Oncol 2023; 14:66. [PMID: 37171645 PMCID: PMC10182232 DOI: 10.1007/s12672-023-00673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant cancers in humans and has a high fatality rate. Despite pharmacological advances such as sorafenib and lenvatinib approval, responses are seen only in a limited fraction of HCCs, and the majority of HCC patients do not benefit from this treatment. In recent years, researchers have verified that the long noncoding RNAs (lncRNAs) impact the efficiency of lenvatinib and the prognosis of patients with HCC. MATERIALS AND METHODS This work obtained gene expression profile from an Arraystar lncRNA microarray. Expression of HOTAIRM1, Beclin-1, and p62 in HCC was characterized in clinical HCC tissues of 24 patients with HCC. Overexpression and knockdown experiments were performed in HCC cells to examine the effects of the HOTAIRM1 on lenvatinib sensitivity. The interactions between HOTAIRM1, miR-34a and Beclin-1 were predicted according to GSEA and CNC network. The effects of HOTAIRM1, autophagy and lenvatinib on tumor inhibit were validated in orthotopic tumor-bearing nude mouse model. RESULTS Lenvatinib-resistant HCC cell lines were established using the concentration gradient method. Data from an Arraystar lncRNA microarray indicated that HOTAIRM1, a specific lncRNA located in an evolutionarily highly conserved HOX gene cluster, was differentially expressed between lenvatinib-resistant HCC cells and their parental cells. Expression of HOTAIRM1 and Beclin-1 in HCC was characterized in clinical HCC tissues of 24 patients who have different sensitivity to lenvatinib. Knocking down of HOTAIRM1 decreased the autophagy level in lenvatinib-resistant HCC cells and increased their sensitivity to lenvatinib, especially when combined with autophagy inhibitors both in vitro and in vivo. Further study indicated that knocking down HOTAIRM1 in lenvatinib-resistant cell lines increased the level of miR-34a and inhibited the expression of Beclin-1 in Huh7-R and HepG2-R cells. Investigation according to GSEA and CNC network, lncRNA and nearby coding gene and lncRNA-miRNA analyses demonstrated that the resistance of HCC to lenvatinib was affected by the HOTAIRM1-miR-34a-Beclin-1 regulatory axis. CONCLUSION HOTAIRM1 is an independent drug resistance factor which significantly associated with the efficacy of lenvatinib in HCC. HOTAIRM1 may downregulation of miR-34a and upregulation of Beclin-1, leading to activation of autophagy, thereby inducing lenvatinib resistance in HCC.
Collapse
Affiliation(s)
- Danyan Gu
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Meng Tong
- Department of General Surgery, Jinzhou Medical University, Jinzhou, 121001, China
| | - Jing Wang
- Department of Radiology, Linyi People's Hospital, Linyi, 276000, China
| | - Bocheng Zhang
- Department of General Surgery, Jinzhou Medical University, Jinzhou, 121001, China
| | - Jinghua Liu
- Department of Hepatobiliary Surgery and Minimally Invasive Institute of Digestive Surgery and Prof. Cai's Laboratory, Linyi People's Hospital, Linyi, 276000, China
| | - Guoqiang Song
- Department of Pulmonary, Department of Cancer Center, Changxing Hospital of Traditional Chinese Medicine, Huzhou, 313100, China.
| | - Biao Zhu
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Zhou Q, Shu X, Chai Y, Liu W, Li Z, Xi Y. The non-coding competing endogenous RNAs in acute myeloid leukemia: biological and clinical implications. Biomed Pharmacother 2023; 163:114807. [PMID: 37150037 DOI: 10.1016/j.biopha.2023.114807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic carcinoma that has seen a considerable improvement in patient prognosis because of genetic diagnostics and molecularly-targeted therapies. Nevertheless, recurrence and drug resistance remain significant obstacles to leukemia treatment. It is critical to investigate the underlying molecular mechanisms and find solutions. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circular RNAs, long non-coding RNAs, and pseudogenes, have been found to be crucial components in driving cancer. The competing endogenous RNA (ceRNA) mechanism has expanded the complexity of miRNA-mediated gene regulation. A great deal of literature has shown that ncRNAs are essential to the biological functions of the ceRNA network (ceRNET). NcRNAs can compete for the same miRNA response elements to influence miRNA-target RNA interactions. Recent evidence suggests that ceRNA might be a potential biomarker and therapeutic strategy. So far, however, there have been no comprehensive studies on ceRNET about AML. What is not yet clear is the clinical application of ceRNA in AML. This study attempts to summarize the development of research on the related ceRNAs in AML and the roles of ncRNAs in ceRNET. We also briefly describe the mechanisms of ceRNA and ceRNET. What's more significant is that we explore the clinical value of ceRNAs to provide accurate diagnostic and prognostic biomarkers as well as therapeutic targets. Finally, limitations and prospects are considered.
