1
|
Zorrilla-Vaca A, Arevalo JJ, Grant MC. Protective mechanical ventilation in critically ill patients after surgery. Curr Opin Crit Care 2024; 30:679-683. [PMID: 39503212 DOI: 10.1097/mcc.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide an updated overview of lung protective strategies in critically ill patients after surgery, focusing on the utility of postoperative open-lung ventilation during the transition from the operating room to the intensive care unit. RECENT FINDINGS Mechanically ventilated patients after surgery represent a challenge in the intensive care unit. Different protective strategies have been proposed to minimize the risk of ventilator-induced lung injury (VILI) and facilitate adequate weaning from mechanical ventilation. Fast-track extubation protocols, increasingly standard in the care of critically ill patients postsurgery, have demonstrated improvements in recovery and reductions in acute lung injury, primarily based on retrospective studies. Open-lung ventilation strategies, such as individualization of positive-end expiratory pressure based on driving pressure and postoperative noninvasive ventilation support with high-flow nasal cannula, are becoming standard of care in high-risk surgical patients after major abdominal or thoracic surgeries. SUMMARY Mechanical ventilation in surgical patients should adhere to lung protective strategies (i.e., individualizing positive end expiratory pressure and prioritize alveolar recruitment) during the transition from the operating room to the intensive care unit.
Collapse
Affiliation(s)
- Andres Zorrilla-Vaca
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jimmy J Arevalo
- Department of Anesthesiology, Leiden University Medical Center, The Netherlands
| | - Michael C Grant
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Marini JJ, Rocco PRM, Thornton LT, Crooke PS. Stress & strain in mechanically nonuniform alveoli using clinical input variables: a simple conceptual model. Crit Care 2024; 28:141. [PMID: 38679712 PMCID: PMC11057067 DOI: 10.1186/s13054-024-04918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Clinicians currently monitor pressure and volume at the airway opening, assuming that these observations relate closely to stresses and strains at the micro level. Indeed, this assumption forms the basis of current approaches to lung protective ventilation. Nonetheless, although the airway pressure applied under static conditions may be the same everywhere in healthy lungs, the stresses within a mechanically non-uniform ARDS lung are not. Estimating actual tissue stresses and strains that occur in a mechanically non-uniform environment must account for factors beyond the measurements from the ventilator circuit of airway pressures, tidal volume, and total mechanical power. A first conceptual step for the clinician to better define the VILI hazard requires consideration of lung unit tension, stress focusing, and intracycle power concentration. With reasonable approximations, better understanding of the value and limitations of presently used general guidelines for lung protection may eventually be developed from clinical inputs measured by the caregiver. The primary purpose of the present thought exercise is to extend our published model of a uniform, spherical lung unit to characterize the amplifications of stress (tension) and strain (area change) that occur under static conditions at interface boundaries between a sphere's surface segments having differing compliances. Together with measurable ventilating power, these are incorporated into our perspective of VILI risk. This conceptual exercise brings to light how variables that are seldom considered by the clinician but are both recognizable and measurable might help gauge the hazard for VILI of applied pressure and power.
Collapse
Affiliation(s)
- John J Marini
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, St Paul, MN, USA.
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lauren T Thornton
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, St Paul, MN, USA
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Ibarra CD, Sangiovanni S, Bautista DF, Calderón-Miranda CA, Cruz GA, Fernández-Trujillo L. Use of venovenous (VV) extracorporeal membrane oxygenation (ECMO) in near-fatal asthma: a case series. Multidiscip Respir Med 2024; 19:943. [PMID: 38476128 PMCID: PMC10929514 DOI: 10.5826/mrm.2024.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/09/2023] [Indexed: 03/14/2024] Open
Abstract
Introduction Status asthmaticus (SA) and near-fatal asthma (NFA) are life-threatening conditions that continue to present a management challenge for physicians. Extracorporeal Membrane Oxygenation (ECMO) has been employed as a last resort in treating these patients. Case presentation We described six patients who were admitted to the ICU for NFA and received ECMO treatment at a high-complexity institution in Cali, Colombia, between 2015 and 2019. All patients are registered in the ELSO registry. Baseline patient characteristics, arterial blood gases (ABG), ventilatory parameters, and complications were collected as specified in the ELSO registry form. Efficacy was analyzed in terms of the improvement in respiratory acidosis, the number of ventilator-free days (VFD), and a reduction in mechanical power (MP). MP, which refers to the energy associated with the mechanical forces involved in breathing and the functioning of the respiratory system, was calculated using a mathematical formula. Safety was evaluated based on the incidence of complications. After 12 hours of ECMO, we achieved a correction of respiratory acidosis, a significant decrease in all ventilatory parameters, and a reduction in MP ranging from 52.8% to 89%. There was one mortality. Among the five surviving patients, all except one, who required a tracheostomy, had a high VFD score, with a mode of 26 days, demonstrating a reduction in ventilation time. Conclusion Further randomized controlled trials are needed to fully understand the efficacy and safety profiles of ECMO in SA/NFA. MP is being widely used to achieve safer ventilation, and although more data is required, it appears to be a promising option for evaluating the risk of developing VILI and the success of the therapy.
