1
|
Yan P, Liu J, Huang Y, Li Y, Yu J, Xia J, Liu M, Bai R, Wang N, Guo L, Liu G, Yang X, Zeng J, He B. Lotus leaf extract can attenuate salpingitis in laying hens by inhibiting apoptosis. Poult Sci 2023; 102:102865. [PMID: 37499615 PMCID: PMC10413199 DOI: 10.1016/j.psj.2023.102865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to determine whether the lotus leaf extract (LLE) had the effect of treating salpingitis in laying hens. First, the salpingitis model was established by the method of bacterial infection. Differential genes between salpingitis and healthy laying hens were identified by transcriptome sequencing, and GO and KEGG enrichment analyses were performed. Groups of treatment of antibiotics and LLE were established to verify the feasibility of the lotus leaf extract in treating salpingitis. Furthermore, the active component and pharmacological effects of LLE were identified using the UPLC-Q-TOF-MS and network pharmacology technique. At last, the mechanism of LLE treating salpingitis was further evaluated by DF-1 cells infected with bacteria. The results showed that LLE significantly reduced the levels of TLR4 and IFN-γ (P < 0.05), accelerated the levels of IgA and IgG (P < 0.05), regulated the levels of SOD and MDA (P < 0.05) in laying hens with salpingitis. A total of 1,874 differential genes were obtained according to the transcriptome sequencing. It was revealed a significant role in cell cycle and apoptosis by enrichment analysis. In addition, among the 28 components identified by UPLC-Q-TOF-MS, 20 components acted on 58 genes, including CDK1, BIRC5, and CA2 for treating salpingitis. After bacterial infection, cells were damaged and unable to complete the normal progression of the cell cycle, leading to cell cycle arrest and further apoptosis formation. However, with the intervention of LLE, bacterial infection was resisted. The cells proliferation was extensively restored, and the expression of NO was increased. The addition of LLE significantly decreased cell apoptosis. The G1 phase increased, the S phase and the G2 phase decreased in the model group; after the intervention of LLE, the G1 phase gradually returned to the average level, and G2 and S phases increased. The mRNA expression levels of BIRC5, CDK1, and CA2 were consistent with the predicted results in network pharmacology. At the same time, the mRNA expression levels of Caspase-3 and Caspase-7 were reduced after added with LLE. The mRNA expression levels of TNF-α, TRADD, FADD, Caspase-8, Caspase-10, and Caspase-9 (P < 0.05), which would inhibit death receptor activation and decrease the apoptotic cascade, were upregulated after bacterial infection. However, the results in LLE groups were downregulated (P < 0.05). Meanwhile, the mRNA expression levels of BCL-2 in LLE groups were increased significantly compared with it in model group (P < 0.05). Notably, LLE administration inhibited apoptosis and regulated the cell cycle distribution in the salpingitis induced by bacterial infection. These results indicated that the LLE attenuated bacterial-induced salpingitis by modulating apoptosis and immune function in laying hens.
Collapse
Affiliation(s)
- Pupu Yan
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jiali Liu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Yongxi Huang
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Yana Li
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jie Yu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jinjin Xia
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Man Liu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Ruonan Bai
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Ning Wang
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Liwei Guo
- School of Animal Science, Yangtze University, Jingzhou 434020, China.