Collapse
Affiliation(s)
- Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaojun Shu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Vascular Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenling Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
20
|
Zhao L, Wu X, Zhang Z, Fang L, Yang B, Li Y. ELF1 suppresses autophagy to reduce cisplatin resistance via the miR-152-3p/NCAM1/ERK axis in lung cancer cells. Cancer Sci 2023. [PMID: 36846943 DOI: 10.1111/cas.15770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023] Open
Abstract
Resistance to chemotherapeutic drugs limits the efficacy of chemotherapy in non-small cell lung cancer (NSCLC). Autophagy is an essential mechanism which involves in drug resistance. Our previous research has revealed that miR-152-3p represses NSCLC progression. However, the mechanism of miR-152-3p in autophagy-mediated chemoresistance in NSCLC remains unclear. Cisplatin-resistant cell lines (A549/DDP and H446/DDP) were transfected with related vectors and subjected to cisplatin, autophagy inhibitor, activator, or extracellular signal-regulated kinase (ERK) activator. Flow cytometry, CCK8 and colony formation assays were performed for testing apoptosis and cell viability. The related RNAs or proteins were detected by qRT-PCR or Western blot. Chromatin immunoprecipitation, luciferase reporter assay or RNA immunoprecipitation were used for validating the interaction between miR-152-3p and ELF1 or NCAM1. Co-IP verified the binding between NCAM1 and ERK. The role of miR-152-3p in cisplatin resistance of NSCLC was also validated in vivo. The results showed that miR-152-3p and ELF1 were decreased in NSCLC tissues. miR-152-3p reversed cisplatin resistance by inhibiting autophagy through NCAM1. NCAM1 promoted autophagy through the ERK pathway and facilitated cisplatin resistance. ELF1 positively regulated miR-152-3p level by directly interacting with miR-152-3p promoter. miR-152-3p targeted NCAM1 to regulate NCAM1 level and then affected the binding of NCAM1 to ERK1/2. ELF1 inhibited autophagy and reversed cisplatin resistance through miR-152-3p/NCAM1. miR-152-3p inhibited autophagy and cisplatin resistance of xenograft tumor in mice. In conclusion, our study revealed that ELF1 inhibited autophagy to attenuate cisplatin resistance through the miR-152-3p/NCAM1/ERK pathway in H446/DDP and A549/DDP cells, suggesting a potential novel treatment strategy for NSCLC.
Collapse
Affiliation(s)
- Lifeng Zhao
- Departments of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiangsheng Wu
- School of Clinical Medicine, Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Zhiwen Zhang
- School of Clinical Medicine, Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Lini Fang
- Departments of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Bo Yang
- Departments of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yepeng Li
- Departments of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
21
|
Symeonidis A, Chatzilygeroudi T, Chondrou V, Sgourou A. Contingent Synergistic Interactions between Non-Coding RNAs and DNA-Modifying Enzymes in Myelodysplastic Syndromes. Int J Mol Sci 2022; 23:16069. [PMID: 36555712 PMCID: PMC9785516 DOI: 10.3390/ijms232416069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell disorders with maturation and differentiation defects exhibiting morphological dysplasia in one or more hematopoietic cell lineages. They are associated with peripheral blood cytopenias and by increased risk for progression into acute myelogenous leukemia. Among their multifactorial pathogenesis, age-related epigenetic instability and the error-rate DNA methylation maintenance have been recognized as critical factors for both the initial steps of their pathogenesis and for disease progression. Although lower-risk MDS is associated with an inflammatory bone marrow microenvironment, higher-risk disease is delineated by immunosuppression and clonal expansion. "Epigenetics" is a multidimensional level of gene regulation that determines the specific gene networks expressed in tissues under physiological conditions and guides appropriate chromatin rearrangements upon influence of environmental stimulation. Regulation of this level consists of biochemical modifications in amino acid residues of the histone proteins' N-terminal tails and their concomitant effects on chromatin structure, DNA methylation patterns in CpG dinucleotides and the tissue-specific non-coding RNAs repertoire, which are directed against various gene targets. The role of epigenetic modifications is widely recognized as pivotal both in gene expression control and differential molecular response to drug therapies in humans. Insights to the potential of synergistic cooperations of epigenetic mechanisms provide new avenues for treatment development to comfort human diseases with a known epigenetic shift, such as MDS. Hypomethylating agents (HMAs), such as epigenetic modulating drugs, have been widely used in the past years as first line treatment for elderly higher-risk MDS patients; however, just half of them respond to therapy and are benefited. Rational outcome predictors following epigenetic therapy in MDS and biomarkers associated with disease relapse are of high importance to improve our efforts in developing patient-tailored clinical approaches.
