1
|
Yu Q, Song J, Yang L, Miao Y, Xie L, Ma X, Xie P, Chen S. A scoping review of preclinical intensive care unit-acquired weakness models. Front Physiol 2024; 15:1423567. [PMID: 39416383 PMCID: PMC11480018 DOI: 10.3389/fphys.2024.1423567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Background Animal models focusing on neuromuscular outcomes are crucial for understanding the mechanisms of intensive care unit-acquired weakness (ICU-AW) and exploring potential innovative prevention and treatment strategies. Aim To analyse and evaluate preclinical ICU-AW models. Methods We manually searched five English and four Chinese databases from 1 January 2002, to 1 February 2024, and reviewed related study references. Full-text publications describing animal models of muscle weakness and atrophy in critical illness were included. Detailed information about model types, animal species, sex, age, induction methods, outcome measures, drawbacks and strengths was extracted from each included study. Results A total of 3,451 citations were initially retrieved, with 84 studies included in the final analysis. The most frequently studied animal model included rodents (86.9%), 64.3% of which were male animals. ICU-AW animal models were mostly induced by comprehensive intensive care unit (ICU) interventions (38.1%) and sepsis (51.2%). Most studies focused on limb muscles (66.7%), diaphragm muscles (21.4%) or both (9.5%). Reported outcomes primarily included muscular pathological changes (83.3%), electrophysiological examinations of muscles (57.1%) and animal grip strength (16.6%). However, details such as animal age, mortality data, experimental design, randomisation, blinding, sample size and interventions for the experimental group and/or control group were inadequately reported. Conclusion Many preclinical models are used to study ICU-AW, but the reporting of methodological details is often incomplete. Although current ICU animal models can mimic the characteristics of human ICU-AW, there is no standard model. Future preclinical studies should develop a standard ICU-AW animal model to enhance reproducibility and improve scientific rigor in exploring the mechanisms and potential treatment of ICU-AW.
Collapse
Affiliation(s)
- Qingmei Yu
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Nursing, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiamei Song
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Nursing, Zunyi Medical University, Zunyi, Guizhou, China
| | - Luying Yang
- School of Nursing, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Critical Care Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi City, Zunyi, Guizhou, China
| | - Yanmei Miao
- School of Nursing, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Critical Care Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi City, Zunyi, Guizhou, China
| | - Leiyu Xie
- Department of Critical Care Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi City, Zunyi, Guizhou, China
| | - Xinglong Ma
- Department of Critical Care Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi City, Zunyi, Guizhou, China
| | - Peng Xie
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shaolin Chen
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Nursing, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Tankisi H, Bostock H, Tan SV, Howells J, Ng K, Z'Graggen WJ. Muscle excitability testing. Clin Neurophysiol 2024; 164:1-18. [PMID: 38805900 DOI: 10.1016/j.clinph.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024]
Abstract
Conventional electrophysiological methods, i.e. nerve conduction studies and electromyography are suitable methods for the diagnosis of neuromuscular disorders, however, they provide limited information about muscle fibre membrane properties and underlying disease mechanisms. Muscle excitability testing is a technique that provides in vivo information about muscle fibre membrane properties such as membrane potential and ion channel function. Since the 1960s, various methodologies have been suggested to examine muscle membrane properties but technical difficulties have limited its use. In 2009, an automated, fast and simple application, the so-called multi-fibre muscle velocity recovery cycles (MVRC) has accelerated the use of muscle excitability testing. Later, frequency ramp and repetitive stimulation protocols have been developed. Though this method has been used mainly in research for revealing disease mechanisms across a broad range of neuromuscular disorders, it may have additional diagnostic uses; value has been shown particularly in muscle channelopathies. This review will provide a description of the state-of-the art of methodological and clinical studies for muscle excitability testing.
