1
|
Wang J, Fang X, Xing Y, Ding M, Zhu L, Wang M. KDM1A-mediated ZFP64 demethylation activates CENPL to promote epithelial ovarian cancer progression. Cytotechnology 2025; 77:10. [PMID: 39628712 PMCID: PMC11609140 DOI: 10.1007/s10616-024-00671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/23/2024] [Indexed: 12/06/2024] Open
Abstract
Lysine-specific histone demethylase 1A (KDM1A) has emerged as an attractive therapeutic target for treating various cancers, owing to its observed overexpression. However, its function in epithelial ovarian cancer (EOC) remains uncertain. The current study sought to investigate the function of KDM1A on malignant phenotypes of EOC cells as well as the underlying mechanism. Colony formation assay, cell counting kit-8, wound healing, Transwell assays, and TUNEL assays were performed to investigate the effects of KDM1A, Zinc finger protein 64 (ZFP64), and centromere protein L (CENPL) in vitro, while subcutaneous tumor formation models were established in nude mice to evaluate their roles in vivo. KDM1A, ZFP64, and CENPL were overexpressed in EOC tissues and cells. Knockdown of KDM1A, ZFP64, or CENPL inhibited the biological behavior of EOC cells. In addition, chromatin immunoprecipitation showed that KDM1A stimulated ZFP64 expression by removing the H3K9me2 mark from its promoter. Restoration of ZFP64 promoted EOC cell malignant phenotype in the presence of KDM1A knockdown. ZFP64 activated CENPL transcription. Reactivation of CENPL promoted the growth of EOC cells in vivo inhibited by knockdown of ZFP64. Collectively, KDM1A promoted EOC cell proliferation, migration, and invasion, and reduced apoptosis by activating the ZFP64/CENPL axis, which triggered EOC progression. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00671-w.
Collapse
Affiliation(s)
- Jie Wang
- Department of Oncology, Gaochun People’s Hospital Affiliated to Jiangsu Health Vocational College, No. 53, Maoshan Road, Gaochun Economic Development Zone, Nanjing, 211306 Jiangsu People’s Republic of China
| | - Xinjian Fang
- Department of Oncology, Gaochun People’s Hospital Affiliated to Jiangsu Health Vocational College, No. 53, Maoshan Road, Gaochun Economic Development Zone, Nanjing, 211306 Jiangsu People’s Republic of China
| | - Yajun Xing
- Department of Oncology, Gaochun People’s Hospital Affiliated to Jiangsu Health Vocational College, No. 53, Maoshan Road, Gaochun Economic Development Zone, Nanjing, 211306 Jiangsu People’s Republic of China
| | - Meiqing Ding
- Department of Oncology, Gaochun People’s Hospital Affiliated to Jiangsu Health Vocational College, No. 53, Maoshan Road, Gaochun Economic Development Zone, Nanjing, 211306 Jiangsu People’s Republic of China
| | - Liangxue Zhu
- Department of Oncology, Gaochun People’s Hospital Affiliated to Jiangsu Health Vocational College, No. 53, Maoshan Road, Gaochun Economic Development Zone, Nanjing, 211306 Jiangsu People’s Republic of China
| | - Mingyun Wang
- Department of Oncology, Gaochun People’s Hospital Affiliated to Jiangsu Health Vocational College, No. 53, Maoshan Road, Gaochun Economic Development Zone, Nanjing, 211306 Jiangsu People’s Republic of China
| |
Collapse
|
2
|
Jiang M, Wang S, Ji J, Baral S, Sun Q, Wang Y, Liu B, Ren J, Wang W, Wang D. PWP1 transcriptionally regulates p53, modulating apoptosis and cell cycle to promote gastric cancer progression. Apoptosis 2024:10.1007/s10495-024-02049-x. [PMID: 39720977 DOI: 10.1007/s10495-024-02049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/26/2024]
Abstract
Gastric cancer remains a leading cause of cancer-related mortality worldwide. The prognosis often depends on early detection and understanding the molecular mechanisms involved in its progression. Periodic tryptophan protein 1 (PWP1) has emerged as a novel diagnostic marker, potentially linked to gastric cancer progression. This study aims to elucidate the impact of PWP1 on gastric cancer development, focusing on apoptosis, cell cycle regulation, and the role of p53. This study utilized gastric cancer cell lines to investigate the expression and functional role of Pwp1. Quantitative PCR and Western blot analyses were conducted to measure PWP1 expression levels. Apoptosis was assessed by using flow cytometry and TUNEL assays, and cell cycle analysis was performed to evaluate the impact of PWP1 modulation. Additionally, animal experiments were conducted using mouse models injected with gastric cancer cells, with PWP1 knockdown or overexpression, to observe tumor growth and progression. Statistical significance was evaluated using t-tests and ANOVA where appropriate. Elevated PWP1 expression was observed in gastric cancer tissues compared to normal tissues. PWP1's knockdown resulted in increased apoptosis and cell cycle arrest at the G1 phase, suggesting its role in promoting invasion and proliferation. Furthermore, animal experiments demonstrated reduced tumor growth in mice with PWP1 knockdown. PWP1 was found to transcriptionally regulate p53, affecting its expression and thereby influencing apoptosis and cell cycle pathways in gastric cancer. Our study identifies PWP1 as a novel oncogene frequently overexpressed in gastric cancer (GC). Through transcriptional regulation of p53, PWP1 enhances cell growth by influencing apoptosis and inducing G1 phase cell cycle arrest. These findings underscore PWP1 as a promising therapeutic target for treating GC, suggesting its potential for future clinical applications.
Collapse
Affiliation(s)
- Mingrui Jiang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- Medical College of Yangzhou University, Yangzhou, 225001, China
| | - Sen Wang
- The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jin Ji
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- Medical College of Yangzhou University, Yangzhou, 225001, China
| | - Shantanu Baral
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- Medical College of Yangzhou University, Yangzhou, 225001, China
| | - Qiannan Sun
- Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yong Wang
- Northern Jiangsu People's Hospital, Yangzhou, China
| | - Bin Liu
- Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jun Ren
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- Northern Jiangsu People's Hospital, Yangzhou, China
| | - Wei Wang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- Northern Jiangsu People's Hospital, Yangzhou, China
| | - Daorong Wang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China.
