1
|
Tao T, Zhang Y, Guan C, Wang S, Liu X, Wang M. Ubiquitin Ligase TRIM22 Inhibits Ovarian Cancer Malignancy via TCF4 Degradation. Mol Cancer Res 2024; 22:943-956. [PMID: 38842601 DOI: 10.1158/1541-7786.mcr-23-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Ovarian cancer is one of the most common malignancies in women. Tripartite motif-containing protein 22 (TRIM22) plays an important role in the initiation and progression of malignant tumors. Similarly, the transcription factor 4 (TCF4) is an essential factor involved in the initiation and progression of many tumors. However, it is still unclear whether TRIM22 can affect TCF4 in ovarian cancer. Therefore, this study aims to investigate the mechanism related to TRIM22 and TCF4 in ovarian cancer. TRIM22 protein and mRNA levels were analyzed in samples from clinical and cell lines. The effects of TRIM22 knockdown and overexpression on cell proliferation, colony formation, migration, invasion, and related biomarkers were evaluated. In addition, the role of ubiquitination-mediated degradation of TCF4 was investigated by qRT-PCR and Western blotting. The association between TRIM22 and TCF4 was evaluated by Western blotting, coimmunoprecipitation, proliferation, colony formation, invasion, migration, and related biomarkers. The results showed that the expression of TRIM22 was minimal in ovarian cancer tissues. Furthermore, upregulation of TRIM22 significantly inhibited ovarian cancer cell proliferation, colony formation, migration, and invasion. In addition, TRIM22 was observed to regulate the degradation of TCF4 through the ubiquitination pathway. TCF4 can reverse the effects of TRIM22 on proliferation, colony formation, migration, and invasion in ovarian cancer cells. TRIM22-mediated ubiquitination of TCF4 at K48 is facilitated by the RING domain. Implications: In conclusion, ubiquitination of TCF4 protein in ovarian cancer is regulated by TRIM22, which has the potential to limit the proliferation, migration, and invasion of ovarian cancer.
Collapse
Affiliation(s)
- Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongqi Zhang
- Department of Gynecology, The Red Cross Center Hospital of Harbin, Harbin, China
| | | | - Shuxiang Wang
- Department of Gynecology, The Red Cross Center Hospital of Harbin, Harbin, China
| | - Xiaoli Liu
- Department of Gynecology, The Red Cross Center Hospital of Harbin, Harbin, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Wang C, He Y, Fang X, Zhang D, Huang J, Zhao S, Li L, Li G. METTL1-modulated LSM14A facilitates proliferation and migration in glioblastoma via the stabilization of DDX5. iScience 2024; 27:110225. [PMID: 39040050 PMCID: PMC11261005 DOI: 10.1016/j.isci.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Glioblastoma (GBM) is characterized by aggressive growth, invasiveness, and poor prognosis. Elucidating the molecular mechanisms underlying GBM is crucial. This study explores the role of Sm-like protein 14 homolog A (LSM14A) in GBM. Bioinformatics and clinical tissue samples analysis demonstrated that overexpression of LSM14A in GBM correlates with poorer prognosis. CCK8, EdU, colony formation, and transwell assays revealed that LSM14A promotes proliferation, migration, and invasion in GBM in vitro. In vivo mouse xenograft models confirmed the results of the in vitro experiments. The mechanism of LSM14A modulating GBM cell proliferation was investigated using mass spectrometry, co-immunoprecipitation (coIP), protein half-life, and methylated RNA immunoprecipitation (MeRIP) analyses. The findings indicate that during the G1/S phase, LSM14A stabilizes DDX5 in the cytoplasm, regulating CDK4 and P21 levels. Furthermore, METTL1 modulates LSM14A expression via mRNA m7G methylation. Altogether, our work highlights the METTL1-LSM14A-DDX5 pathway as a potential therapeutic target in GBM.