| | - Guoping Liu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Xiaolin Yang
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Bin He
- Animal and Veterinary Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
2
|
Shi F, Chen Y, Dong C, Wang J, Song C, Zhang Y, Li Z, Huang X. Ni/Mn-Complex-Tethered Tetranuclear Polyoxovanadates: Crystal Structure and Inhibitory Activity on Human Hepatocellular Carcinoma (HepG-2). Molecules 2023; 28:6843. [PMID: 37836686 PMCID: PMC10574323 DOI: 10.3390/molecules28196843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Polyoxometalates (POMs) exhibit unique structural characteristics and excellent physical and chemical properties, which have attracted significant attention from scholars in the fields of anticancer research and chemotherapy. Herein, we successfully synthesized and structurally characterized two novel polyoxovanadates (POVs), denoted as POVs-1 and POVs-2, where [M(1-vIM)4]2[VV4O12]·H2O (M: NiII and MnII, 1-vinylimidazole abbreviated as 1-vIM) serve as ligands. The two POVs are isomeric and consist of fundamental structural units, each comprising one [V4O12]4- cluster, two [M(1-vIM)4]2+ cations, and one water molecule. Subsequently, we evaluated the cell viability of human hepatocellular carcinoma (HepG-2) cells treated with the synthesized POVs using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide) assay. And the changes in cell nucleus morphology, mitochondrial membrane potential (Δψm), and reactive oxygen species levels in HepG-2 exposed to POVs were monitored using specific fluorescent staining techniques. Both hybrid POVs showed potent inhibitory activities, induing apoptosis in HepG-2 cells along with significant mitochondria dysfunction and a burst of reactive oxygen species. Notably, the inhibitory effects of POVs-2 were more pronounced than those of POVs-1, which is primarily attributed to the different transition metal ions present. These findings underscore the intricate relationship between the metal components, structural characteristics, and the observed antitumor activities in HepG-2 cells.
Collapse
Affiliation(s)
- Fumei Shi
- School of Life Science, Liaocheng University, Liaocheng 252000, China;
| | - Yilan Chen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (Y.C.); (C.D.); (J.W.); (C.S.); (X.H.)
| | - Chuanheng Dong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (Y.C.); (C.D.); (J.W.); (C.S.); (X.H.)
| | - Jiajia Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (Y.C.); (C.D.); (J.W.); (C.S.); (X.H.)
| | - Chunman Song
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (Y.C.); (C.D.); (J.W.); (C.S.); (X.H.)
| | - Yalin Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (Y.C.); (C.D.); (J.W.); (C.S.); (X.H.)
| | - Zhen Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (Y.C.); (C.D.); (J.W.); (C.S.); (X.H.)
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (Y.C.); (C.D.); (J.W.); (C.S.); (X.H.)
| |
Collapse
|
3
|
Rickard BP, Overchuk M, Chappell VA, Kemal Ruhi M, Sinawang PD, Nguyen Hoang TT, Akin D, Demirci U, Franco W, Fenton SE, Santos JH, Rizvi I. Methods to Evaluate Changes in Mitochondrial Structure and Function in Cancer. Cancers (Basel) 2023; 15:2564. [PMID: 37174030 PMCID: PMC10177605 DOI: 10.3390/cancers15092564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are regulators of key cellular processes, including energy production and redox homeostasis. Mitochondrial dysfunction is associated with various human diseases, including cancer. Importantly, both structural and functional changes can alter mitochondrial function. Morphologic and quantifiable changes in mitochondria can affect their function and contribute to disease. Structural mitochondrial changes include alterations in cristae morphology, mitochondrial DNA integrity and quantity, and dynamics, such as fission and fusion. Functional parameters related to mitochondrial biology include the production of reactive oxygen species, bioenergetic capacity, calcium retention, and membrane potential. Although these parameters can occur independently of one another, changes in mitochondrial structure and function are often interrelated. Thus, evaluating changes in both mitochondrial structure and function is crucial to understanding the molecular events involved in disease onset and progression. This review focuses on the relationship between alterations in mitochondrial structure and function and cancer, with a particular emphasis on gynecologic malignancies. Selecting methods with tractable parameters may be critical to identifying and targeting mitochondria-related therapeutic options. Methods to measure changes in mitochondrial structure and function, with the associated benefits and limitations, are summarized.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27695, USA
| | - Vesna A. Chappell
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mustafa Kemal Ruhi
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
| | - Prima Dewi Sinawang
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tina Thuy Nguyen Hoang
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Suzanne E. Fenton
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Janine H. Santos