- Northern Jiangsu People's Hospital, Yangzhou, China.
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
3
|
Chen S, Zhang D, Du Y, Shi J, Gu S, Zhou X, Yu H, Wang F, Chen J, Cui H. Targeting TRAF6/IRF3 axis to inhibit NF-κB-p65 nuclear translocation enhances the chemosensitivity of 5-FU and reverses the proliferation of gastric cancer. Cell Death Dis 2024; 15:924. [PMID: 39706834 DOI: 10.1038/s41419-024-07290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Chemoresistance poses a significant clinical challenge in the treatment of gastric cancer (GC), while its underlying molecular mechanisms are still not fully understood. Post-translational protein modification and abnormal activation of nuclear factor-kappa B (NF-κB) are critical regulators of tumor chemoresistance. This study investigates the role of TNF receptors-associated factors 6 (TRAF6) in 5-Fluorouracil (5-FU) resistant GC. Utilizing short hairpin RNA (shRNA) to suppress TRAF6 expression in 5-FU resistant GC cells across both in vivo and in vitro models, we observed a marked reduction in cell proliferation and tumor growth. Low expression of TRAF6 inhibited nuclear translocation of NF-κB-p65, which was achieved by promoting the expression of Interferon regulatory factor 3 (IRF3). Importantly, TRAF6, an E3 ubiquitin ligase, bound to the IRF3-Δ (SR + IAD) (1-190aa) domain, inducing Lys70 ubiquitination of IRF3 to regulate its protein stability, with ubiquitin K48 residue playing a crucial role in this process. In conclusion, our study reveals the mechanism by which the TRAF6/IRF3 axis decreases GC's cells sensitivity to 5-FU by promoting nuclear translocation of NF-κB-p65, offering valuable insights into overcoming chemoresistance in GC.
Collapse
Affiliation(s)
- Shitong Chen
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Dong Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Yi Du
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Junbo Shi
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Sikuan Gu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Xujun Zhou
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Feng Wang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Jinfei Chen
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| |
Collapse
|
4
|
Yuan J, Lu J, Zhu J, Chen F, Zeng Z, Yan J, Li Q, Zhou R, Tong Q. LncRNA FIRRE drives gastric cancer progression via ZFP64-mediated TUBB3 promoter activation. Cancer Lett 2024; 611:217398. [PMID: 39706253 DOI: 10.1016/j.canlet.2024.217398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Gastric cancer is a common global malignancy that requires detailed study of its development mechanisms. Although LncRNA FIRRE is known to play a crucial role in the progression and treatment resistance of several cancers, its effect on gastric cancer is not well understood. This study confirms the impact of FIRRE on the malignant behavior of gastric cancer. Using RNA-sequencing, dual luciferase reporter assay, RIP and CHIP, we identified transcription factors and target genes linked to FIRRE. Elevated FIRRE expression in gastric cancer correlates with worse patient prognosis and promotes gastric cancer proliferation, migration, and invasion both in vitro and in vivo. FIRRE regulates the TUBB3 gene, facilitating gastric cancer progression by activating the TUBB3 promoter in vitro. ZFP64 is the transcription factor for TUBB3, activating its promoter and binding specifically with FIRRE. Reducing ZFP64 disrupts FIRRE's positive regulation of TUBB3 in vitro and in vivo. This study shows FIRRE promotes gastric cancer progression by binding to ZFP64 and activating the TUBB3 promoter.
Collapse
Affiliation(s)
- Jingwen Yuan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiatong Lu
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Zhu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Fangfang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Junfeng Yan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qiang Li
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. LncRNAs in modulating cancer cell resistance to paclitaxel (PTX) therapy. Med Oncol 2024; 42:28. [PMID: 39671022 DOI: 10.1007/s12032-024-02577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Paclitaxel (PTX) is widely used for treating several cancers, including breast, ovarian, lung, esophageal, gastric, pancreatic, and neck cancers. Despite its clinical utility, cancer recurrence frequently occurs in patients due to the development of resistance to PTX. Resistance mechanisms in cancer cells treated with PTX include alterations in β-tubulin, the target molecule involved in mitosis, activation of molecular pathways enabling drug efflux, and dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules longer than 200 nucleotides without protein-coding potential, serve diverse regulatory roles in cellular processes. Increasing evidence highlights the involvement of lncRNAs in cancer progression and their contribution to PTX resistance across various cancers. Consequently, lncRNAs have emerged as potential therapeutic targets for addressing drug resistance in cancer treatment. This review focuses on the current understanding of lncRNAs and their role in drug resistance mechanisms, aiming to encourage further investigation in this area. Key lncRNAs and their associated pathways linked to PTX resistance will be summarized.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Sejal Shah
- Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Zhou L, Tian J, Wang K, Ma Y, Chen X, Luo H, Lu B, Wang N, Wang P, Liu X, Zhao R, Zhao S, Wang J, Nie W, Ge H, Liu W, Gu T, Liu K, Lee MH, Li X, Dong Z. Targeting Galectin-1 Overcomes Paclitaxel Resistance in Esophageal Squamous Cell Carcinoma. Cancer Res 2024; 84:3894-3908. [PMID: 39186691 DOI: 10.1158/0008-5472.can-23-2241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/17/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Resistance to paclitaxel poses a major obstacle in esophageal squamous cell carcinoma (ESCC) treatment. A better understanding of the mechanisms underlying paclitaxel resistance could help identify prognostic biomarkers and improved therapeutic strategies. In this study, we established a patient-derived xenograft model of acquired paclitaxel resistance and used RNA sequencing to identify galectin-1, encoded by LGALS1, as a key mediator of resistance. Integrative analysis of clinical data and physiological studies indicated that serum galectin-1 levels were elevated in resistant patients and correlated with treatment outcomes before and during taxane therapy. Importantly, exposing cells to serum from resistant patients resulted in increased paclitaxel resistance compared to serum from sensitive patients, which was closely associated with galectin-1 concentrations in the serum. The specific clearance of galectin-1 from resistant patient serum significantly restored paclitaxel sensitivity, and inhibiting galectin-1, through knockdown or the pharmacologic inhibitor OTX008, increased sensitivity to paclitaxel. Galectin-1 inhibition reduced the activity of β-catenin, thereby inhibiting stem cell properties induced by the Wnt/β-catenin pathway. Furthermore, galectin-1 regulated MDR1 transcription through increased nuclear accumulation of β-catenin, thus increasing resistance to paclitaxel. Combining OTX008 with clinical taxane formulations effectively reversed paclitaxel resistance in vitro and in vivo. Elevated galectin-1 levels thus serve as an indicator of response to paclitaxel therapy in ESCC, offering a therapeutic intervention strategy to overcome drug resistance. Significance: Galectin-1 is a key mediator of paclitaxel resistance in esophageal squamous cell carcinoma that can be targeted to improve taxane efficacy, suggesting broad therapeutic potential for treating various cancer types.