Collapse
Affiliation(s)
- Changyu Wang
- Department of Neurosurgery, The First Hospital of China Medical University, NO. 155 Nanjing North Street, Heping District, Shenyang 110002, China
| | - Yan He
- Department of Laboratory Animal Science, China Medical University, 110122, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, P.R. China
| | - Xiang Fang
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan, Shandong, People’s Republic of China
| | - Danyang Zhang
- Department of Immunology, College of Basic Medical Sciences of China Medical University, 110122, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, P.R. China
| | - Jinhai Huang
- Department of Neurosurgery, The First Hospital of China Medical University, NO. 155 Nanjing North Street, Heping District, Shenyang 110002, China
| | - Shuxin Zhao
- The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lun Li
- Department of Neurosurgery, Anshan Hospital of the First Hospital of China Medical University, Anshan, China
| | - Guangyu Li
- Department of Neurosurgery, The First Hospital of China Medical University, NO. 155 Nanjing North Street, Heping District, Shenyang 110002, China
| |
Collapse
|
3
|
Takeda K, Ohta S, Nagao M, Kobayashi E, Tago K, Funakoshi-Tago M. FL118 Is a Potent Therapeutic Agent against Chronic Myeloid Leukemia Resistant to BCR-ABL Inhibitors through Targeting RNA Helicase DDX5. Int J Mol Sci 2024; 25:3693. [PMID: 38612503 PMCID: PMC11011477 DOI: 10.3390/ijms25073693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic myeloid leukemia (CML) is induced by the expression of the fused tyrosine kinase BCR-ABL, which is caused by a chromosomal translocation. BCR-ABL inhibitors have been used to treat CML; however, the acquisition of resistance by CML cells during treatment is a serious issue. We herein demonstrated that BCR-ABL induced the expression of the RNA helicase DDX5 in K562 cells derived from CML patients in a manner that was dependent on its kinase activity, which resulted in cell proliferation and survival. The knockout of DDX5 decreased the expression of BIRC5 (survivin) and activated caspase 3, leading to apoptosis in K562 cells. Similar results were obtained in cells treated with FL118, an inhibitor of DDX5 and a derivative compound of camptothecin (CPT). Furthermore, FL118 potently induced apoptosis not only in Ba/F3 cells expressing BCR-ABL, but also in those expressing the BCR-ABL T315I mutant, which is resistant to BCR-ABL inhibitors. Collectively, these results revealed that DDX5 is a critical therapeutic target in CML and that FL118 is an effective candidate compound for the treatment of BCR-ABL inhibitor-resistant CML.
Collapse
Affiliation(s)
- Kengo Takeda
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (M.N.); (E.K.)
| | - Satoshi Ohta
- Division of Structural Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan;
| | - Miu Nagao
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (M.N.); (E.K.)
| | - Erika Kobayashi
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (M.N.); (E.K.)
| | - Kenji Tago
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi 371-8514, Gunma, Japan;
| | - Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (M.N.); (E.K.)
| |
Collapse
|
4
|
Shaw R, Basu M, Karmakar S, Ghosh MK. MGMT in TMZ-based glioma therapy: Multifaceted insights and clinical trial perspectives. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119673. [PMID: 38242327 DOI: 10.1016/j.bbamcr.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Temozolomide (TMZ) is the most preferred and approved chemotherapeutic drug for either first- or second-line chemotherapy for glioma patients across the globe. In glioma patients, resistance to treatment with alkylating drugs like TMZ is known to be conferred by exalted levels of MGMT gene expression. On the contrary, epigenetic silencing through MGMT gene promoter methylation leading to subsequent reduction in MGMT transcription and protein expression, is predicted to have a response favoring TMZ treatment. Thus, MGMT protein level in cancer cells is a crucial determining factor in indicating and predicting the choice of alkylating agents in chemotherapy or choosing glioma patients directly for a second line of treatment. Thus, in-depth research is necessary to achieve insights into MGMT gene regulation that has recently enticed a fascinating interest in epigenetic, transcriptional, post-transcriptional, and post-translational levels. Furthermore, MGMT promoter methylation, stability of MGMT protein, and related subsequent adaptive responses are also important contributors to strategic developments in glioma therapy. With applications to its identification as a prognostic biomarker, thus predicting response to advanced glioma therapy, this review aims to concentrate on the mechanistic role and regulation of MGMT gene expression at epigenetic, transcriptional, post-transcriptional, and post-translational levels functioning under the control of multiple signaling dynamics.