Collapse
Affiliation(s)
- H Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - H Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - S V Tan
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom; Department of Neurology and Neurophysiology, Guys and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - J Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - K Ng
- Department of Neurology and Neurophysiology, Royal North Shore Hospital, St Leonards, NSW, Australia; University of Sydney, Camperdown, NSW, Australia
| | - W J Z'Graggen
- Departments Neurology and Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Klawitter F, Ehler J, Bajorat R, Patejdl R. Mitochondrial Dysfunction in Intensive Care Unit-Acquired Weakness and Critical Illness Myopathy: A Narrative Review. Int J Mol Sci 2023; 24:5516. [PMID: 36982590 PMCID: PMC10052131 DOI: 10.3390/ijms24065516] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondria are key structures providing most of the energy needed to maintain homeostasis. They are the main source of adenosine triphosphate (ATP), participate in glucose, lipid and amino acid metabolism, store calcium and are integral components in various intracellular signaling cascades. However, due to their crucial role in cellular integrity, mitochondrial damage and dysregulation in the context of critical illness can severely impair organ function, leading to energetic crisis and organ failure. Skeletal muscle tissue is rich in mitochondria and, therefore, particularly vulnerable to mitochondrial dysfunction. Intensive care unit-acquired weakness (ICUAW) and critical illness myopathy (CIM) are phenomena of generalized weakness and atrophying skeletal muscle wasting, including preferential myosin breakdown in critical illness, which has also been linked to mitochondrial failure. Hence, imbalanced mitochondrial dynamics, dysregulation of the respiratory chain complexes, alterations in gene expression, disturbed signal transduction as well as impaired nutrient utilization have been proposed as underlying mechanisms. This narrative review aims to highlight the current known molecular mechanisms immanent in mitochondrial dysfunction of patients suffering from ICUAW and CIM, as well as to discuss possible implications for muscle phenotype, function and therapeutic approaches.
Collapse
Affiliation(s)
- Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Patejdl
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
4
|
Cacciani N, Skärlén Å, Wen Y, Zhang X, Addinsall AB, Llano-Diez M, Li M, Gransberg L, Hedström Y, Bellander BM, Nelson D, Bergquist J, Larsson L. A prospective clinical study on the mechanisms underlying critical illness myopathy-A time-course approach. J Cachexia Sarcopenia Muscle 2022; 13:2669-2682. [PMID: 36222215 PMCID: PMC9745499 DOI: 10.1002/jcsm.13104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Critical illness myopathy (CIM) is a consequence of modern critical care resulting in general muscle wasting and paralyses of all limb and trunk muscles, resulting in prolonged weaning from the ventilator, intensive care unit (ICU) treatment and rehabilitation. CIM is associated with severe morbidity/mortality and significant negative socioeconomic consequences, which has become increasingly evident during the current COVID-19 pandemic, but underlying mechanisms remain elusive. METHODS Ten neuro-ICU patients exposed to long-term controlled mechanical ventilation were followed with repeated muscle biopsies, electrophysiology and plasma collection three times per week for up to 12 days. Single muscle fibre contractile recordings were conducted on the first and final biopsy, and a multiomics approach was taken to analyse gene and protein expression in muscle and plasma at all collection time points. RESULTS (i) A progressive preferential myosin loss, the hallmark of CIM, was observed in all neuro-ICU patients during the observation period (myosin:actin ratio decreased from 2.0 in the first to 0.9 in the final biopsy, P < 0.001). The myosin loss was coupled to a general transcriptional downregulation of myofibrillar proteins (P < 0.05; absolute fold change >2) and activation of protein degradation pathways (false discovery rate [FDR] <0.1), resulting in significant muscle fibre atrophy and loss in force generation capacity, which declined >65% during the 12 day observation period (muscle fibre cross-sectional area [CSA] and maximum single muscle fibre force normalized to CSA [specific force] declined 30% [P < 0.007] and 50% [P < 0.0001], respectively). (ii) Membrane excitability was not affected as indicated by the maintained compound muscle action potential amplitude upon supramaximal stimulation of upper and lower extremity motor nerves. (iii) Analyses of plasma revealed early activation of inflammatory and proinflammatory pathways (FDR < 0.1), as well as a redistribution of zinc ions from plasma. CONCLUSIONS The mechanical ventilation-induced lung injury with release of cytokines/chemokines and the complete mechanical silencing uniquely observed in immobilized ICU patients affecting skeletal muscle gene/protein expression are forwarded as the dominant factors triggering CIM.