Collapse
Affiliation(s)
- Liting Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jie Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Keke Wang
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yijie Ma
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaojie Chen
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Nan Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Penglei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xuejiao Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiutao Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tingxuan Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Shi Z, Pu W, Li M, Aihemaitijiang M, Li S, Zhang X, Liu B, Sun M, Li J, Li Z. Prostate cancer cell-derived exosomes ZNF667-AS1 reduces TGFBR1 mRNA stability to inhibit Treg expansion and DTX resistance by binding to U2AF1. Mol Med 2024; 30:179. [PMID: 39425009 PMCID: PMC11488200 DOI: 10.1186/s10020-024-00947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Docetaxel (DTX) resistance attenuates anti-tumor effects of DTX on prostate cancer (mCRPC) and drug resistance was related to Treg expansion in tumors. ZNF667-AS1 played a suppressing role in various tumors and tumor-derived exosomes carry lncRNAs to participate in tumor progression. Here, the effects of ZNF667-AS1 on malignant characteristics and DTX resistance in PC and the effect and its underlying molecular mechanism of tumor-derived exosomes carrying ZNF667-AS1 on Treg expansion were investigated. METHODS The identification of exosomes were determined using TEM, NTA and western blot. The abundance of genes and proteins were evaluated using IHC, RT-qPCR, western blot and FISH. Malignant phenotypes of PC cells were evaluated by means of Edu, scratch test, transwell, CCK-8 and flow cytometry. The percentage of CD4+CD25+Foxp3+ Tregs was detected using flow cytometry. The location of ZNF667-AS1 was detected using nuclear-cytoplasmic fractionation. The co-location of ZNF667-AS1 and U2AF1 protein was detected using IF-FISH assay. The interactions among ZNF667-AS1, TGFBR1 and U2AF1 were verified using RNA pull-down, RIP and dual luciferase activity. RESULTS ZNF667-AS1 expression in PC samples was lowered, which was negatively relative to poor prognosis and DTX resistance. ZNF667-AS1 overexpression inhibited malignant phenotypes of PC cells, tumor growth and DTX resistance. Besides, DTX resistant cell-derived exosomes expressed lower ZNF667-AS1 expression. Exosomes carrying exogenously high ZNF667-AS1 expression derived PC cells or serum of mice suppressed Treg expansion. On the mechanism, ZNF667-AS1 interacted with U2AF1 to destabilize TGFBR1 mRNA and reduce TGFBR1 expression in CD4+T cells. CONCLUSION ZNF667-AS1 suppressed cell growth of PC cells, tumor growth of mice and DTX resistance to PC cells and exogenously high ZNF667-AS1 expression in tumor-derived exosomes destabilized TGFBR1 mRNA and reduce TGFBR1 expression through interacting with U2AF1, thus resulting in attenuated Treg expansion, which was related to DTX resistance.
Collapse
MESH Headings
- Humans
- Male
- Exosomes/metabolism
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/immunology
- Drug Resistance, Neoplasm/genetics
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Animals
- Mice
- Cell Line, Tumor
- Docetaxel/pharmacology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA Stability
- Gene Expression Regulation, Neoplastic
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Cell Proliferation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Wenjing Pu
- Department of Pathology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Min Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Mierzhayiti Aihemaitijiang
- Graduate School of Xinjiang Medical University, Urumqi, 830011, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Shuo Li
- Graduate School of Xinjiang Medical University, Urumqi, 830011, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xiaoan Zhang
- Department of Urology Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Bide Liu
- Department of Urology Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Min Sun
- Department of Urology Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Jiuzhi Li
- Department of Urology Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Zhiwei Li
- Clinical Laboratory Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
8
|
Sun J, Liu J, Hou Y, Bao J, Wang T, Liu L, Zhang Y, Zhong R, Sun Z, Ye Y, Liu J. ZFP64 drives glycolysis-mediated stem cell-like properties and tumorigenesis in breast cancer. Biol Direct 2024; 19:83. [PMID: 39294751 PMCID: PMC11409756 DOI: 10.1186/s13062-024-00533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is a great clinical challenge because of its aggressiveness and poor prognosis. Zinc Finger Protein 64 (ZFP64), as a transcriptional factor, is responsible for the development and progression of cancers. This study aims to investigate whether ZFP64 regulates stem cell-like properties and tumorigenesis in BC by the glycolytic pathway. RESULTS It was demonstrated that ZFP64 was overexpressed in BC specimens compared to adjacent normal tissues, and patients with high ZFP64 expression had shorter overall survival and disease-free survival. The analysis of the association of ZFP64 expression with clinicopathological characteristics showed that high ZFP64 expression is closely associated with N stage, TNM stage, and progesterone receptor status. Knockdown of ZFP64 suppressed the viability and colony formation capacity of BC cells by CCK8 and colony formation assays. The subcutaneous xenograft models revealed that ZFP64 knockdown reduced the volume of formatted tumors, and decreased Ki67 expression in tumors. The opposite effects on cell proliferation and tumorigenesis were demonstrated by ZFP64 overexpression. Furthermore, we suggested that the stem cell-like properties of BC cells were inhibited by ZFP64 depletion, as evidenced by the decreased size and number of formatted mammospheres, the downregulated expressions of OCT4, Nanog, and SOX2 proteins, as well as the reduced proportion of CD44+/CD24- subpopulations. Mechanistically, glycolysis was revealed to mediate the effect of ZFP64 using mRNA-seq analysis. Results showed that ZFP64 knockdown blocked the glycolytic process, as indicated by decreasing glycolytic metabolites, inhibiting glucose consumption, and reducing lactate and ATP production. As a transcription factor, we identified that ZFP64 was directly bound to the promoters of glycolysis-related genes (ALDOC, ENO2, HK2, and SPAG4), and induced the transcription of these genes by ChIP and dual-luciferase reporter assays. Blocking the glycolytic pathway by the inhibition of glycolytic enzymes ENO2/HK2 suppressed the high proliferation and stem cell-like properties of BC cells induced by ZFP64 overexpression. CONCLUSIONS These data support that ZFP64 promotes stem cell-like properties and tumorigenesis of BC by activating glycolysis in a transcriptional mechanism.