Collapse
Affiliation(s)
- Ciro D. Ibarra
- Clinical Research Center, Fundación Valle del Lili. Cali, Colombia
| | | | - Diego F. Bautista
- Department of Critical Care Medicine, Fundación Valle del Lili, Cali, Colombia
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
| | - Camilo A. Calderón-Miranda
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
- Department of Internal Medicine, Cardiology Service, Fundación Valle del Lili, Cali, Colombia
| | - Gustavo A. Cruz
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
- Department of Anesthesiology, Fundación Valle del Lili, Cali, Colombia
| | - Liliana Fernández-Trujillo
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
- Department of Internal Medicine, Pulmonology Service, Fundación Valle del Lili, Cali, Colombia
| |
Collapse
|
4
|
Damiani LF, Basoalto R, Retamal J, Bruhn A, Bugedo G. Mechanical Power of Ventilation: From Computer to Clinical Implications. Respir Care 2023; 68:1748-1756. [PMID: 37935527 PMCID: PMC10676264 DOI: 10.4187/respcare.11462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Mechanical ventilation is a lifesaving intervention that may also induce further lung injury by exerting excessive mechanical forces on susceptible lung tissue, a phenomenon termed ventilator-induced lung injury (VILI). The concept of mechanical power (MP) aims to unify in one single variable the contribution of the different ventilatory parameters that could induce VILI by measuring the energy transfer to the lung over time. Despite an increasing amount of evidence demonstrating that high MP values can be associated with VILI development in experimental studies, the evidence regarding the association of MP and clinical outcomes remains controversial. In the present review, we describe the different determinants of VILI, the concept and computation of MP, and discuss the experimental and clinical studies related to MP. Currently, due to different limitations, the clinical application of MP is debatable. Further clinical studies are required to enhance our understanding of the relationship between MP and the development of VILI, as well as its potential impact on clinical outcomes.
Collapse
Affiliation(s)
- L Felipe Damiani
- Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; and Cardiorespiratory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Roque Basoalto
- Cardiorespiratory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile. Santiago, Chile; and Programa de Medicina Física y Rehabilitación, Red Salud UC-CHRISTUS, Santiago, Chile
| | - Jaime Retamal
- Cardiorespiratory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Bruhn
- Cardiorespiratory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Bugedo
- Cardiorespiratory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Thornton LT, Marini JJ. Optimized ventilation power to avoid VILI. J Intensive Care 2023; 11:57. [PMID: 37986109 PMCID: PMC10658809 DOI: 10.1186/s40560-023-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
The effort to minimize VILI risk must be multi-pronged. The need to adequately ventilate, a key determinant of hazardous power, is reduced by judicious permissive hypercapnia, reduction of innate oxygen demand, and by prone body positioning that promotes both efficient pulmonary gas exchange and homogenous distributions of local stress. Modifiable ventilator-related determinants of lung protection include reductions of tidal volume, plateau pressure, driving pressure, PEEP, inspiratory flow amplitude and profile (using longer inspiration to expiration ratios), and ventilation frequency. Underappreciated conditional cofactors of importance to modulate the impact of local specific power may include lower vascular pressures and blood flows. Employed together, these measures modulate ventilation power with the intent to avoid VILI while achieving clinically acceptable targets for pulmonary gas exchange.
Collapse
Affiliation(s)
- Lauren T Thornton
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis/St Paul, MN, USA
| | - John J Marini
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis/St Paul, MN, USA.
| |
Collapse
|
6
|
Marini JJ, Thornton LT, Rocco PRM, Crooke PS. From pressure to tension: a model of damaging inflation stress. Crit Care 2023; 27:441. [PMID: 37968744 PMCID: PMC10652628 DOI: 10.1186/s13054-023-04675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Although the stretch that generates ventilator-induced lung injury (VILI) occurs within the peripheral tissue that encloses the alveolar space, airway pressures and volumes monitor the gas within the interior core of the lung unit, not its cellular enclosure. Measured pressures (plateau pressure, positive end-expiratory pressure, and driving pressure) and tidal volumes paint a highly relevant but incomplete picture of forces that act on the lung tissues themselves. Convenient and clinically useful measures of the airspace, such as pressure and volume, neglect the partitioning of tidal elastic energy into the increments of tension and surface area that constitute actual stress and strain at the alveolar margins. More sharply focused determinants of VILI require estimates of absolute alveolar dimension and morphology and the lung's unstressed volume at rest. We present a highly simplified but informative mathematical model that translates the radial energy of pressure and volume of the airspace into its surface energy components. In doing so it elaborates conceptual relationships that highlight the forces tending to cause end-tidal hyperinflation of aerated units within the 'baby lung' of acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- John J Marini
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, St Paul, MN, USA.
| | - Lauren T Thornton
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, St Paul, MN, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
7
|
Yang R, Zhou L, Chen Z, He S, Lian S, Shen Y, Zhang X. Effect and mechanical mechanism of spontaneous breathing on oxygenation and lung injury in mild or moderate animal ARDS. BMC Pulm Med 2023; 23:428. [PMID: 37925442 PMCID: PMC10625710 DOI: 10.1186/s12890-023-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
OBJECTIVE The present study aimed to determine the effect and mechanical mechanism of spontaneous breathing during mechanical ventilation on oxygenation and lung injury using Beagles dogs mild or moderate acute respiratory distress syndrome (ARDS) model. METHODS After inducing mild or moderate ARDS by infusion of oleic acid, Eighteen Beagles dogs were randomly split into Spontaneous breathing group (BIPAPSB, n = 6), and Complete muscle paralysis group (BIPAPPC, n = 6),Six Beagles without ventilator support comprised the control group. Both groups were ventilated for 8 h under BIPAP mode. High-pressure was titrated TV to 6 ml/kg. A multi-pair esophageal balloon electrode catheter was used to measure respiratory mechanics and electromyogram. End-expiratory lung volume (EELV), gas exchange and respiratory variables were recorded in the process of mechanical ventilation. The contents of Interleukin (IL)-6 and IL-8 in lung tissue were measure using qRT-PCR. Besides, lung injury score was calculated in the end of mechanical ventilation. RESULTS Based on the comparable setting of ventilator, BIPAPSB group exhibited higher safety peak transpulmonary pressure, abdominal pressure, EELV and P/F(PaO2/FiO2) than BIPAPPC group, whereas mean transpulmonary pressure, the mRNA levels of the IL-6 and IL-8 in the lung tissues and lung injury score in BIPAPSB group were lower than those in BIPAPPC group. CONCLUSION In mild to moderate ARDS animal models, during mechanical ventilation, SB may improve respiratory function and reduce ventilator-induced lung injury. The mechanism may be that spontaneous inspiration up-regulates peak transpulmonary pressure and EELV; Spontaneous expiration decreases mean transpulmonary pressure by up-regulating intra-abdominal pressure, thereby reducing stress and strain.