Collapse
Affiliation(s)
- Argiris Symeonidis
- Hematology Division & Stem Cell Transplantation Unit, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
- Medical School University of Patras, University Campus, 26500 Patras, Greece
| | - Theodora Chatzilygeroudi
- Hematology Division & Stem Cell Transplantation Unit, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
22
|
Jafari-Raddani F, Davoodi-Moghaddam Z, Yousefi AM, Ghaffari SH, Bashash D. An overview of long noncoding RNAs: Biology, functions, therapeutics, analysis methods, and bioinformatics tools. Cell Biochem Funct 2022; 40:800-825. [PMID: 36111699 DOI: 10.1002/cbf.3748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a diverse class of RNAs whose functions are widespread in all branches of life and have been the focus of attention in the last decade. While a huge number of lncRNAs have been identified, there is still much work to be done and plenty to be learned. In the current review, we begin with the biogenesis and function of lncRNAs as they are involved in the different cellular processes from regulating the architecture of chromosomes to controlling translation and post-translation modifications. Questions on how overexpression, mutations, or deficiency of lncRNAs can affect the cellular status and result in the pathogenesis of various human diseases are responded to. Besides, we allocate an overview of several studies, concerning the application of lncRNAs either as diagnostic and prognostic biomarkers or novel therapeutics. We also introduce the currently available techniques to explore details of lncRNAs such as their function, cellular localization, and structure. In the last section, as exponentially growing data in this area need to be gathered and organized in comprehensive databases, we have a particular focus on presenting general and specialized databases. Taken together, with this review, we aim to provide the latest information on different aspects of lncRNAs to highlight their importance in physiopathologic states and take a step towards helping future studies.
Collapse
Affiliation(s)
- Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Yin L, Zhang J, Sun Y. Early growth response-1 is a new substrate of the GSK3β-FBXW7 axis. Neoplasia 2022; 34:100839. [PMID: 36240645 PMCID: PMC9573921 DOI: 10.1016/j.neo.2022.100839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
EGR1, a short-lived transcription factor, regulates several biological processes, including cell proliferation and tumor progression. Whether and how EGR1 is regulated by Cullin-RING ligases (CRLs) remains elusive. Here, we report that MLN4924, a small molecule inhibitor of neddylation, causes EGR1 accumulation by inactivating SCFFBXW7 (CRL1), which is a new E3 ligase for EGR1. Specifically, FBXW7 binds to EGR1 via its consensus binding motif/degron, whereas cancer-derived FBXW7 mutants showed a much reduced EGR1 binding. SiRNA-mediated FBXW7 knockdown caused EGR1 accumulation, whereas FBXW7 overexpression reduced EGR1 levels. Likewise, FBXW7 knockdown significantly extended EGR1 protein half-life, while FBXW7 overexpression promotes polyubiquitylation of wild-type EGR1, but not EGR1-S2A mutant with the binding site abrogated. GSK3β kinase is required for the FBXW7-EGR1 binding, and for enhanced EGR1 degradation by wild type FBXW7, but not by FBXW7 mutants. Likewise, GSK3β knockdown or treatment with GSK3β inhibitor significantly increased the EGR1 levels and extended EGR1 protein half-life, while reducing EGR1 polyubiquitylation. Hypoxia exposure reduces the EGR1 levels via enhancing the FBXW7-EGR1 binding, and FBXW7-induced EGR1 polyubiquitylation. Biologically, EGR1 knockdown suppressed cancer cell growth, whereas growth stimulation by FBXW7 knockdown is partially rescued by EGR1 knockdown. Thus, EGR1 is a new substrate of the GSK3β-FBXW7 axis, and the FBXW7-EGR1 axis coordinately regulates growth of cancer cells.