Collapse
Affiliation(s)
- Jiayi Sun
- Department of Thyroid Breast Surgery, Dalian Municipal Central Hospital, Dalian, Liaoning, People's Republic of China
| | - Jinquan Liu
- Shanxi Datong University, Datong, Shanxi, People's Republic of China
| | - Yudong Hou
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Jianheng Bao
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Teng Wang
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Longbi Liu
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yidan Zhang
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Rui Zhong
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Zhenxuan Sun
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yan Ye
- Hainan Women and Children's Medical Center, Haikou, Hainan, People's Republic of China
| | - Jintao Liu
- Hainan Women and Children's Medical Center, Haikou, Hainan, People's Republic of China.
| |
Collapse
|
9
|
Huo M, Zhang M, Zhang J, Wang Y, Hu T, Ma T, Wang Y, Yuan B, Qin H, Teng X, Yu H, Huang W, Wang Y. Prognostic analysis of patients with gastric cancer based on N 6-methyladenosine modification patterns and tumor microenvironment characterization. Front Pharmacol 2024; 15:1445321. [PMID: 39185313 PMCID: PMC11341457 DOI: 10.3389/fphar.2024.1445321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Background Cancers arise from genetic and epigenetic abnormalities that affect oncogenes and tumor suppressor genes, compounded by gene mutations. The N6-methyladenosine (m6A) RNA modification, regulated by methylation regulators, has been implicated in tumor proliferation, differentiation, tumorigenesis, invasion, and metastasis. However, the role of m6A modification patterns in the tumor microenvironment of gastric cancer (GC) remains poorly understood. Materials and methods In this study, we analyzed m6A modification patterns in 267 GC samples utilizing 31 m6A regulators. Using consensus clustering, we identified two unique subgroups of GC. Patients with GC were segregated into high- and low-infiltration cohorts to evaluate the infiltration proportions of the five prognostically significant immune cell types. Leveraging the differential genes in GC, we identified a "green" module via Weighted Gene Co-expression Network Analysis. A risk prediction model was established using the LASSO regression method. Results The "green" module was connected to both the m6A RNA methylation cluster and immune infiltration patterns. Based on "Module Membership" and "Gene Significance", 37 hub genes were identified, and a risk prediction model incorporating nine hub genes was established. Furthermore, methylated RNA immunoprecipitation and RNA Immunoprecipitation assays revealed that YTHDF1 elevated the expression of DNMT3B, which synergistically promoted the initiation and development of GC. We elucidated the molecular mechanism underlying the regulation of DNMT3B by YTHDF1 and explored the crosstalk between m6A and 5mC modification. Conclusion m6A RNA methylation regulators are instrumental in malignant progression and the dynamics of tumor microenvironment infiltration of GC. Assessing m6A modification patterns and tumor microenvironment infiltration characteristics in patients with GC holds promise as a valuable prognostic biomarker.
Collapse
Affiliation(s)
- Miaomiao Huo
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyao Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Wang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Hu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinuo Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Qin
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Pan Z, Xu G, Zhang Y, Wu M, Yu J, He X, Zhang W, Hu J. Galectin-1 Promotes Gastric Carcinoma Progression and Cisplatin Resistance Through the NRP-1/c-JUN/Wee1 Pathway. J Gastric Cancer 2024; 24:300-315. [PMID: 38960889 PMCID: PMC11224716 DOI: 10.5230/jgc.2024.24.e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE Gastric cancer (GC) is among the deadliest malignancies and the third leading cause of cancer-related deaths worldwide. Galectin-1 (Gal-1) is a primary protein secreted by cancer-associated fibroblasts (CAFs); however, its role and mechanisms of action of Gal-1 in GC remain unclear. In this study, we stimulated GC cells with exogenous human recombinant galectin-1 protein (rhGal-1) to investigate its effects on the proliferation, migration, and resistance to cisplatin. MATERIALS AND METHODS We used simulated rhGal-1 protein as a paracrine factor produced by CAFs to induce GC cells and investigated its promotional effects and mechanisms in GC progression and cisplatin resistance. Immunohistochemical (IHC) assay confirmed that Gal-1 expression was associated with clinicopathological parameters and correlated with the expression of neuropilin-1 (NRP-1), c-JUN, and Wee1. RESULTS Our study reveals Gal-1 expression was significantly associated with poor outcomes. Gal-1 boosts the proliferation and metastasis of GC cells by activating the NRP-1/C-JUN/Wee1 pathway. Gal-1 notably increases GC cell resistance to cisplatin The NRP-1 inhibitor, EG00229, effectively counteracts these effects. CONCLUSIONS These findings revealed a potential mechanism by which Gal-1 promotes GC growth and contributes to chemoresistance, offering new therapeutic targets for the treatment of GC.