Collapse
Affiliation(s)
- Rui Yang
- First People's Hospital of Guiyang City, Guiyang, Guizhou, China
| | - Leilei Zhou
- Department of Respiratory Medicine, The Affiliated Hospital of Guizhou Medical, 28 Guiyi Street, Guiyang, Guizhou, 550000, China
| | - Zongyu Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Guizhou Medical, 28 Guiyi Street, Guiyang, Guizhou, 550000, China
| | - Shuang He
- Department of Respiratory Medicine, The Affiliated Hospital of Guizhou Medical, 28 Guiyi Street, Guiyang, Guizhou, 550000, China
| | - Siyu Lian
- Department of Respiratory Medicine, The Affiliated Hospital of Guizhou Medical, 28 Guiyi Street, Guiyang, Guizhou, 550000, China
| | - Yi Shen
- Department of Respiratory Medicine, The Affiliated Hospital of Guizhou Medical, 28 Guiyi Street, Guiyang, Guizhou, 550000, China
| | - Xianming Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Guizhou Medical, 28 Guiyi Street, Guiyang, Guizhou, 550000, China.
| |
Collapse
|
8
|
Musso G, Taliano C, Paschetta E, De Iuliis M, Fonti C, Vianou IS, Druetta M, Riedo F, Ferraris A, Tirabassi G. Mechanical Power Delivered by Noninvasive Ventilation Contributes to Physio-Anatomical and Clinical Responses to Early Versus Late Proning in COVID-19 Pneumonia. Crit Care Med 2023; 51:1185-1200. [PMID: 37232709 DOI: 10.1097/ccm.0000000000005915] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVES To study: 1) the effect of prone position (PP) on noninvasive ventilation (NIV)-delivered mechanical power (MP) and 2) the impact of MP on physio-anatomical and clinical responses to early versus late PP in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. DESIGN Nonrandomized trial with inverse probability of treatment weighted-matched groups. SETTING HUMANITAS Gradenigo Sub-ICU. PATIENTS One hundred thirty-eight SARS-CoV-2 pneumonia patients with moderate-to-severe acute hypoxemic respiratory failure (Pa o2 /F io2 ratio < 200 mm Hg) receiving NIV from September 1, 2020, to February 28, 2021 (Ethics approval: ISRCTN23016116). INTERVENTIONS Early PP or late PP or supine position. MEASUREMENTS AND MAIN RESULTS Respiratory parameters were hourly recorded. Time-weighted average MP values were calculated for each ventilatory session. Gas exchange parameters and ventilatory ratio (VR) were measured 1 hour after each postural change. Lung ultrasonographic scores and circulating biomarkers were assessed daily. MP delivered during the initial 24 hours of NIV (MP [first 24 hr]) was the primary exposure variable. Primary outcomes: 28-day endotracheal intubation and death. Secondary outcomes: oxygen-response, C o2 -response, ultrasonographic, and systemic inflammatory biomarker responses after 24 hours of NIV. Fifty-eight patients received early PP + NIV, 26 late PP + NIV, and 54 supine NIV. Early PP group had lower 28-day intubation and death than late PP (hazard ratio [HR], 0.35; 95% CI, 0.19-0.69 and HR, 0.26; 95% CI, 0.07-0.67, respectively) and supine group. In Cox multivariate analysis, (MP [first 24 hr]) predicted 28-day intubation (HR, 1.70; 95% CI, 1.25-2.09; p = 0.009) and death (HR, 1.51; 95% CI, 1.19-1.91; p = 0.007). Compared with supine position, PP was associated with a 35% MP reduction. VR, ultrasonographic scores, and inflammatory biomarkers improved after 24 hours of NIV in the early PP, but not in late PP or supine group. A MP (first 24 hr) greater than or equal to 17.9 J/min was associated with 28-day death (area under the curve, 0.92; 95% CI, 0.88-0.96; p < 0.001); cumulative hours of MP greater than or equal to 17.9 J/min delivered before PP initiation attenuated VR, ultrasonographic, and biomarker responses to PP. CONCLUSIONS MP delivered by NIV during initial 24 hours predicts clinical outcomes. PP curtails MP, but cumulative hours of NIV with MP greater than or equal to 17.9 J/min delivered before PP initiation attenuate the benefits of PP.