Collapse
Affiliation(s)
- Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Skärlén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alex B Addinsall
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Monica Llano-Diez
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meishan Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Gransberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yvette Hedström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Nelson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Section of Intensive Care, Function Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry-Biomedical Centre, Uppsala University, Uppsala, Sweden.,The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,The Viron Molecular Medicine Institute, Boston, MA, USA
| |
Collapse
|
5
|
Suetterlin KJ, Männikkö R, Matthews E, Greensmith L, Hanna MG, Bostock H, Tan SV. Excitability properties of mouse and human skeletal muscle fibres compared by muscle velocity recovery cycles. Neuromuscul Disord 2022; 32:347-357. [PMID: 35339342 PMCID: PMC7614892 DOI: 10.1016/j.nmd.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022]
Abstract
Mouse models of skeletal muscle channelopathies are not phenocopies of human disease. In some cases (e.g. Myotonia Congenita) the phenotype is much more severe, whilst in others (e.g. Hypokalaemic periodic paralysis) rodent physiology is protective. This suggests a species' difference in muscle excitability properties. In humans these can be measured indirectly by the post-impulse changes in conduction velocity, using Muscle Velocity Recovery Cycles (MVRCs). We performed MVRCs in mice and compared their muscle excitability properties with humans. Mouse Tibialis Anterior MVRCs (n = 70) have only one phase of supernormality (increased conduction velocity), which is smaller in magnitude (p = 9 × 10-21), and shorter in duration (p = 3 × 10-24) than human (n = 26). This abbreviated supernormality is followed by a period of late subnormality (reduced velocity) in mice, which overlaps in time with the late supernormality seen in human MVRCs. The period of late subnormality suggests increased t-tubule Na+/K+-pump activity. The subnormal phase in mice was converted to supernormality by blocking ClC-1 chloride channels, suggesting relatively higher chloride conductance in skeletal muscle. Our findings help explain discrepancies in phenotype between mice and humans with skeletal muscle channelopathies and potentially other neuromuscular disorders. MVRCs are a valuable new tool to compare in vivo muscle membrane properties between species and will allow further dissection of the molecular mechanisms regulating muscle excitability.
Collapse
Affiliation(s)
- K J Suetterlin
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; AGE Research Group, NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - R Männikkö
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - E Matthews
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Atkinson Morley Neuromuscular Centre, Department of Neurology, St Georges University Hospitals NHS Foundation Trust, London, United Kingdom
| | - L Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - M G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - H Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - S V Tan
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology and Clinical Neurophysiology, Guy's & St Thomas' NHS Foundation Trust and Institute of Psychiatry, Psychology & Neuroscience, Division of Neuroscience, King's College London, United Kingdom
| |
Collapse
|
6
|
Rodriguez B, Larsson L, Z’Graggen WJ. Critical Illness Myopathy: Diagnostic Approach and Resulting Therapeutic Implications. Curr Treat Options Neurol 2022; 24:173-182. [PMID: 35370393 PMCID: PMC8958813 DOI: 10.1007/s11940-022-00714-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Abstract
Abstract
Purpose of review
Critical illness myopathy (CIM) is a common neuro-muscular complication of intensive care treatment associated with increased morbidity and mortality. The current guidelines for diagnosis include clinical and electrophysiological criteria as well as a muscle biopsy, and allow diagnosis only at an advanced stage of the disease. To date, there is no treatment for CIM available, apart from symptomatic and rehabilitative interventions. In this review, we discuss different diagnostic approaches and describe new treatment possibilities for CIM.
Recent findings
Of the diagnostic approaches evaluated, a new electrophysiological technique for measuring muscle excitability has the greatest potential to allow earlier diagnosis of CIM than the current guidelines do and thereby may facilitate the conduction of future pathophysiological and therapeutic studies. Although clinical trials are still lacking, in animal models, BGP-15, vamorolone, and ruxolitinib have been shown to have anti-inflammatory effects, to reduce muscle wasting and to improve muscle function and survival.
Summary
In recent years, promising methods for early and confirmatory diagnosis of CIM have been developed, but still need validation. Experimental studies on novel pharmacological interventions show promising results in terms of preventive CIM treatments, but future clinical studies will be needed to study the effectiveness and safety of these drugs.