Collapse
Affiliation(s)
- Rajni Shaw
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas 743372, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
5
|
Shaw R, Karmakar S, Basu M, Ghosh MK. DDX5 (p68) orchestrates β-catenin, RelA and SP1 mediated MGMT gene expression in human colon cancer cells: Implication in TMZ chemoresistance. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194991. [PMID: 37793472 DOI: 10.1016/j.bbagrm.2023.194991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
DDX5 (p68) upregulation has been linked with various cancers of different origins, especially Colon Adenocarcinomas. Similarly, across cancers, MGMT has been identified as the major contributor of chemoresistance against DNA alkylating agents like Temozolomide (TMZ). TMZ is an emerging potent chemotherapeutic agent across cancers under the arena of drug repurposing. Recent studies have established that patients with open MGMT promoters are prone to be innately resistant or acquire resistance against TMZ compared to its closed conformation. However, not much is known about the transcriptional regulation of MGMT gene in the context of colon cancer. This necessitates studying MGMT gene regulation which directly impacts the cellular potential to develop chemoresistance against alkylating agents. Our study aims to uncover an unidentified mechanism of DDX5-mediated MGMT gene regulation. Experimentally, we found that both mRNA and protein expression levels of MGMT were elevated in response to p68 overexpression in multiple human colon cancer cell lines and vice-versa. Since p68 cannot directly interact with the MGMT promoter, transcription factors viz., β-catenin, RelA (p65) and SP1 were also studied as reported contributors. Through co-immunoprecipitation and GST-pull-down studies, p68 was established as an interacting partner of SP1 in addition to β-catenin and NF-κB (p50-p65). Mechanistically, luciferase reporter and chromatin-immunoprecipitation assays demonstrated that p68 interacts with the MGMT promoter via TCF4-LEF, RelA and SP1 sites to enhance its transcription. To the best of our knowledge, this is the first report of p68 as a transcriptional co-activator of MGMT promoter and our study identifies p68 as a novel and master regulator of MGMT gene expression.
Collapse
Affiliation(s)
- Rajni Shaw
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
6
|
Tian W, Tang Y, Luo Y, Xie J, Zheng S, Zou Y, Huang X, Wu L, Zhang J, Sun Y, Tang H, Du W, Li X, Xie X. AURKAIP1 actuates tumor progression through stabilizing DDX5 in triple negative breast cancer. Cell Death Dis 2023; 14:790. [PMID: 38040691 PMCID: PMC10692340 DOI: 10.1038/s41419-023-06115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 12/03/2023]
Abstract
Aurora-A kinase interacting protein 1 (AURKAIP1) has been proved to take an intermediary role in cancer by functioning as a negative regulator of Aurora-A kinase. However, it remains unclear whether and how AURKAIP1 itself would directly engage in regulating malignancies. The expression levels of AURKAIP1 were detected in triple negative breast cancer (TNBC) by immunohistochemistry and western blots. The CCK8, colony formation assays and nude mouse model were conducted to determine cell proliferation whereas transwell and wound healing assays were performed to observe cell migration. The interaction of AURKAIP1 and DEAD-box helicase 5 (DDX5) were verified through co-immunoprecipitation and successively western blots. From the results, we found that AURKAIP1 was explicitly upregulated in TNBC, which was positively associated with tumor size, lymph node metastases, pathological stage and unfavorable prognosis. AURKAIP1 silencing markedly inhibited TNBC cell proliferation and migration in vitro and in vivo. AURKAIP1 directly interacted with and stabilized DDX5 protein by preventing ubiquitination and degradation, and DDX5 overexpression successfully reversed proliferation inhibition induced by knockdown of AURKAIP1. Consequently, AURKAIP1 silencing suppressed the activity of Wnt/β-catenin signaling in a DDX5-dependent manner. Our study may primarily disclose the molecular mechanism by which AURKAIP1/DDX5/β-catenin axis modulated TNBC progression, indicating that AURKAIP1 might serve as a therapeutic target as well as a TNBC-specific biomarker for prognosis.
Collapse
Affiliation(s)
- Wenwen Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, China
| | - Yuhui Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Yongzhou Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Jindong Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Shaoquan Zheng
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yutian Zou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Xiaojia Huang
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, China
| | - Linyu Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Junsheng Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Yuying Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Hailin Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Wei Du
- Department of pathology, The First People's Hospital of Changde City, Changde, Hunan, China.
| | - Xing Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China.