Collapse
Affiliation(s)
- Zhengyang Pan
- Department of Gastrointestinal Surgery, Zhejiang Chinese Medical University, Hangzhou, China
- Cancer Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Guoxi Xu
- Department of Gastrointestinal Surgery, Jinjiang Hospital, Quanzhou, China
| | - Yan Zhang
- Cancer Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Meiling Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiahui Yu
- Cancer Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xujun He
- Cancer Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| | - Wei Zhang
- Department of Gastrointestinal Surgery, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Junfeng Hu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
11
|
Zhou J, Cai X, Lu Z, Xiong B, Peng C. Short-Term Safety Evaluation of Albumin-Bound Paclitaxel in Intraoperative and Postoperative Hyperthermic Intraperitoneal Chemotherapy for Gastric Cancer. J Gastrointest Cancer 2024; 55:877-887. [PMID: 38367177 DOI: 10.1007/s12029-024-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
PURPOSE To evaluate the short-term safety of albumin-bound paclitaxel in hyperthermic intraperitoneal chemotherapy (HIPEC) during and after gastric cancer (GC) surgery. METHODS A retrospective analysis of clinical data was conducted for GC surgery patients at Zhongnan Hospital of Wuhan University, from January 2020 to September 2022. The study group (n = 120) received HIPEC and the control group (n = 268) did not receive albumin-bound paclitaxel. Short-term safety indicators including intraoperative complications, hematological toxicity, liver and kidney function, and gastrointestinal function recovery were compared between the two groups. RESULTS There were no statistically significant differences between the two groups regarding intraoperative complications, hematological toxicity, liver and kidney function, and gastrointestinal function recovery time (P > 0.05 for all). In the study group, patients were further divided into subgroups based on dose and timing. Subgroup analysis revealed no significant differences among the different dose subgroups. However, when focusing on timing subgroups, the postoperative subgroup exhibited significantly higher white blood cell counts and bilirubin levels compared to the intraoperative subgroup, while the intraoperative subgroup had significantly higher bilirubin levels compared to both postoperative and intraoperative plus postoperative subgroups. CONCLUSION Albumin-bound paclitaxel demonstrates good safety and tolerability in HIPEC during and after GC surgery, without increasing the risk of intraoperative complications.
Collapse
Affiliation(s)
- Jingxiang Zhou
- Second Clinical College, Wuhan University, Wuhan , Hubei Province, 430070, China
- Department of Gastrointestinal Surgery, the Center for Minimally Invasive Surgery of Gastrointestinal Cancer, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan Peritoneal Cancer Clinical Medical Center, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Hubei Province, 430070, China
| | - Xiaopeng Cai
- Department of Gastrointestinal Surgery, the Center for Minimally Invasive Surgery of Gastrointestinal Cancer, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan Peritoneal Cancer Clinical Medical Center, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Hubei Province, 430070, China
| | - Zhao Lu
- Department of Gastrointestinal Surgery, the Center for Minimally Invasive Surgery of Gastrointestinal Cancer, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan Peritoneal Cancer Clinical Medical Center, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Hubei Province, 430070, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, the Center for Minimally Invasive Surgery of Gastrointestinal Cancer, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan Peritoneal Cancer Clinical Medical Center, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Hubei Province, 430070, China
| | - Chunwei Peng
- Department of Gastrointestinal Surgery, the Center for Minimally Invasive Surgery of Gastrointestinal Cancer, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan Peritoneal Cancer Clinical Medical Center, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Hubei Province, 430070, China.
| |
Collapse
|
12
|
Liu N, Yang X, Gao C, Wang J, Zeng Y, Zhang L, Yin Q, Zhang T, Zhou H, Li K, Du J, Zhou S, Zhao X, Zhu H, Yang Z, Liu Z. Noninvasively Deciphering the Immunosuppressive Tumor Microenvironment Using Galectin-1 PET to Inform Immunotherapy Responses. J Nucl Med 2024; 65:728-734. [PMID: 38514084 DOI: 10.2967/jnumed.123.266888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Immune checkpoint blockade (ICB) has achieved groundbreaking results in clinical cancer therapy; however, only a subset of patients experience durable benefits. The aim of this study was to explore strategies for predicting tumor responses to optimize the intervention approach using ICB therapy. Methods: We used a bilateral mouse model for proteomics analysis to identify new imaging biomarkers for tumor responses to ICB therapy. A PET radiotracer was synthesized by radiolabeling the identified biomarker-targeting antibody with 124I. The radiotracer was then tested for PET prediction of tumor responses to ICB therapy. Results: We identified galectin-1 (Gal-1), a member of the carbohydrate-binding lectin family, as a potential negative biomarker for ICB efficacy. We established that Gal-1 inhibition promotes a sensitive immune phenotype within the tumor microenvironment (TME) for ICB therapy. To assess the pre-ICB treatment status of the TME, a Gal-1-targeted PET radiotracer, 124I-αGal-1, was developed. PET imaging with 124I-αGal-1 showed the pretreatment immunosuppressive status of the TME before the initiation of therapy, thus enabling the prediction of ICB resistance in advance. Moreover, the use of hydrogel scaffolds loaded with a Gal-1 inhibitor, thiodigalactoside, demonstrated that a single dose of thiodigalactoside-hydrogel significantly potentiated ICB and adoptive cell transfer immunotherapies by remodeling the immunosuppressive TME. Conclusion: Our study underscores the potential of Gal-1-targeted PET imaging as a valuable strategy for early-stage monitoring of tumor responses to ICB therapy. Additionally, Gal-1 inhibition effectively counteracts the immunosuppressive TME, resulting in enhanced immunotherapy efficacy.