Collapse
Affiliation(s)
- Belén Rodriguez
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Lars Larsson
- Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Viron Molecular Medicine Institute, Boston, MA 02108 USA
| | - Werner J. Z’Graggen
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
7
|
Souron R, Morel J, Gergelé L, Infantino P, Brownstein CG, Lapole T, Millet GY. Relationship between intensive care unit-acquired weakness, fatigability and fatigue: What role for the central nervous system? J Crit Care 2020; 62:101-110. [PMID: 33316555 DOI: 10.1016/j.jcrc.2020.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To provide a comprehensive review of studies that have investigated fatigue in intensive care unit (ICU) survivors and questions the potential link between intensive care unit-acquired weakness (ICUAW), fatigability and fatigue. We also question whether the central nervous system (CNS) may be the link between these entities. MATERIAL AND METHODS A narrative review of the literature that investigated fatigue in ICU survivors and review of clinical trials enabling understanding of CNS alterations in response to ICU stays. RESULTS Fatigue is a pervasive and debilitating symptom in ICU survivors that can interfere with rehabilitation. Due to the complex pathophysiology of fatigue, more work is required to understand the roles of ICUAW and/or fatigability in fatigue to provide a more holistic understanding of this symptom. While muscle alterations have been well documented in ICU survivors, we believe that CNS alterations developing early during the ICU stay may play a role in fatigue. CONCLUSIONS Fatigue should be considered and treated in ICU survivors. The causes of fatigue are likely to be specific to the individual. Understanding the role that ICUAW and fatigability may have in fatigue would allow to tailor individual treatment to prevent this persistent symptom and improve quality of life.
Collapse
Affiliation(s)
- Robin Souron
- Univ Lyon, UJM Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023 Saint-Etienne, France; Laboratory of Impact of Physical Activity on Health (IAPS), UR n°201723207F, University of Toulon, France
| | - Jérôme Morel
- Univ Lyon, UJM Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023 Saint-Etienne, France; Département d'anesthésie et réanimation, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France.
| | - Laurent Gergelé
- Ramsay Générale de Santé, Hôpital privé de la Loire, Saint Etienne, France
| | - Pascal Infantino
- Département d'anesthésie et réanimation, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Callum G Brownstein
- Univ Lyon, UJM Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023 Saint-Etienne, France.
| | - Thomas Lapole
- Univ Lyon, UJM Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023 Saint-Etienne, France
| | - Guillaume Y Millet
- Univ Lyon, UJM Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023 Saint-Etienne, France.
| |
Collapse
|
8
|
Schefold JC, Wollersheim T, Grunow JJ, Luedi MM, Z'Graggen WJ, Weber-Carstens S. Muscular weakness and muscle wasting in the critically ill. J Cachexia Sarcopenia Muscle 2020; 11:1399-1412. [PMID: 32893974 PMCID: PMC7749542 DOI: 10.1002/jcsm.12620] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tobias Wollersheim
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Julius J Grunow
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Markus M Luedi
- Department of Anaesthesiology and Pain Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Werner J Z'Graggen
- Department of Neurology and Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
9
|
Intensive Care Unit-Acquired Weakness: Not just Another Muscle Atrophying Condition. Int J Mol Sci 2020; 21:ijms21217840. [PMID: 33105809 PMCID: PMC7660068 DOI: 10.3390/ijms21217840] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Intensive care unit-acquired weakness (ICUAW) occurs in critically ill patients stemming from the critical illness itself, and results in sustained disability long after the ICU stay. Weakness can be attributed to muscle wasting, impaired contractility, neuropathy, and major pathways associated with muscle protein degradation such as the ubiquitin proteasome system and dysregulated autophagy. Furthermore, it is characterized by the preferential loss of myosin, a distinct feature of the condition. While many risk factors for ICUAW have been identified, effective interventions to offset these changes remain elusive. In addition, our understanding of the mechanisms underlying the long-term, sustained weakness observed in a subset of patients after discharge is minimal. Herein, we discuss the various proposed pathways involved in the pathophysiology of ICUAW, with a focus on the mechanisms underpinning skeletal muscle wasting and impaired contractility, and the animal models used to study them. Furthermore, we will explore the contributions of inflammation, steroid use, and paralysis to the development of ICUAW and how it pertains to those with the corona virus disease of 2019 (COVID-19). We then elaborate on interventions tested as a means to offset these decrements in muscle function that occur as a result of critical illness, and we propose new strategies to explore the molecular mechanisms of ICUAW, including serum-related biomarkers and 3D human skeletal muscle culture models.