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27695, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Peres A, Branchini G, Marmett B, Nunes FB, Romão PRT, Olean-Oliveira T, Minuzzi L, Cavalcante M, Elsner V, Lira FS, Dorneles GP. Potential Anticarcinogenic Effects From Plasma of Older Adults After Exercise Training: An Exploratory Study. Front Physiol 2022; 13:855133. [PMID: 35874516 PMCID: PMC9298496 DOI: 10.3389/fphys.2022.855133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Aim: To evaluate the impact of exercise training plasma on in vitro prostate cancer cell viability and proliferation. Methods: PC3 prostate cancer cells were incubated with plasma obtained from young men with high and low physical fitness (PF) (high PF, n = 5; low PF, n = 5) and with the plasma collected from institutionalized older adults (n = 8) before and after multimodal exercise training. Cell viability and proliferation, mitochondria membrane polarization, reactive oxygen species (ROS) generation, and apoptosis were evaluated after the cell treatment with plasma. Systemic cytokines were evaluated in the plasma of institutionalized older adults submitted to an exercise training protocol. Results: Plasma from high-PF men lowers both cell viability and proliferation after the incubation time. PC3 cells also presented lower cell viability and diminished rates of cell proliferation after the incubation with post-training plasma samples of the older adults. The incubation of PC3 cells with post-training plasma of older adults depolarized the mitochondrial membrane potential and increased mitochondrial reactive oxygen species production. Post-training plasma did not change apoptosis or necrosis rates in the PC3 cell line. Multimodal exercise training increased the plasma levels of IL-2, IL-10, IFN-α, and FGF-1 and decreased TNF-α concentrations in institutionalized older adults. Conclusion: Adaptations in blood factors of institutionalized older adults may alter cell viability and proliferation by targeting mitochondrial ROS in a prostate cancer cell line.
Collapse
Affiliation(s)
- Alessandra Peres
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Gisele Branchini
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Bruna Marmett
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Fernanda Bordignon Nunes
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Pedro R T Romão
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago Olean-Oliveira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil.,Faculty of Sports Science and Physical Education, Research Center for Sports and Physical Activity, University of Coimbra, Coimbra, Portugal
| | - Luciele Minuzzi
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Mateus Cavalcante
- Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Viviane Elsner
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil.,Faculty of Sports Science and Physical Education, Research Center for Sports and Physical Activity, University of Coimbra, Coimbra, Portugal
| | - Gilson Pires Dorneles
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
5
|
Bandopadhyay S, Prasad P, Ray U, Das Ghosh D, Roy SS. SIRT6 promotes mitochondrial fission and subsequent cellular invasion in ovarian cancer. FEBS Open Bio 2022; 12:1657-1676. [PMID: 35686673 PMCID: PMC9433826 DOI: 10.1002/2211-5463.13452] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/11/2022] Open
Abstract
Ovarian cancer ranks fifth in terms of cancer mortality in women due to lack of early diagnosis and poor clinical management. Characteristics like high cellular proliferation, EMT and metabolic alterations contribute to oncogenicity. Cancer, being a "metabolic disorder," is governed by various key regulatory factors like metabolic enzymes, oncogenes, and tumor suppressors. Sirtuins (SIRT1-SIRT7) belong to the group of NAD+ deacetylase and ADP-ribosylation enzymes that function as NAD+ sensors and metabolic regulators. Among sirtuin orthologs, SIRT6 emerges as an important oncogenic player, although its possible mechanistic involvement in ovarian cancer advancement is still elusive. Our data indicated a higher expression of SIRT6 in ovarian cancer tissues compared with the non-malignant ovarian tissue. Further, we observed that overexpression of SIRT6 enhances glycolysis and oxidative phosphorylation in ovarian cancer cells. The energy derived from these processes facilitates migration and invasion through invadopodia formation by reorganization of actin fibers. Mechanistically, SIRT6 has been shown to promote ERK1/2-driven activatory phosphorylation of DRP1 at serine-616, which has an obligatory role in inducing mitochondrial fission. These fragmented mitochondria facilitate cell movement important for metastases. siRNA-mediated downregulation of SIRT6 was found to decrease cellular invasion through compromised mitochondrial fragmentation and subsequent reduction in stress fiber formation in ovarian cancer cells. Thus, the present report establishes the impact of SIRT6 in the regulation of morphological and functional aspects of mitochondria that modulates invasion in ovarian cancer cells.