Collapse
Affiliation(s)
- Ning Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiujie Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chao Gao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianze Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuwen Zeng
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Linyu Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qi Yin
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ting Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Haoyi Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kui Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jinhong Du
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shixin Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China;
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; and
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, China
| |
Collapse
|
13
|
Xu J, Yu B, Wang F, Yang J. Xenograft and organoid models in developing precision medicine for gastric cancer (Review). Int J Oncol 2024; 64:41. [PMID: 38390969 PMCID: PMC10919760 DOI: 10.3892/ijo.2024.5629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Gastric cancer (GC), a highly heterogeneous disease, has diverse histological and molecular subtypes. For precision medicine, well‑characterized models encompassing the full spectrum of subtypes are necessary. Patient‑derived tumor xenografts and organoids serve as important preclinical models in GC research. The main advantage of these models is the retention of phenotypic and genotypic heterogeneity present in parental tumor tissues. Utilizing diverse sequencing techniques and preclinical models for GC research facilitates accuracy in predicting personalized clinical responses to anti‑cancer treatments. The present review summarizes the latest advances of these two preclinical models in GC treatment and drug response assessment.
Collapse
Affiliation(s)
- Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bixin Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Phase I Clinical Trial Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
14
|
Yang Y, Li J, Li D, Zhou W, Yan F, Wang W. Humanized mouse models: A valuable platform for preclinical evaluation of human cancer. Biotechnol Bioeng 2024; 121:835-852. [PMID: 38151887 DOI: 10.1002/bit.28618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023]
Abstract
Animal models are routinely employed to assess the treatments for human cancer. However, due to significant differences in genetic backgrounds, traditional animal models are unable to meet bioresearch needs. To overcome this restriction, researchers have generated and optimized immunodeficient mice, and then engrafted human genes, cells, tissues, or organs in mice so that the responses in the model mice could provide a more reliable reference for treatments. As a bridge connecting clinical application and basic research, humanized mice are increasingly used in the preclinical evaluation of cancer treatments, particularly after gene interleukin 2 receptor gamma mutant mice were generated. Human cancer models established in humanized mice support exploration of the mechanism of cancer occurrence and provide an efficient platform for drug screening. However, it is undeniable that the further application of humanized mice still faces multiple challenges. This review summarizes the construction approaches for humanized mice and their existing limitations. We also report the latest applications of humanized mice in preclinical evaluation for the treatment of cancer and point out directions for future optimization of these models.
Collapse
Affiliation(s)
- Yuening Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqian Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weilin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feiyang Yan
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Xiao P, Li C, Liu Y, Gao Y, Liang X, Liu C, Yang W. The role of metal ions in the occurrence, progression, drug resistance, and biological characteristics of gastric cancer. Front Pharmacol 2024; 15:1333543. [PMID: 38370477 PMCID: PMC10869614 DOI: 10.3389/fphar.2024.1333543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Metal ions exert pivotal functions within the human body, encompassing essential roles in upholding cell structure, gene expression regulation, and catalytic enzyme activity. Additionally, they significantly influence various pathways implicated in divergent mechanisms of cell death. Among the prevailing malignant tumors of the digestive tract worldwide, gastric cancer stands prominent, exhibiting persistent high mortality rates. A compelling body of evidence reveals conspicuous ion irregularities in tumor tissues, encompassing gastric cancer. Notably, metal ions have been observed to elicit distinct contributions to the progression, drug resistance, and biological attributes of gastric cancer. This review consolidates pertinent literature on the involvement of metal ions in the etiology and advancement of gastric cancer. Particular attention is directed towards metal ions, namely, Na, K, Mg, Ca, Fe, Cu, Zn, and Mn, elucidating their roles in the initiation and progression of gastric cancer, cellular demise processes, drug resistance phenomena, and therapeutic approaches.
Collapse
Affiliation(s)
- Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Gao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaojing Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
16
|
He Z, Zhong Y, Hu H, Li F. ZFP64 Promotes Gallbladder Cancer Progression through Recruiting HDAC1 to Activate NOTCH1 Signaling Pathway. Cancers (Basel) 2023; 15:4508. [PMID: 37760477 PMCID: PMC10527061 DOI: 10.3390/cancers15184508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The lack of meaningful and effective early-stage markers remains the major challenge in the diagnosis of gallbladder cancer (GBC) and a huge barrier to timely treatment. Zinc finger protein 64 (ZFP64), a member of the zinc finger protein family, is considered to be a promising predictor in multiple tumors, but its potential effect in GBC still remains unclear. Here, we identified that ZFP64 was a vital regulatory protein in GBC. We found that ZFP64 expressed higher in GBC gallbladder carcinoma tissues than in normal tissues and was positively correlated with poor prognosis. Furthermore, ZFP64 was responsible for the migration, invasion, proliferation, anti-apoptosis, and epithelial mesenchymal transition (EMT) of GBC cells in vitro and in vivo. Mechanistically, through Co-IP assay, we confirmed that ZFP64 recruits HDAC1 localized to the promoter region of NUMB for deacetylation and therefore inhibits NUMB expression. The downregulation of NUMB enhanced the activation of the Notch1 signaling pathway, which is indispensable for the GBC-promotion effect of ZFP64 on GBC. In conclusion, ZFP64 regulated GBC progression and metastasis through upregulating the Notch1 signaling pathway, and thus ZFP64 is expected to become a new focus for a GBC prognostic marker and targeted therapy.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Yuhan Zhong
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, National Health Commission (NHC), West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Haijie Hu
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Fuyu Li
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
17
|
Wei J, Lu X, Liu Q, Fu Y, Liu S, Zhao Y, Zhou J, Chen H, Wang M, Li L, Yang J, Liu F, Zheng L, Yin H, Yang Y, Zhou C, Zeng P, Zhou X, Ding N, Chen S, Zhao X, Yan J, Fan X, Guan W, Liu B. Neoadjuvant sintilimab in combination with concurrent chemoradiotherapy for locally advanced gastric or gastroesophageal junction adenocarcinoma: a single-arm phase 2 trial. Nat Commun 2023; 14:4904. [PMID: 37580320 PMCID: PMC10425436 DOI: 10.1038/s41467-023-40480-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
In this multicenter, single-arm phase 2 trial (ChiCTR1900024428), patients with locally advanced gastric/gastroesophageal junction cancers receive one cycle of sintilimab (anti-PD1) and chemotherapy (S-1 and nab-paclitaxel), followed by 5 weeks of concurrent chemoradiotherapy and sintilimab, and another cycle of sintilimab and chemotherapy thereafter. Surgery is preferably scheduled within one to three weeks, and three cycles of adjuvant sintilimab and chemotherapy are administrated. The primary endpoint is the pathological complete response. Our results meet the pre-specified primary endpoint. Thirteen of 34 (38.2%) enrolled patients achieve pathological complete response (95% CI: 22.2-56.4). The secondary objectives include disease-free survival (DFS), major pathological response, R0 resection rate, overall survival (OS), event-free survival (EFS), and safety profile. The median DFS and EFS were 17.0 (95%CI: 11.1-20.9) and 21.1 (95%CI: 14.7-26.1) months, respectively, while the median OS was not reached, and the 1-year OS rate was 92.6% (95%CI: 50.1-99.5%). Seventeen patients (50.0%) have grade ≥3 adverse events during preoperative therapy. In prespecified exploratory biomarker analysis, CD3+ T cells, CD56+ NK cells, and the M1/M1 + M2-like macrophage infiltration at baseline are associated with pathological complete response. Here, we show the promising efficacy and manageable safety profile of sintilimab in combination with concurrent chemoradiotherapy for the perioperative treatment of locally advanced gastric/gastroesophageal junction adenocarcinoma.