Collapse
Affiliation(s)
- Lu Yin
- Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Jiagui Zhang
- Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
24
|
Gasic V, Karan-Djurasevic T, Pavlovic D, Zukic B, Pavlovic S, Tosic N. Diagnostic and Therapeutic Implications of Long Non-Coding RNAs in Leukemia. Life (Basel) 2022; 12:1770. [PMID: 36362925 PMCID: PMC9695865 DOI: 10.3390/life12111770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Leukemia is a heterogenous group of hematological malignancies categorized in four main types (acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Several cytogenetic and molecular markers have become a part of routine analysis for leukemia patients. These markers have been used in diagnosis, risk-stratification and targeted therapy application. Recent studies have indicated that numerous regulatory RNAs, such as long non-coding RNAs (lncRNAs), have a role in tumor initiation and progression. When it comes to leukemia, data for lncRNA involvement in its etiology, progression, diagnosis, treatment and prognosis is limited. The aim of this review is to summarize research data on lncRNAs in different types of leukemia, on their expression pattern, their role in leukemic transformation and disease progression. The usefulness of this information in the clinical setting, i.e., for diagnostic and prognostic purposes, will be emphasized. Finally, how particular lncRNAs could be used as potential targets for the application of targeted therapy will be considered.
Collapse
Affiliation(s)
- Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
25
|
Li J, Teng P, Yang F, Ou X, Zhang J, Chen W. Bioinformatics and Screening of a Circular RNA-microRNA-mRNA Regulatory Network Induced by Coxsackievirus Group B5 in Human Rhabdomyosarcoma Cells. Int J Mol Sci 2022; 23:ijms23094628. [PMID: 35563023 PMCID: PMC9101002 DOI: 10.3390/ijms23094628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) caused by Coxsackievirus Group B5 (CVB5) is one of the most common herpetic diseases in human infants and children. The pathogenesis of CVB5 remains unknown. Circular RNAs (CircRNAs), as novel noncoding RNAs, have been shown to play a key role in many pathogenic processes in different species; however, their functions during the process of CVB5 infection remain unclear. In the present study, we investigated the expression profiles of circRNAs using RNA sequencing technology in CVB5-infected and mock-infected human rhabdomyosarcoma cells (CVB5 virus that had been isolated from clinical specimens). In addition, several differentially expressed circRNAs were validated by RT-qPCR. Moreover, the innate immune responses related to circRNA-miRNA-mRNA interaction networks were constructed and verified. A total of 5461 circRNAs were identified at different genomic locations in CVB5 infections and controls, of which 235 were differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrated that the differentially expressed circRNAs were principally involved in specific signaling pathways related to ErbB, TNF, and innate immunity. We further predicted that novel_circ_0002006 might act as a molecular sponge for miR-152-3p through the IFN-I pathway to inhibit CVB5 replication, and that novel_circ_0001066 might act as a molecular sponge for miR-29b-3p via the NF-κB pathway and for the inhibition of CVB5 replication. These findings will help to elucidate the biological functions of circRNAs in the progression of CVB5-related HFMD and identify prospective biomarkers and therapeutic targets for this disease.