Collapse
Affiliation(s)
- Shreya Bandopadhyay
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Parash Prasad
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Upasana Ray
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Damayanti Das Ghosh
- Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
6
|
Yu X, Wu H, Wang H, Dong H, Gao B. Identification of 8 feature genes related to clear cell renal cell carcinoma progression based on co-expression analysis. Kidney Blood Press Res 2021; 47:113-124. [PMID: 34794143 DOI: 10.1159/000520832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/07/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUNDS To screen biomarkers related to clear cell renal cell carcinoma (ccRCC) progression and prognosis. METHODS 1,026 ccRCC-related genes were dug from 494 ccRCC samples in TCGA based on weighted gene co-expression network analysis, and 7 modules were identified. Afterwards, GO and KEGG enrichment analyses were conducted on modules of interest. Genes in these modules were taken as the input to construct a protein-protein interaction network. Thereafter, 30 genes with the highest connectivity were taken as core genes. Univariate Cox regression, LASSO Cox regression and multivariate Cox regression analyses were performed on core genes. Univariate and multivariate Cox regression analyses were performed on patient's clinical characteristics and risk scores. RESULTS Stage displayed significantly strong correlations with green module and red module (p<0.001). Genes in modules participated in biological functions including T cell proliferation and regulation of lymphocyte activation. GSEA showed that high- and low-risk groups exhibited significant enrichment differences in pathways related to immunity, cell migration and invasion. Immune infiltration analysis also presented strong correlation between expression of these 8 genes and immune cell infiltration in ccRCC samples. It was displayed that risk score could be an independent factor to assess patient's prognosis. CONCLUSION We determined biomarkers relevant to ccRCC progression, offering candidate targets for ccRCC treatment.
Collapse
Affiliation(s)
- Xiaoxia Yu
- Department of Blood Purification, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Hua Wu
- Department of Blood Purification, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Hongmei Wang
- Department of Blood Purification, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - He Dong
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, China
| | - Bihu Gao
- Department of Nephrology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
7
|
DFF40 deficiency in cancerous T cells is implicated in chemotherapy drug sensitivity and resistance through the regulation of the apoptotic pathway. Biochem Pharmacol 2021; 194:114801. [PMID: 34678222 DOI: 10.1016/j.bcp.2021.114801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
The regulation of the apoptotic pathway is one of the most studied mechanisms regarding cancer cell resistance. Many mutations have been linked to drug resistance. The DNA fragmentation factor 40 (DFF40) has been gaining interest regarding cancer cell response to chemotherapy and patient outcomes. Glioblastomas and uterine leiomyosarcomas have been shown to have a downregulation of DFF40 expression, conferring a poor patient prognosis. In concordance with these observations, in this study, we showed that DFF40 gene is also downregulated in breast, endocervical, ovarian, lung, pancreas and glioblastomas. DFF40 is the endonuclease responsible of DNA fragmentation during apoptosis. In this study, we sought to determine if a DFF40 deficiency in Jurkat T cells could impact the sensitivity to conventional chemotherapy drugs. CRISPR-cas9 generated DFF40 knockout (DFF40 KO) stable Jurkat cells and wild-type (DFF40 WT) cells were treated with different antimetabolites and topoisomerase II (TOP2) inhibitors, and cell viability was subsequently assessed. DFF40 deficient cells show chemoresistance to antimetabolites (e.g. methotrexate, 6-mercaptopurine and cytarabine) and surprisingly, they are more sensitive to TOP2 inhibitors (e.g. etoposide and teniposide). DFF40 deficient cells exposed to cytarabine present lower phosphatidylserine translocation levels to the outer cell membrane layer. Etoposide exposure in DFF40 deficient cells induces higher mortality levels and downregulation of Bcl-xL cells compared to DFF40 expressing T cells. The abolition of DFF40 expression in Jurkat cells significantly impairs histone H2AX phosphorylation following etoposide and cytarabine treatments. Our findings suggest that DFF40 is a novel key target in cancer cell resistance that potentially regulates genomic stability.