Collapse
Affiliation(s)
- Jia Wei
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Xiaofeng Lu
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Qin Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Song Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yang Zhao
- Department of Biostatistics, Nanjing Medical University, Nanjing, 210029, China
| | - Jiawei Zhou
- Department of Biostatistics, Nanjing Medical University, Nanjing, 210029, China
| | - Hui Chen
- Medical Affairs, 3D Medicines Inc, Shanghai, 201114, China
| | - Meng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ju Yang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Fangcen Liu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Liming Zheng
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haitao Yin
- Department of Radiotherapy, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Yang Yang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Chong Zhou
- Department of Radiotherapy, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Ping Zeng
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiaoyu Zhou
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Naiqing Ding
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Shiqing Chen
- Medical Affairs, 3D Medicines Inc, Shanghai, 201114, China
| | - Xiaochen Zhao
- Medical Affairs, 3D Medicines Inc, Shanghai, 201114, China
| | - Jing Yan
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Xiangshan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
18
|
Liu S, Liu X, Lin X, Chen H. Zinc Finger Proteins in the War on Gastric Cancer: Molecular Mechanism and Clinical Potential. Cells 2023; 12:cells12091314. [PMID: 37174714 PMCID: PMC10177130 DOI: 10.3390/cells12091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
According to the 2020 global cancer data released by the World Cancer Research Fund (WCRF) International, gastric cancer (GC) is the fifth most common cancer worldwide, with yearly increasing incidence and the second-highest fatality rate in malignancies. Despite the contemporary ambiguous molecular mechanisms in GC pathogenesis, numerous in-depth studies have demonstrated that zinc finger proteins (ZFPs) are essential for the development and progression of GC. ZFPs are a class of transcription factors with finger-like domains that bind to Zn2+ extensively and participate in gene replication, cell differentiation and tumor development. In this review, we briefly outline the roles, molecular mechanisms and the latest advances in ZFPs in GC, including eight principal aspects, such as cell proliferation, epithelial-mesenchymal transition (EMT), invasion and metastasis, inflammation and immune infiltration, apoptosis, cell cycle, DNA methylation, cancer stem cells (CSCs) and drug resistance. Intriguingly, the myeloid zinc finger 1 (MZF1) possesses reversely dual roles in GC by promoting tumor proliferation or impeding cancer progression via apoptosis. Therefore, a thorough understanding of the molecular mechanism of ZFPs on GC progression will pave the solid way for screening the potentially effective diagnostic indicators, prognostic biomarkers and therapeutic targets of GC.
Collapse
Affiliation(s)
- Shujie Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xingzhu Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xin Lin
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
19
|
Du P, Li G, Wu L, Huang M. Perspectives of ERCC1 in early-stage and advanced cervical cancer: From experiments to clinical applications. Front Immunol 2023; 13:1065379. [PMID: 36713431 PMCID: PMC9875293 DOI: 10.3389/fimmu.2022.1065379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Cervical cancer is a public health problem of extensive clinical importance. Excision repair cross-complementation group 1 (ERCC1) was found to be a promising biomarker of cervical cancer over the years. At present, there is no relevant review article that summarizes such evidence. In this review, nineteen eligible studies were included for evaluation and data extraction. Based on the data from clinical and experimental studies, ERCC1 plays a key role in the progression of carcinoma of the uterine cervix and the therapeutic response of chemoradiotherapy. The majority of the included studies (13/19, 68%) suggested that ERCC1 played a pro-oncogenic role in both early-stage and advanced cervical cancer. High expression of ERCC1 was found to be associated with the poor survival rates of the patients. ERCC1 polymorphism analyses demonstrated that ERCC1 might be a useful tool for predicting the risk of cervical cancer and the treatment-related toxicities. Experimental studies indicated that the biological effects exerted by ERCC1 in cervical cancer might be mediated by its associated genes and affected signaling pathways (i.e., XPF, TUBB3, and. To move towards clinical applications by targeting ERCC1 in cervical cancer, more clinical, in-vitro, and in-vivo investigations are still warranted in the future.