Collapse
Affiliation(s)
- Giovanni Musso
- Emergency Medicine Department, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Claudio Taliano
- Emergency Medicine Department, Humanitas Gradenigo, Turin, Italy
| | - Elena Paschetta
- Emergency Medicine Department, Humanitas Gradenigo, Turin, Italy
| | | | - Caterina Fonti
- Emergency Medicine Department, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | | | - Marta Druetta
- Emergency Medicine Department, Humanitas Gradenigo, Turin, Italy
| | - Federica Riedo
- Emergency Medicine Department, Humanitas Gradenigo, Turin, Italy
| | | | - Gloria Tirabassi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
9
|
Battaglini D, Iavarone IG, Robba C, Ball L, Silva PL, Rocco PRM. Mechanical ventilation in patients with acute respiratory distress syndrome: current status and future perspectives. Expert Rev Med Devices 2023; 20:905-917. [PMID: 37668146 DOI: 10.1080/17434440.2023.2255521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Although there has been extensive research on mechanical ventilation for acute respiratory distress syndrome (ARDS), treatment remains mainly supportive. Recent studies and new ventilatory modes have been proposed to manage patients with ARDS; however, the clinical impact of these strategies remains uncertain and not clearly supported by guidelines. The aim of this narrative review is to provide an overview and update on ventilatory management for patients with ARDS. AREAS COVERED This article reviews the literature regarding mechanical ventilation in ARDS. A comprehensive overview of the principal settings for the ventilator parameters involved is provided as well as a report on the differences between controlled and assisted ventilation. Additionally, new modes of assisted ventilation are presented and discussed. The evidence concerning rescue strategies, including recruitment maneuvers and extracorporeal membrane oxygenation support, is analyzed. PubMed, EBSCO, and the Cochrane Library were searched up until June 2023, for relevant literature. EXPERT OPINION Available evidence for mechanical ventilation in cases of ARDS suggests the use of a personalized mechanical ventilation strategy. Although promising, new modes of assisted mechanical ventilation are still under investigation and guidelines do not recommend rescue strategies as the standard of care. Further research on this topic is required.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Marini JJ, Thornton LT, Rocco PRM, Gattinoni L, Crooke PS. Practical assessment of risk of VILI from ventilating power: a conceptual model. Crit Care 2023; 27:157. [PMID: 37081517 PMCID: PMC10120146 DOI: 10.1186/s13054-023-04406-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
At the bedside, assessing the risk of ventilator-induced lung injury (VILI) requires parameters readily measured by the clinician. For this purpose, driving pressure (DP) and end-inspiratory static 'plateau' pressure ([Formula: see text]) of the tidal cycle are unquestionably useful but lack key information relating to associated volume changes and cumulative strain. 'Mechanical power', a clinical term which incorporates all dissipated ('non-elastic') and conserved ('elastic') energy components of inflation, has drawn considerable interest as a comprehensive 'umbrella' variable that accounts for the influence of ventilating frequency per minute as well as the energy cost per tidal cycle. Yet, like the raw values of DP and [Formula: see text], the absolute levels of energy and power by themselves may not carry sufficiently precise information to guide safe ventilatory practice. In previous work we introduced the concept of 'damaging energy per cycle'. Here we describe how-if only in concept-the bedside clinician might gauge the theoretical hazard of delivered energy using easily observed static circuit pressures ([Formula: see text] and positive end expiratory pressure) and an estimate of the maximally tolerated (threshold) non-dissipated ('elastic') airway pressure that reflects the pressure component applied to the alveolar tissues. Because its core inputs are already in use and familiar in daily practice, the simplified mathematical model we propose here for damaging energy and power may promote deeper comprehension of the key factors in play to improve lung protective ventilation.
Collapse
Affiliation(s)
- John J Marini
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis/St Paul, MN, USA.
| | - Lauren T Thornton
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis/St Paul, MN, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano Gattinoni
- Department of Anesthesiology, University of Göttingen, Göttingen, Germany
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
11
|
Braithwaite SA, van Hooijdonk E, van der Kaaij NP. Ventilation during ex vivo lung perfusion, a review. Transplant Rev (Orlando) 2023; 37:100762. [PMID: 37099887 DOI: 10.1016/j.trre.2023.100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Evidence suggests that ventilation during ex vivo lung perfusion (EVLP) with a 'one-size-fits-all' strategy has the potential to cause lung injury which may only become clinically relevant in marginal lung allografts. EVLP induced- or accelerated lung injury is a dynamic and cumulative process reflecting the interplay of a number of factors. Stress and strain in lung tissue caused by positive pressure ventilation may be exacerbated by the altered properties of lung tissue in an EVLP setting. Any pre-existing injury may alter the ability of lung allografts to accommodate set ventilation and perfusion techniques on EVLP leading to further injury. This review will examine the effects of ventilation on donor lungs in the setting of EVLP. A framework for developing a protective ventilation technique will be proposed.
Collapse
Affiliation(s)
- Sue A Braithwaite
- Department of Anesthesiology, University Medical Center Utrecht, Q04.2.317, Postbus 85500, Utrecht 3508, GA, the Netherlands.
| | - Elise van Hooijdonk
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Room E03.511, Heidelberglaan 100, Utrecht 3584, CX, the Netherlands
| | - Niels P van der Kaaij
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Room E03.511, Heidelberglaan 100, Utrecht 3584, CX, the Netherlands
| |
Collapse
|
12
|
de Carvalho EB, Fonseca ACF, Magalhães R, Pinto EF, Samary CDS, Antunes MA, Baldavira CM, da Silveira LKR, Teodoro WR, de Abreu MG, Capelozzi VL, Felix NS, Pelosi P, Rocco PRM, Silva PL. Effects of different fluid management on lung and kidney during pressure-controlled and pressure-support ventilation in experimental acute lung injury. Physiol Rep 2022; 10:e15429. [PMID: 36065867 PMCID: PMC9446390 DOI: 10.14814/phy2.15429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 04/24/2023] Open
Abstract
Optimal fluid management is critical during mechanical ventilation to mitigate lung damage. Under normovolemia and protective ventilation, pulmonary tensile stress during pressure-support ventilation (PSV) results in comparable lung protection to compressive stress during pressure-controlled ventilation (PCV) in experimental acute lung injury (ALI). It is not yet known whether tensile stress can lead to comparable protection to compressive stress in ALI under a liberal fluid strategy (LF). A conservative fluid strategy (CF) was compared with LF during PSV and PCV on lungs and kidneys in an established model of ALI. Twenty-eight male Wistar rats received endotoxin intratracheally. After 24 h, they were treated with CF (minimum volume of Ringer's lactate to maintain normovolemia and mean arterial pressure ≥70 mmHg) or LF (~4 times higher than CF) combined with PSV or PCV (VT = 6 ml/kg, PEEP = 3 cmH2 O) for 1 h. Nonventilated animals (n = 4) were used for molecular biology analyses. CF-PSV compared with LF-PSV: (1) decreased the diffuse alveolar damage score (10 [7.8-12] vs. 25 [23-31.5], p = 0.006), mainly due to edema in axial and alveolar parenchyma; (2) increased birefringence for occludin and claudin-4 in lung tissue and expression of zonula-occludens-1 and metalloproteinase-9 in lung. LF compared with CF reduced neutrophil gelatinase-associated lipocalin and interleukin-6 expression in the kidneys in PSV and PCV. In conclusion, CF compared with LF combined with PSV yielded less lung epithelial cell damage in the current model of ALI. However, LF compared with CF resulted in less kidney injury markers, regardless of the ventilatory strategy.