Collapse
|
26
|
Li T, Wang Y, Xiang X, Chen C. Development and Validation of a Ferroptosis-Related lncRNAs Prognosis Model in Oral Squamous Cell Carcinoma. Front Genet 2022; 13:847940. [PMID: 35299954 PMCID: PMC8921664 DOI: 10.3389/fgene.2022.847940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives: Ferroptosis is an iron-dependent form of programmed cell death, which affects the prognosis of many cancers. Some long non-coding RNA (lncRNA) can affect the prognosis of cancer by regulating the process of ferroptosis. However, the role of ferroptosis-related lncRNA (frlncRNA) in oral squamous cell carcinoma (OSCC) is not yet clear. Materials and Methods: The data of OSCC patients were downed from The Cancer Genome Atlas (TCGA). After univariate and multivariate Cox regression analysis, the prognosis-related ferroptosis-related lncRNAs were obtained to construct a prognostic model. Calculated the risk score to divide patients into high and low risk groups, and evaluated the predictive ability of the model and the differential expression of immunity in the high and low risk groups. Results: The prognostic model for OSCC was constructed based on 8 prognostic-related frlncRNAs which co-expressed with 25 mRNAs. Kaplan-Meier analyses displayed that the risk score is inversely proportional to patient survival. Receiver operating characteristic (ROC) and decision curve analysis (DCA) indicated that the risk score is superior to other clinical characteristics, and independent prognostic analysis demonstated that risk score is independent factor for the overall survival (OS) rate. The results of immunological analysis showed differences in immune cells, functions, immune checkpoints, and m6A expression between high and low risk groups. Conclusion: We constructed an OSCC patients prognosis model based on 8 frlncRNAs, which can provide prognostic evaluation and immune analysis for OSCC patients, and provided new direction for OSCC targeted therapy.
Collapse
Affiliation(s)
- Tao Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- WanNan Medical College, Wuhu, China
| | - Yi Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xianwang Xiang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chuanjun Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Chuanjun Chen,
| |
Collapse
|
27
|
Xiao Q, Lei L, Ren J, Peng M, Jing Y, Jiang X, Huang J, Tao Y, Lin C, Yang J, Sun M, Tang L, Wei X, Yang Z, Zhang L. Mutant NPM1-Regulated FTO-Mediated m 6A Demethylation Promotes Leukemic Cell Survival via PDGFRB/ERK Signaling Axis. Front Oncol 2022; 12:817584. [PMID: 35211409 PMCID: PMC8862181 DOI: 10.3389/fonc.2022.817584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) with nucleophosmin 1 (NPM1) mutations exhibits distinct biological and clinical features, accounting for approximately one-third of AML. Recently, the N6-methyladenosine (m6A) RNA modification has emerged as a new epigenetic modification to contribute to tumorigenesis and development. However, there is limited knowledge on the role of m6A modifications in NPM1-mutated AML. In this study, the decreased m6A level was first detected and high expression of fat mass and obesity-associated protein (FTO) was responsible for the m6A suppression in NPM1-mutated AML. FTO upregulation was partially induced by NPM1 mutation type A (NPM1-mA) through impeding the proteasome pathway. Importantly, FTO promoted leukemic cell survival by facilitating cell cycle and inhibiting cell apoptosis. Mechanistic investigations demonstrated that FTO depended on its m6A RNA demethylase activity to activate PDGFRB/ERK signaling axis. Our findings indicate that FTO-mediated m6A demethylation plays an oncogenic role in NPM1-mutated AML and provide a new layer of epigenetic insight for future treatments of this distinctly leukemic entity.
Collapse
Affiliation(s)
- Qiaoling Xiao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Junpeng Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yonghong Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Can Lin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Minghui Sun
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lisha Tang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xingyu Wei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zailin Yang
- Hematology Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Non-coding RNA-mediated autophagy in cancer: A protumor or antitumor factor? Biochim Biophys Acta Rev Cancer 2021; 1876:188642. [PMID: 34715268 DOI: 10.1016/j.bbcan.2021.188642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022]
Abstract
Autophagy, usually referred to as macroautophagy, is a cytoprotective behavior that helps cells, especially cancer cells, escape crises. However, the role of autophagy in cancer remains controversial. The induction of autophagy is favorable for tumor growth, as it can degrade damaged cell components accumulated during nutrient deficiency, chemotherapy, or other stresses in a timely manner. Whereas the antitumor effect of autophagy might be closely related to its crosstalk with metabolism, immunomodulation, and other pathways. Recent studies have verified that lncRNAs and circRNAs modulate autophagy in carcinogenesis, cancer cells proliferation, apoptosis, metastasis, and chemoresistance via multiple mechanisms. A comprehensive understanding of the regulatory relationships between ncRNAs and autophagy in cancer might resolve chemoresistance and also offer intervention strategies for cancer therapy. This review systematically displays the regulatory effects of lncRNAs and circRNAs on autophagy in the contexts of cancer initiation, progression, and resistance to chemo- or radiotherapy and provides a novel insight into cancer therapy.
Collapse
|