Collapse
|
20
|
Song L, Wang S, Li Q, Lu Y, Yang R, Feng X. Identification and Validation of a m5C RNA Modification-Related Gene Signature for Predicting Prognosis and Immunotherapeutic Efficiency of Gastric Cancer. JOURNAL OF ONCOLOGY 2023; 2023:9931419. [PMID: 36936373 PMCID: PMC10017215 DOI: 10.1155/2023/9931419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 03/10/2023]
Abstract
Background 5-methylcytosine (m5C) is a major site of RNA methylation modification, and its abnormal modification is associated with the development of gastric cancer (GC). This study aimed to explore the value of m5C-related genes on the prognosis of GC patients through bioinformatics. Methods First, m5C-related genes were obtained by nonnegative matrix factorization (NMF) analysis and differentially expressed analysis. The m5C-related model was established and validated in distinct datasets. Moreover, a differential analysis of risk scores according to clinical characteristics was performed. The enrichment analysis was carried out to elucidate the underlying molecular mechanisms. Furthermore, we calculated the differences in immunotherapy and chemotherapy sensitivity between the high- and low-risk groups. Finally, we validated the expression levels of identified model genes by quantitative real-time polymerase chain reaction (qRT-PCR). Results A total of five m5C-related subtypes of GC patients in the TCGA database were identified. The m5C-related model was constructed based on APOD, ASCL2, MFAP2, and CREB3L3. Functional enrichment revealed that the m5C-related model might involve in the cell cycle and cell adhesion. Moreover, the high-risk group had a higher abundance of stromal and immune cells in malignant tumor tissues and a lower tumor purity than the low-risk group. The patients in the high-risk group were more sensitive to chemotherapy and had better sensitivity to CTLA4 inhibitors. Furthermore, qRT-PCR results from our specimens verified an over-expression of ASCL2, CREB3L3, and MFAP2 in the cancer cells compared with the normal cells. Conclusion A total of five GC subtypes were identified, and a risk model was constructed based on m5C modification.
Collapse
Affiliation(s)
- Li Song
- 1Academy of Advanced Interdisciplinary Studies, Qilu University of Technology, (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Shouguo Wang
- 1Academy of Advanced Interdisciplinary Studies, Qilu University of Technology, (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Qiankun Li
- 2Department of Tissue Repair and Regeneration, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Lu
- 2Department of Tissue Repair and Regeneration, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Rungong Yang
- 2Department of Tissue Repair and Regeneration, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xianqi Feng
- 1Academy of Advanced Interdisciplinary Studies, Qilu University of Technology, (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| |
Collapse
|
21
|
Ma J, Zhang W, Du J, Li J, Lin G, Tian Y. Efficacy and safety of Camrelizumab combined with Abraxane + lobaplatin regimen for advanced gastric cancer. Am J Transl Res 2023; 15:1485-1493. [PMID: 36915742 PMCID: PMC10006821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/13/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE To examine the safety and effectiveness of the combination of Camrelizumab and Abraxane + lobaplatin in advanced gastric cancer therapy. METHODS The data of 60 patients with advanced gastric cancer in Shaanxi Provincial People's Hospital from May 2017 to March 2019 were analyzed retrospectively. The patients were divided into a study group (n=30) and a control group (n=30) according to different treatment methods. The study group received Camrelizumab combined with the Abraxane + lobaplatin regimen, and the control group received the Abraxane + lobaplatin regimen only. The levels of soluble interleukin-2 receptor (sIL-2R), secretory glycoprotein (Dickkopf-1, DKK-1) and tumor specific growth factors (TSGFs), the relative molecular expression of serum miRNA-1290, miRNA-647 and miRNA-182, and the Karnofsky performance status (KPS) were compared between the two groups. The adverse reactions of the two groups were observed, and the 3-year survival rates were compared. RESULTS The disease control rate and overall remission rate of the study group (53.33%, 90.00%) were higher than those of the control group (26.67%, 50.00%), with statistically significant differences (P<0.05). The levels of sLL-2R, DKK-1 and TSGF were reduced in both groups (P<0.05) after being treated, whereas these were comparatively lower levels in the study group (P<0.05). After treatment, serum concentration of miRNA-1290, miRNA-647 and miRNA-182 were lower in the study group than in the control group (P<0.05). Upon comparison with those in the control group, the KPS scores were higher at 1, 3 and 6 months after treatment in the study group (P<0.05). The incidence of adverse events was not significantly different between the two groups (P>0.05). The 1-year, 2-year and 3-year survival rates were higher in the study group (57.38%, 39.34% and 29.51%) than in the control group (32.79%, 18.03% and 8.20%) (P<0.05). CONCLUSION The combination of Camrelizumab and Abraxane + lobaplatin is an effective treatment for advanced gastric cancer and can increase the patient's survival rate.
Collapse
Affiliation(s)
- Jia Ma
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital Xi'an 710068, Shaanxi, China
| | - Weizheng Zhang
- Department of Surgical Oncology, Pucheng County Hospital Weinan 715500, Shaanxi, China
| | - Jia Du
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital Xi'an 710068, Shaanxi, China
| | - Jiang Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital Xi'an 710068, Shaanxi, China
| | - Guangshuai Lin
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital Xi'an 710068, Shaanxi, China
| | - Youfu Tian
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital Xi'an 710068, Shaanxi, China
| |
Collapse
|
22
|
Effects of the Exposure of Human Non-Tumour Cells to Sera of Pancreatic Cancer Patients. Biomedicines 2022; 10:biomedicines10102588. [PMID: 36289850 PMCID: PMC9599555 DOI: 10.3390/biomedicines10102588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has high metastatic potential. The “genometastasis” theory proposes that the blood of some cancer patients contains elements able to transform healthy cells by transferring oncogenes. Since findings on genometastasis in PDAC are still scarce, we sought supporting evidence by treating non-tumour HEK293T and hTERT-HPNE human cell lines with sera of PDAC patients. Here, we showed that HEK293T cells have undergone malignant transformation, increased the migration and invasion abilities, and acquired a partial chemoresistance, whereas hTERT-HPNE cells were almost refractory to transformation by patients’ sera. Next-generation sequencing showed that transformed HEK293T cells gained and lost several genomic regions, harbouring genes involved in many cancer-associated processes. Our results support the genometastasis theory, but further studies are needed for the identification of the circulating transforming elements. Such elements could also be useful biomarkers in liquid biopsy assays.
Collapse
|
23
|
Qiu G, Deng Y. ZFP64 transcriptionally activates PD-1 and CTLA-4 and plays an oncogenic role in esophageal cancer. Biochem Biophys Res Commun 2022; 622:72-78. [DOI: 10.1016/j.bbrc.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/05/2022] [Indexed: 11/02/2022]
|