Collapse
Affiliation(s)
- Eduardo Butturini de Carvalho
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
- University of VassourasVassourasRJBrazil
| | - Ana Carolina Fernandes Fonseca
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Raquel Ferreira Magalhães
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Eliete Ferreira Pinto
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Cynthia dos Santos Samary
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Mariana Alves Antunes
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | | | | | | | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Department of Anaesthesiology and Intensive Care Therapy, Technische Universität DresdenUniversity Hospital Carl Gustav CarusDresdenGermany
- Department of Intensive Care and Resuscitation, Anesthesiology InstituteCleveland ClinicClevelandOhioUSA
- Department of Outcomes Research, Anesthesiology InstituteCleveland ClinicClevelandOhioUSA
| | - Vera Luiza Capelozzi
- Department of Pathology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Nathane Santanna Felix
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated DiagnosticsUniversity of GenoaGenoaItaly
- Anesthesia and Critical Care, San Martino Policlinico HospitalIRCCS for Oncology and NeurosciencesGenoaItaly
| | - Patrícia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| |
Collapse
|
13
|
Crooke PS, Gattinoni L, Michalik M, Marini JJ. Intracycle power distribution in a heterogeneous multi-compartmental mathematical model: possible links to strain and VILI. Intensive Care Med Exp 2022; 10:21. [PMID: 35641652 PMCID: PMC9156592 DOI: 10.1186/s40635-022-00447-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Repeated expenditure of energy and its generation of damaging strain are required to injure the lung by ventilation (VILI). Mathematical modeling of passively inflated, single-compartment lungs with uniform parameters for resistance and compliance indicates that standard clinical modes (flow patterns) differ impressively with respect to the timing and intensity of energy delivery-the intracycle power (ICP) that determines parenchymal stress and strain. Although measures of elastic ICP may accurately characterize instantaneous rates of global energy delivery, how the ICP component delivered to a compartment affects the VILI-linked variable of strain is determined by compartmental mechanics, compartmental size and mode of gas delivery. We extended our one-compartment model of ICP to a multi-compartment setting that varied those characteristics. MAIN FINDINGS The primary findings of this model/simulation indicate that: (1) the strain and strain rate experienced within a modeled compartment are nonlinear functions of delivered energy and power, respectively; (2) for a given combination of flow profile and tidal volume, resting compartmental volumes influence their resulting maximal strains in response to breath delivery; (3) flow profile is a key determinant of the maximal strain as well as maximal strain rate experienced within a multi-compartment lung. By implication, different clinician-selected flow profiles not only influence the timing of power delivery, but also spatially distribute the attendant strains of expansion among compartments with diverse mechanical properties. Importantly, the contours and magnitudes of the compartmental ICP, strain, and strain rate curves are not congruent; strain and strain rate do not necessarily follow the compartmental ICP, and the hierarchy of amplitudes among compartments for these variables may not coincide. CONCLUSIONS Different flow patterns impact how strain and strain rate develop as compartmental volume crests to its final value. Notably, as inflation proceeds, strain rate may rise or fall even as total strain, a monotonic function of volume, steadily (and predictably) rises. Which flow pattern serves best to minimize the maximal strain rate and VILI risk experienced within any sector, therefore, may strongly depend on the nature and heterogeneity of the mechanical properties of the injured lung.
Collapse
Affiliation(s)
- Philip S. Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN USA
| | - Luciano Gattinoni
- Department of Anesthesiology and Intensive Care, Gottingen University, Gottingen, Germany
| | - Michael Michalik
- Department of Medicine, University of Minnesota, Minneapolis, St. Paul, MN USA
| | - John J. Marini
- Pulmonary and Critical Care Medicine, Regions Hospital, University of Minnesota, MS 11203B, 640 Jackson St., Minneapolis, St. Paul, MN 55101-2595 USA
| |
Collapse
|
14
|
Abstract
Contemplating the future should be grounded in history. The rise of post-polio ICUs was inextricably related to mechanical ventilation. Critically ill patients who developed acute respiratory failure often had "congestive atelectasis" (ie, a term used to describe ARDS prior to 1967). Initial mechanical ventilation strategies for treating this condition and others inadvertently led to ventilator-induced lung injury. Both injurious ventilation and later use of overly cautious weaning practices resulted from both limited technology and understanding of ARDS and other aspects of critical illness. The resulting misperceptions, misconceptions, and missed opportunities took decades to rectify and in some instances still persist. This suggests a reluctance to acknowledge that all therapeutic strategies reflect the historical period in which they were developed and the corresponding limited understanding of ARDS pathophysiology at that time. We are at the threshold of a revolutionary moment in critical care. The confluence of enormous clinical data production, massive computing power, advances in understanding the biomolecular and genetic aspects of critical illness, and the emergence of neural networks will have enormous impact on how critical care is practiced in the decades to come. Therefore, it is imperative we understand the long-crooked path needed to reach the era of protective ventilation in order to avoid similar mistakes moving forward. The emerging era is as difficult to fathom as our current practices and technologies were to those practicing 60 years ago. This review explores the history of mechanical ventilation in treating ARDS, describes current protective ventilation strategies, and speculates how ARDS management might look 20 years from now.