Collapse
|
10
|
Abstract
Critical illness myopathy (CIM) is a primary myopathy associated with increased mortality and morbidity, which frequently develops in severely ill patients. Several risk factors have been suggested for the development of critical illness myopathy. However, neither the exact etiology nor the underlying mechanisms are known in detail. Although for definite diagnosis muscle biopsy is needed, electrophysiological tests are crucial for the diagnosis of probable critical illness myopathy and differential diagnosis. In this review, conventional electrophysiological tests such as nerve conduction studies, needle electromyography, direct muscle stimulation, and repetitive stimulation for diagnosis of critical illness myopathy are summarized. Moreover, studies using the novel method of recording muscle velocity recovery cycles are addressed.
Collapse
|
11
|
Boërio D, Corrêa TD, Jakob SM, Ackermann KA, Bostock H, Z'Graggen WJ. Muscle membrane properties in A pig sepsis model: Effect of norepinephrine. Muscle Nerve 2017; 57:808-813. [PMID: 29130505 DOI: 10.1002/mus.26013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2017] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Sepsis-induced myopathy and critical illness myopathy are common causes of muscle weakness in intensive care patients. This study investigated the effect of different mean arterial blood pressure (MAP) levels on muscle membrane properties following experimental sepsis. METHODS Sepsis was induced with fecal peritonitis in 12 of 18 anesthetized and mechanically ventilated pigs. Seven were treated with a high (75-85 mmHg) and 5 were treated with a low (≥60 mmHg) MAP target for resuscitation. In septic animals, resuscitation was started 12 h after peritonitis induction, and muscle velocity recovery cycles were recorded 30 h later. RESULTS Muscles in the sepsis/high MAP group showed an increased relative refractory period and reduced early supernormality compared with the remaining septic animals and the control group, indicating membrane depolarization and/or sodium channel inactivation. The membrane abnormalities correlated positively with norepinephrine dose. DISCUSSION Norepinephrine may contribute to sepsis-induced abnormalities in muscle by impairing microcirculation. Muscle Nerve 57: 808-813, 2018.
Collapse
Affiliation(s)
- Delphine Boërio
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thiago D Corrêa
- Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Karin A Ackermann
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hugh Bostock
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Werner J Z'Graggen
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| |
Collapse
|
12
|
Bleilevens C, Grottke O, Groening S, Honickel M, Kopp R, Singh S, Arens J, Rossaint R. Septic porcine blood does not further activate coagulation during in vitro membrane oxygenation. Eur J Cardiothorac Surg 2017; 51:449-456. [PMID: 27806995 DOI: 10.1093/ejcts/ezw345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/16/2016] [Indexed: 11/12/2022] Open
Abstract
Objectives For patients with a severe acute respiratory distress syndrome (ARDS), extracorporeal membrane oxygenation (ECMO) represents a life-saving measure. Frequently, patients with severe ARDS also show signs of severe sepsis. As blood contact with the membrane oxygenator surface leads to adverse effects due to insufficient biocompatibility partly caused by activation of platelets, coagulation factors and leucocytes, we hypothesized that these adverse effects would be amplified if septic blood in a preactivated state came into contact with the membrane oxygenator. Methods In a previously established in vitro 12-h ECMO test system (mock loop), we used septic or healthy domestic pig blood to analyse coagulation and inflammatory parameters. Sepsis was induced by a caecal ligation and puncture model in pigs. Results At the beginning of the mock loop experiments, the septic blood showed significantly increased thrombin-antithrombin complexes (76.9 vs 27.7 µg/l), D-dimers (1.2 vs 0.3 mg/l) and fibrinogen concentration (1.8 vs 1.5 g/l), as well as elevated extrinsic coagulation activity (shorter EXTEM-CT: 44.2 vs 57 s) and higher lactate (3.4 vs 1.5 mmol/l) and cytokine levels (interleukin-6: 827 vs 31 pg/ml) when compared with the blood from healthy animals. Despite the preactivated status of the septic blood, no further increase of coagulation activity, inflammatory response or increased oxygenator resistance was observed in comparison to the control experiments. Conclusion Septic porcine blood was not further activated due to the contact with an oxygenator, and no increased clot formation or biocompatibility problems were observed.