Collapse
|
8
|
Li X, Zou C, Li M, Fang C, Li K, Liu Z, Li C. Transcriptome Analysis of In Vitro Fertilization and Parthenogenesis Activation during Early Embryonic Development in Pigs. Genes (Basel) 2021; 12:genes12101461. [PMID: 34680856 PMCID: PMC8535918 DOI: 10.3390/genes12101461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Parthenogenesis activation (PA), as an important artificial breeding method, can stably preserve the dominant genotype of a species. However, the delayed development of PA embryos is still overly severe and largely leads to pre-implantation failure in pigs. The mechanisms underlying the deficiencies of PA embryos have not been completely understood. For further understanding of the molecular mechanism behind PA embryo failure, we performed transcriptome analysis among pig oocytes (meiosis II, MII) and early embryos at three developmental stages (zygote, morula, and blastocyst) in vitro fertilization (IVF) and PA group. Totally, 11,110 differentially expressed genes (DEGs), 4694 differentially expressed lincRNAs (DELs) were identified, and most DEGs enriched the regulation of apoptotic processes. Through cis- and trans-manner functional prediction, we found that hub lincRNAs were mostly involved in abnormal parthenogenesis embryonic development. In addition, twenty DE imprinted genes showed that some paternally imprinted genes in IVF displayed higher expression than that in PA. Notably, we identified that three DELs of imprinted genes (MEST, PLAGL1, and DIRAS3) were up regulated in IVF, and there was no significant change in PA group. Disordered expression of key genes for embryonic development might play key roles in abnormal parthenogenesis embryonic development. Our study indicates that embryos derived from different production techniques have varied in vitro development to the blastocyst stage, and they also affect the transcription level of corresponding genes, such as imprinted genes. This work will help future research on these genes and molecular-assisted breeding for pig parthenotes.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Cheng Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mengxun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chengchi Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Kui Li
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguo Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Z.L.); (C.L.)
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (Z.L.); (C.L.)
| |
Collapse
|
9
|
Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5188306. [PMID: 34354793 PMCID: PMC8331273 DOI: 10.1155/2021/5188306] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are indispensable for energy metabolism and cell signaling. Mitochondrial homeostasis is sustained with stabilization of mitochondrial membrane potential, balance of mitochondrial calcium, integrity of mitochondrial DNA, and timely clearance of damaged mitochondria via mitophagy. Mitochondrial dysfunction is featured by increased generation of mitochondrial reactive oxygen species, reduced mitochondrial membrane potential, mitochondrial calcium imbalance, mitochondrial DNA damage, and abnormal mitophagy. Accumulating evidence indicates that mitochondrial dysregulation causes oxidative stress, inflammasome activation, apoptosis, senescence, and metabolic reprogramming. All these cellular processes participate in the pathogenesis and progression of chronic respiratory diseases, including chronic obstructive pulmonary disease, pulmonary fibrosis, and asthma. In this review, we provide a comprehensive and updated overview of the impact of mitochondrial dysfunction on cellular processes involved in the development of these respiratory diseases. This not only implicates mechanisms of mitochondrial dysfunction for the pathogenesis of chronic lung diseases but also provides potential therapeutic approaches for these diseases by targeting dysfunctional mitochondria.