Collapse
Affiliation(s)
- Richard H Kallet
- Department of Anesthesia and Perioperative Care, University of California, San Francisco at San Francisco General Hospital, San Francisco, California.
| |
Collapse
|
15
|
Franck CL, Franck GM. Influence of mechanical power and its components on mechanical ventilation in SARS-CoV-2. Rev Bras Ter Intensiva 2022; 34:212-219. [PMID: 35946651 DOI: 10.5935/0103-507x.20220018-pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/06/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To analyze the influence of mechanical power and its components on mechanical ventilation for patients infected with SARS-CoV-2; identify the values of the mechanical ventilation components and verify their correlations with each other and with the mechanical power and effects on the result of the Gattinoni-S and Giosa formulas. METHODS This was an observational, longitudinal, analytical and quantitative study of respirator and mechanical power parameters in patients with SARS-CoV-2. RESULTS The mean mechanical power was 26.9J/minute (Gattinoni-S) and 30.3 J/minute (Giosa). The driving pressure was 14.4cmH2O, the plateau pressure was 26.5cmH2O, the positive end-expiratory pressure was 12.1cmH2O, the elastance was 40.6cmH2O/L, the tidal volume was 0.36L, and the respiratory rate was 32 breaths/minute. The correlation between the Gattinoni and Giosa formulas was 0.98, with a bias of -3.4J/minute and a difference in the correlation of the resistance pressure of 0.39 (Gattinoni) and 0.24 (Giosa). Among the components, the correlations between elastance and driving pressure (0.88), positive end-expiratory pressure (-0.54) and tidal volume (-0.44) stood out. CONCLUSION In the analysis of mechanical ventilation for patients with SARS-CoV-2, it was found that the correlations of its components with mechanical power influenced its high momentary values and and that the correlations of its components with each other influenced their behavior throughout the study period. Because they have specific effects on the Gatinnoni-S and Giosa formulas, the mechanical ventilation components influenced their calculations and caused divergence in the mechanical power values.
Collapse
|
16
|
Marini JJ, Crooke PS, Tawfik P, Chatburn RL, Dries DJ, Gattinoni L. Intracycle power and ventilation mode as potential contributors to ventilator-induced lung injury. Intensive Care Med Exp 2021; 9:55. [PMID: 34719749 PMCID: PMC8557972 DOI: 10.1186/s40635-021-00420-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background High rates of inflation energy delivery coupled with transpulmonary tidal pressures of sufficient magnitude may augment the risk of damage to vulnerable, stress-focused units within a mechanically heterogeneous lung. Apart from flow amplitude, the clinician-selected flow waveform, a relatively neglected dimension of inflation power, may distribute inflation energy of each inflation cycle non-uniformly among alveoli with different mechanical properties over the domains of time and space. In this initial step in modeling intracycle power distribution, our primary objective was to develop a mathematical model of global intracycle inflation power that uses clinician-measurable inputs to allow comparisons of instantaneous ICP profiles among the flow modes commonly encountered in clinical practice: constant, linearly decelerating, exponentially decelerating (pressure control), and spontaneous (sinusoidal). Methods We first tested the predictions of our mathematical model of passive inflation with the actual physical performance of a mechanical ventilator–lung system that simulated ventilation to three types of patients: normal, severe ARDS, and severe airflow obstruction. After verification, model predictions were then generated for 5000 ‘virtual ARDS patients’. Holding constant the tidal volume and inflation time between modes, the validated model then varied the flow profile and quantitated the resulting intensity and timing of potentially damaging ‘elastic’ energy and intracycle power (pressure–flow product) developed in response to random combinations of machine settings and severity levels for ARDS. Results Our modeling indicates that while the varied flow patterns ultimately deliver similar total amounts of alveolar energy during each breath, they differ profoundly regarding the potentially damaging pattern with which that energy distributes over time during inflation. Pressure control imposed relatively high maximal intracycle power. Conclusions Flow amplitude and waveform may be relatively neglected and modifiable determinants of VILI risk when ventilating ARDS. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00420-9.
Collapse
Affiliation(s)
- John J Marini
- Pulmonary and Critical Care Medicine, University of Minnesota and Regions Hospital, Minneapolis/St. Paul, MN, 55101, USA. .,Regions Hospital, MS-11203B, 640 Jackson St, St. Paul, MN, 55101, USA.
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, USA
| | - Pierre Tawfik
- Pulmonary and Critical Care Medicine, University of Minnesota and Regions Hospital, Minneapolis/St. Paul, MN, 55101, USA
| | - Robert L Chatburn
- Department of Medicine and Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David J Dries
- Pulmonary and Critical Care Medicine, University of Minnesota and Regions Hospital, Minneapolis/St. Paul, MN, 55101, USA
| | - Luciano Gattinoni
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Medical University of Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Pelosi P, Ball L, Barbas CSV, Bellomo R, Burns KEA, Einav S, Gattinoni L, Laffey JG, Marini JJ, Myatra SN, Schultz MJ, Teboul JL, Rocco PRM. Personalized mechanical ventilation in acute respiratory distress syndrome. Crit Care 2021; 25:250. [PMID: 34271958 PMCID: PMC8284184 DOI: 10.1186/s13054-021-03686-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/22/2023] Open
Abstract
A personalized mechanical ventilation approach for patients with adult respiratory distress syndrome (ARDS) based on lung physiology and morphology, ARDS etiology, lung imaging, and biological phenotypes may improve ventilation practice and outcome. However, additional research is warranted before personalized mechanical ventilation strategies can be applied at the bedside. Ventilatory parameters should be titrated based on close monitoring of targeted physiologic variables and individualized goals. Although low tidal volume (VT) is a standard of care, further individualization of VT may necessitate the evaluation of lung volume reserve (e.g., inspiratory capacity). Low driving pressures provide a target for clinicians to adjust VT and possibly to optimize positive end-expiratory pressure (PEEP), while maintaining plateau pressures below safety thresholds. Esophageal pressure monitoring allows estimation of transpulmonary pressure, but its use requires technical skill and correct physiologic interpretation for clinical application at the bedside. Mechanical power considers ventilatory parameters as a whole in the optimization of ventilation setting, but further studies are necessary to assess its clinical relevance. The identification of recruitability in patients with ARDS is essential to titrate and individualize PEEP. To define gas-exchange targets for individual patients, clinicians should consider issues related to oxygen transport and dead space. In this review, we discuss the rationale for personalized approaches to mechanical ventilation for patients with ARDS, the role of lung imaging, phenotype identification, physiologically based individualized approaches to ventilation, and a future research agenda.