Collapse
Affiliation(s)
- Christian Bleilevens
- Department of Anesthesiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Oliver Grottke
- Department of Anesthesiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Sabine Groening
- Department of Anesthesiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Markus Honickel
- Department of Anesthesiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Rüdger Kopp
- Department of Intensive Care, University Hospital RWTH Aachen University, Aachen, Germany
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, Aachen, Germany
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, University Hospital RWTH Aachen University, Aachen, Germany
| |
Collapse
|
13
|
Abstract
When critically ill, a severe weakness of the limbs and respiratory muscles often develops with a prolonged stay in the intensive care unit (ICU), a condition vaguely termed intensive care unit-acquired weakness (ICUAW). Many of these patients have serious nerve and muscle injury. This syndrome is most often seen in surviving critically ill patients with sepsis or extensive inflammatory response which results in increased duration of mechanical ventilation and hospital length of stay. Patients with ICUAW often do not fully recover and the disability will seriously impact on their quality of life. In this chapter we discuss the current knowledge on the pathophysiology and risk factors of ICUAW. Tools to diagnose ICUAW, how to separate ICUAW from other disorders, and which possible treatment strategies can be employed are also described. ICUAW is finally receiving the attention it deserves and the expectation is that it can be better understood and prevented.
Collapse
Affiliation(s)
- J Horn
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands.
| | - G Hermans
- Department of General Internal Medicine, UZ Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Z'Graggen WJ, Trautmann JP, Bostock H. Force training induces changes in human muscle membrane properties. Muscle Nerve 2016; 54:144-6. [DOI: 10.1002/mus.25149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Werner J. Z'Graggen
- Department of Neurosurgery, Inselspital; Bern University Hospital and University of Bern; Bern Switzerland
- Department of Neurology, Inselspital; Bern University Hospital and University of Bern; Bern Switzerland
| | - Joël P. Trautmann
- Department of Neurology, Inselspital; Bern University Hospital and University of Bern; Bern Switzerland
| | - Hugh Bostock
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology; University College London; London United Kingdom
| |
Collapse
|
15
|
Koch S, Bierbrauer J, Haas K, Wolter S, Grosskreutz J, Luft FC, Spies CD, Fielitz J, Weber-Carstens S. Critical illness polyneuropathy in ICU patients is related to reduced motor nerve excitability caused by reduced sodium permeability. Intensive Care Med Exp 2016; 4:10. [PMID: 27207148 PMCID: PMC4875580 DOI: 10.1186/s40635-016-0083-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/29/2016] [Indexed: 01/01/2023] Open
Abstract
Background Reduced motor and sensory nerve amplitudes in critical illness polyneuropathy (CIP) are characteristic features described in electrophysiological studies and due to dysfunction of voltage-gated sodium channels. Yet, faulty membrane depolarization as reported in various tissues of critically ill patients may cause reduced membrane excitability as well. The aim of this study was to compare the pathophysiological differences in motor nerve membrane polarization and voltage-gated sodium channel function between CIP patients and critically ill patients not developing CIP during their ICU stay (ICU controls). Methods ICU patients underwent electrophysiological nerve conduction studies and were categorized as either ICU controls or CIP patients. Subsequently, excitability parameters were recorded as current-threshold relationship, stimulus-response behavior, threshold electrotonus, and recovery of excitability from the abductor pollicis brevis following median nerve stimulation. Results Twenty-six critically ill patients were enrolled and categorized as 12 ICU controls and 14 CIP patients. When compared to 31 healthy subjects, the ICU controls exhibited signs of membrane depolarization as shown by reduced superexcitability (p = 0.003), depolarized threshold electrotonus (p = 0.007), increased current-threshold relationship (p = 0.03), and slightly prolonged strength-duration time constant. In contrast, the CIP patients displayed a significantly reduced strength-duration time constant (p < 0.0001), which indicates an increased inactivation of voltage-gated sodium channels. Conclusions Abnormal motor nerve membrane depolarization is a general finding in critically ill patients whereas voltage-gated sodium channel dysfunction is a characteristic of CIP patients. Electronic supplementary material The online version of this article (doi:10.1186/s40635-016-0083-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Koch
- Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Jeffrey Bierbrauer
- Klinik für diagnostische und interventionelle Radiologie und Nuklearmedizin, Klinikum Esslingen GmbH, Hirschlandstraße 97, 73730, Esslingen a.N, Germany
| | - Kurt Haas
- Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Simone Wolter
- Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | - Friedrich C Luft
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Jena, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Jena, Germany.,Heart Center Brandenburg and Medical School Brandenburg (MHB), Bernau, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
16
|
Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:274. [PMID: 26242743 PMCID: PMC4526175 DOI: 10.1186/s13054-015-0993-7] [Citation(s) in RCA: 409] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A substantial number of patients admitted to the ICU because of an acute illness, complicated surgery, severe trauma, or burn injury will develop a de novo form of muscle weakness during the ICU stay that is referred to as “intensive care unit acquired weakness” (ICUAW). This ICUAW evoked by critical illness can be due to axonal neuropathy, primary myopathy, or both. Underlying pathophysiological mechanisms comprise microvascular, electrical, metabolic, and bioenergetic alterations, interacting in a complex way and culminating in loss of muscle strength and/or muscle atrophy. ICUAW is typically symmetrical and affects predominantly proximal limb muscles and respiratory muscles, whereas facial and ocular muscles are often spared. The main risk factors for ICUAW include high severity of illness upon admission, sepsis, multiple organ failure, prolonged immobilization, and hyperglycemia, and also older patients have a higher risk. The role of corticosteroids and neuromuscular blocking agents remains unclear. ICUAW is diagnosed in awake and cooperative patients by bedside manual testing of muscle strength and the severity is scored by the Medical Research Council sum score. In cases of atypical clinical presentation or evolution, additional electrophysiological testing may be required for differential diagnosis. The cornerstones of prevention are aggressive treatment of sepsis, early mobilization, preventing hyperglycemia with insulin, and avoiding the use parenteral nutrition during the first week of critical illness. Weak patients clearly have worse acute outcomes and consume more healthcare resources. Recovery usually occurs within weeks or months, although it may be incomplete with weakness persisting up to 2 years after ICU discharge. Prognosis appears compromised when the cause of ICUAW involves critical illness polyneuropathy, whereas isolated critical illness myopathy may have a better prognosis. In addition, ICUAW has shown to contribute to the risk of 1-year mortality. Future research should focus on new preventive and/or therapeutic strategies for this detrimental complication of critical illness and on clarifying how ICUAW contributes to poor longer-term prognosis.
Collapse
Affiliation(s)
- Greet Hermans
- Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium. .,Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Greet Van den Berghe
- Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium. .,Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
17
|
Z'graggen WJ, Trautmann JP, Boërio D, Bostock H. Muscle velocity recovery cycles: Comparison between surface and needle recordings. Muscle Nerve 2015; 53:205-8. [DOI: 10.1002/mus.24726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Werner J. Z'graggen
- Department of Neurosurgery, Inselspital; Bern University Hospital and University of Bern; Freiburgstrasse 10, 3010 Bern Switzerland
| | - Joël P. Trautmann
- Department of Neurology, Inselspital; Bern University Hospital and University of Bern; Bern Switzerland
| | - Delphine Boërio
- Department of Neurology, Inselspital; Bern University Hospital and University of Bern; Bern Switzerland
| | - Hugh Bostock
- Sobell Department of Motor Neuroscience and Movement Disorders; Institute of Neurology; University College London; London UK
| |
Collapse
|