Collapse
|
10
|
Procaspase-Activating Compound-1 Synergizes with TRAIL to Induce Apoptosis in Established Granulosa Cell Tumor Cell Line (KGN) and Explanted Patient Granulosa Cell Tumor Cells In Vitro. Int J Mol Sci 2021; 22:ijms22094699. [PMID: 33946730 PMCID: PMC8124867 DOI: 10.3390/ijms22094699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Granulosa cell tumors (GCT) constitute only ~5% of ovarian neoplasms yet have significant consequences, as up to 80% of women with recurrent GCT will die of the disease. This study investigated the effectiveness of procaspase-activating compound 1 (PAC-1), an activator of procaspase-3, in treating adult GCT (AGCT) in combination with selected apoptosis-inducing agents. Sensitivity of the AGCT cell line KGN to these drugs, alone or in combination with PAC-1, was tested using a viability assay. Our results show a wide range in cytotoxic activity among the agents tested. Synergy with PAC-1 was most pronounced, both empirically and by mathematical modelling, when combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This combination showed rapid kinetics of apoptosis induction as determined by caspase-3 activity, and strongly synergistic killing of both KGN as well as patient samples of primary and recurrent AGCT. We have demonstrated that the novel combination of two pro-apoptotic agents, TRAIL and PAC-1, significantly amplified the induction of apoptosis in AGCT cells, warranting further investigation of this combination as a potential therapy for AGCT.
Collapse
|
11
|
Ren G, Hao X, Yang S, Chen J, Qiu G, Ang KP, Mohd Tamrin MI. 10H-3,6-Diazaphenothiazines triggered the mitochondrial-dependent and cell death receptor-dependent apoptosis pathways and further increased the chemosensitivity of MCF-7 breast cancer cells via inhibition of AKT1 pathways. J Biochem Mol Toxicol 2020; 34:e22544. [PMID: 32619082 DOI: 10.1002/jbt.22544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 11/11/2022]
Abstract
Breast cancer is one of the leading causes of death in cancer categories, followed by lung, colorectal, and ovarian among the female gender across the world. 10H-3,6-diazaphenothiazine (PTZ) is a thiazine derivative compound that exhibits many pharmacological activities. Herein, we proceed to investigate the pharmacological activities of PTZ toward breast cancer MCF-7 cells as a representative in vitro breast cancer cell model. The PTZ exhibited a proliferation inhibition (IC50 = 0.895 µM) toward MCF-7 cells. Further, cell cycle analysis illustrated that the S-phase checkpoint was activated to achieve proliferation inhibition. In vitro cytotoxicity test on three normal cell lines (HEK293 normal kidney cells, MCF-10A normal breast cells, and H9C2 normal heart cells) demonstrated that PTZ was more potent toward cancer cells. Increase in the levels of reactive oxygen species results in polarization of mitochondrial membrane potential (ΔΨm), together with suppression of mitochondrial thioredoxin reductase enzymatic activity suggested that PTZ induced oxidative damages toward mitochondria and contributed to improved drug efficacy toward treatment. The RT2 PCR Profiler Array (human apoptosis pathways) proved that PTZ induced cell death via mitochondria-dependent and cell death receptor-dependent pathways, through a series of modulation of caspases, and the respective morphology of apoptosis was observed. Mechanistic studies of apoptosis suggested that PTZ inhibited AKT1 pathways resulting in enhanced drug efficacy despite it preventing invasion of cancer cells. These results showed the effectiveness of PTZ in initiation of apoptosis, programmed cell death, toward highly chemoresistant MCF-7 cells, thus suggesting its potential as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Guanghui Ren
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaoyan Hao
- Department of Thyroid and Breast Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Shuyi Yang
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Jun Chen
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Guobin Qiu
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Kok Pian Ang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Islahuddin Mohd Tamrin
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|