Collapse
Affiliation(s)
- Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.
- Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy.
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
| | - Carmen S V Barbas
- Pneumology and Intensive Care Medicine, University of São Paulo, São Paulo, Brazil
- Adult Intensive Care Unit, Albert Einstein Hospital, São Paulo, Brazil
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Australia
| | - Karen E A Burns
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Unity Health Toronto-St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Sharon Einav
- Intensive Care Unit of the Shaare Zedek Medical Medical Centre, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Luciano Gattinoni
- Department of Anaesthesiology, Emergency, and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, University Hospital Galway, and School of Medicine, National University of Ireland, Galway, Ireland
| | - John J Marini
- University of Minnesota and Regions Hospital, St. Paul, MN, USA
| | - Sheila N Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marcus J Schultz
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jean Louis Teboul
- Service de Médecine Intensive-Réanimation, Hôpital Bicêtre, Inserm UMR S_999, AP-HP Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Hysteresis As an Indicator of Recruitment and Ventilator-Induced Lung Injury Risk. Crit Care Med 2021; 48:1542-1543. [PMID: 32925265 DOI: 10.1097/ccm.0000000000004533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Marini JJ, Crooke PS, Gattinoni L. Intra-cycle power: is the flow profile a neglected component of lung protection? Intensive Care Med 2021; 47:609-611. [PMID: 33797574 PMCID: PMC8017116 DOI: 10.1007/s00134-021-06375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 01/28/2023]
Affiliation(s)
- John J Marini
- Pulmonary and Critical Care Medicine, University of Minnesota and Regions Hospital, MS 11203B, 640 Jackson St., Saint Paul, MN, 55101, USA.
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, USA
| | - Luciano Gattinoni
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Medical University of Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Stephens K, Mitchell N, Overton S, Tonna JE. On the Transition from Control Modes to Spontaneous Modes during ECMO. J Clin Med 2021; 10:jcm10051001. [PMID: 33801277 PMCID: PMC7958116 DOI: 10.3390/jcm10051001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023] Open
Abstract
The transition from control modes to spontaneous modes is ubiquitous for mechanically ventilated patients yet there is little data describing the changes and patterns that occur to breathing during this transition for patients on ECMO. We identified high fidelity data among a diverse cohort of 419 mechanically ventilated patients on ECMO. We examined every ventilator change, describing the differences in >30,000 sets of original ventilator observations, focused around the time of transition from control modes to spontaneous modes. We performed multivariate regression with mixed effects, clustered by patient, to examine changes in ventilator characteristics within patients, including a subset among patients with low compliance (<30 milliliters (mL)/centimeters water (cmH2O)). We found that during the transition to spontaneous modes among patients with low compliance, patients exhibited greater tidal volumes (471 mL (364,585) vs. 425 mL (320,527); p < 0.0001), higher respiratory rate (23 breaths per minute (bpm) (18,28) vs. 18 bpm (14,23); p = 0.003), greater mechanical power (elastic component) (0.08 mL/(cmH2O × minute) (0.05,0.12) vs. 0.05 mL/(cmH2O × minute) (0.02,0.09); p < 0.0001) (range 0 to 1.4), and lower positive end expiratory pressure (PEEP) (6 cmH2O (5,8) vs. 10 cmH2O (8,11); p < 0.0001). For patients on control modes, the combination of increased tidal volume and increased respiratory rate was temporally associated with significantly low partial pressure of arterial oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio (p < 0.0001). These changes in ventilator parameters warrant prospective study, as they may be associated with worsened lung injury.
Collapse
Affiliation(s)
- Krista Stephens
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Nathan Mitchell
- Division of Emergency Medicine, Department of Surgery, University of Utah Health, Salt Lake City, UT 84132, USA;
| | - Sean Overton
- Division of Critical Care, Department of Anesthesiology, University of Utah Health, Salt Lake City, UT 84132, USA;
| | - Joseph E. Tonna
- Division of Emergency Medicine, Department of Surgery, University of Utah Health, Salt Lake City, UT 84132, USA;
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health, Salt Lake City, UT 84132, USA
- Correspondence: ; Tel.: +1-801-587-9373
| |
Collapse
|
21
|
Belliato M, Epis F, Cremascoli L, Ferrari F, Quattrone MG, Fisser C, Malfertheiner MV, Taccone FS, Di Nardo M, Broman LM, Lorusso R. Mechanical Power during Veno-Venous Extracorporeal Membrane Oxygenation Initiation: A Pilot-Study. MEMBRANES 2021; 11:membranes11010030. [PMID: 33401668 PMCID: PMC7824596 DOI: 10.3390/membranes11010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
Abstract
Mechanical power (MP) represents a useful parameter to describe and quantify the forces applied to the lungs during mechanical ventilation (MV). In this multi-center, prospective, observational study, we analyzed MP variations following MV adjustments after veno-venous extra-corporeal membrane oxygenation (VV ECMO) initiation. We also investigated whether the MV parameters (including MP) in the early phases of VV ECMO run may be related to the intensive care unit (ICU) mortality. Thirty-five patients with severe acute respiratory distress syndrome were prospectively enrolled and analyzed. After VV ECMO initiation, we observed a significant decrease in median MP (32.4 vs. 8.2 J/min, p < 0.001), plateau pressure (27 vs. 21 cmH2O, p = 0.012), driving pressure (11 vs. 8 cmH2O, p = 0.014), respiratory rate (RR, 22 vs. 14 breaths/min, p < 0.001), and tidal volume adjusted to patient ideal body weight (VT/IBW, 5.5 vs. 4.0 mL/kg, p = 0.001) values. During the early phase of ECMO run, RR (17 vs. 13 breaths/min, p = 0.003) was significantly higher, while positive end-expiratory pressure (10 vs. 14 cmH2O, p = 0.048) and VT/IBW (3.0 vs. 4.0 mL/kg, p = 0.028) were lower in ICU non-survivors, when compared to the survivors. The observed decrease in MP after ECMO initiation did not influence ICU outcome. Waiting for large studies assessing the role of these parameters in VV ECMO patients, RR and MP monitoring should not be underrated during ECMO.
Collapse
Affiliation(s)
- Mirko Belliato
- 2nd Intensive Care Unit, UOC Anestesia e Rianimazione II Cardiopolmonare, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Francesco Epis
- 2nd Intensive Care Unit, UOC Anestesia e Rianimazione II Cardiopolmonare, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-503524
| | - Luca Cremascoli
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, Unit of Anaesthesia and Intensive Care, University of Pavia, 27100 Pavia, Italy; (L.C.); (M.G.Q.)
| | - Fiorenza Ferrari
- 1st Intensive Care Unit, UOC Anestesia e Rianimazione I, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
- International Renal Research Institute of Vicenza (IRRIV) and Department of Nephrology, Dialysis and Transplantation, 36100 Vicenza, Italy
| | - Maria Giovanna Quattrone
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, Unit of Anaesthesia and Intensive Care, University of Pavia, 27100 Pavia, Italy; (L.C.); (M.G.Q.)
| | - Christoph Fisser
- Department of Internal Medicine II, Cardiology and Pneumology, Intensive Care, University Hospital Regensburg, 93053 Regensburg, Germany; (C.F.); (M.V.M.)
| | - Maximilian Valentin Malfertheiner
- Department of Internal Medicine II, Cardiology and Pneumology, Intensive Care, University Hospital Regensburg, 93053 Regensburg, Germany; (C.F.); (M.V.M.)
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Cliniques Universitaires de Brussels, 1070 Brussels, Belgium;
| | - Matteo Di Nardo
- Pediatric Intensive Care, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, and Department of Physiology and Pharmacology, Karolinska Institutet, 171 64 Solna (Stockholm), Sweden;
| | - Roberto Lorusso
- Department of Cardio-Thoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), 6229 HX Maastricht, The Netherlands;
- Cardiovascular Research Institute Maastricht (CARIM), 6229 ER Maastricht, The Netherlands
| |
Collapse
|
22
|
Baumann P, Wiegert S, Greco F, Ersch J, Cannizzaro V. Strain-specific differences in lung tissue viscoelasticity of mechanically ventilated infant Sprague-Dawley and Wistar rats. Am J Physiol Lung Cell Mol Physiol 2020; 320:L220-L231. [PMID: 33207919 DOI: 10.1152/ajplung.00100.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rats are often used in ventilator-induced lung injury (VILI) models. However, strain-specific susceptibility for VILI has not been elucidated yet. The aim of this study was to demonstrate strain-specific differences in VILI in infant Sprague-Dawley and Wistar rats. VILI was compared in 2-wk-old pups after 8 h of protective or injurious ventilation. Pups were ventilated with tidal volumes (VT) of ∼7 mL/kg and positive end-expiratory pressures (PEEP) of 6 cmH2O (VT7 PEEP6) or with VT of ∼21 mL/kg and PEEP 2 cmH2O (VT21 PEEP2). Interleukin-6, macrophage inflammatory protein-2 (MIP-2), inflammatory cells, and albumin in bronchoalveolar lavage fluid (BALF); histology; and low-frequency forced oscillation technique (LFOT) and pressure-volume (PV) maneuvers were assessed. Alveolar macrophages, neutrophils, and MIP-2 derived from BALF revealed more pronounced VILI after VT21 PEEP2 in both strains. LFOT and PV analyses demonstrated rat strain-specific differences both at baseline and particularly in response to VT21 PEEP2 ventilation. Sprague-Dawley rats showed higher airway and tissue resistance and elastance values with no difference in hysteresivity between ventilation strategies. Wister rats challenged by VT21 PEEP2 experienced significantly more energy dissipation when compared with VT7 PEEP6 ventilation. In conclusion, both rat strains are useful for VILI models. The degree of VILI severity depends on ventilation strategy and selected strain. However, fundamental and time-dependent differences in respiratory system mechanics exist and reflect different lung tissue viscoelasticity. Hence, strain-specific characteristics of the respiratory system need to be considered when planning and interpreting VILI studies with infant rats.
Collapse
Affiliation(s)
- Philipp Baumann
- Department of Intensive Care Medicine and Neonatology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Susanne Wiegert
- Department of Intensive Care Medicine and Neonatology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Francesco Greco
- Department of Intensive Care Medicine and Neonatology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Joerg Ersch
- Department of Intensive Care Medicine and Neonatology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Vincenzo Cannizzaro
- Department of Intensive Care Medicine and Neonatology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
What have we learned from animal models of ventilator-induced lung injury? Intensive Care Med 2020; 46:2377-2380. [PMID: 32500178 PMCID: PMC7270159 DOI: 10.1007/s00134-020-06143-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022]
|