| | - Xiaoming Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Le TK, Cherif C, Omabe K, Paris C, Lannes F, Audebert S, Baudelet E, Hamimed M, Barbolosi D, Finetti P, Bastide C, Fazli L, Gleave M, Bertucci F, Taïeb D, Rocchi P. DDX5 mRNA-targeting antisense oligonucleotide as a new promising therapeutic in combating castration-resistant prostate cancer. Mol Ther 2023; 31:471-486. [PMID: 35965411 PMCID: PMC9931527 DOI: 10.1016/j.ymthe.2022.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/26/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023] Open
Abstract
The heat shock protein 27 (Hsp27) has emerged as a principal factor of the castration-resistant prostate cancer (CRPC) progression. Also, an antisense oligonucleotide (ASO) against Hsp27 (OGX-427 or apatorsen) has been assessed in different clinical trials. Here, we illustrate that Hsp27 highly regulates the expression of the human DEAD-box protein 5 (DDX5), and we define DDX5 as a novel therapeutic target for CRPC treatment. DDX5 overexpression is strongly correlated with aggressive tumor features, notably with CRPC. DDX5 downregulation using a specific ASO-based inhibitor that acts on DDX5 mRNAs inhibits cell proliferation in preclinical models, and it particularly restores the treatment sensitivity of CRPC. Interestingly, through the identification and analysis of DDX5 protein interaction networks, we have identified some specific functions of DDX5 in CRPC that could contribute actively to tumor progression and therapeutic resistance. We first present the interactions of DDX5 and the Ku70/80 heterodimer and the transcription factor IIH, thereby uncovering DDX5 roles in different DNA repair pathways. Collectively, our study highlights critical functions of DDX5 contributing to CRPC progression and provides preclinical proof of concept that a combination of ASO-directed DDX5 inhibition with a DNA damage-inducing therapy can serve as a highly potential novel strategy to treat CRPC.
Collapse
Affiliation(s)
- Thi Khanh Le
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France; Department of Life Science, University of Science and Technology of Hanoi, Hanoi 000084, Vietnam
| | - Chaïma Cherif
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - Kenneth Omabe
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - Clément Paris
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - François Lannes
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France; Urology Deparment, AP-HM Hospital Nord, Aix-Marseille University, 13915 Marseille Cedex 20, France
| | - Stéphane Audebert
- Marseille Protéomique, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France
| | - Emilie Baudelet
- Marseille Protéomique, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France
| | - Mourad Hamimed
- Inria - Inserm team COMPO, COMPutational pharmacology and clinical Oncology, Centre Inria Sophia Antipolis - Méditerranée, Centre de Recherches en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Dominique Barbolosi
- Inria - Inserm team COMPO, COMPutational pharmacology and clinical Oncology, Centre Inria Sophia Antipolis - Méditerranée, Centre de Recherches en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - Cyrille Bastide
- Urology Deparment, AP-HM Hospital Nord, Aix-Marseille University, 13915 Marseille Cedex 20, France
| | - Ladan Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - François Bertucci
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - David Taïeb
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France; La Timone University Hospital, Aix-Marseille University, 13005 Marseille, France; European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Palma Rocchi
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France; European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France.
| |
Collapse
|
8
|
Selvarathinam K, Subramani P, Thekkumalai M, Vilwanathan R, Selvarajan R, Abia ALK. Wnt Signaling Pathway Collapse upon β-Catenin Destruction by a Novel Antimicrobial Peptide SKACP003: Unveiling the Molecular Mechanism and Genetic Activities Using Breast Cancer Cell Lines. Molecules 2023; 28:molecules28030930. [PMID: 36770598 PMCID: PMC9920962 DOI: 10.3390/molecules28030930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Despite progress in breast cancer treatment, the survival rate for patients with metastatic breast cancer remains low due to chemotherapeutic agent resistance and the lack of specificity of the current generation of cancer drugs. Our previous findings indicated that the antimicrobial peptide SKACP003 exhibited anticancer properties, particularly against the MCF-7, MDA-MB-231, and MDA-MB-453 breast cancer cell lines. However, the mechanism of SKACP003-induced cancer cell death is unknown. Here, we investigated the molecular mechanism by which SKACP003 inhibits the cell cycle, cell proliferation, and angiogenesis in breast cancer cell lines. The results revealed that all the breast cancer cell lines treated at their IC50 values significantly inhibited the replicative phase of the cell cycle. The SKACP003-induced growth inhibition induced apoptosis, as evidenced by a decrease in BCL-2 and an increase in BAX and caspase gene (Cas-3, Cas-8, and Cas-9) expression. Reduced expression of the β-Catenin signaling pathway was associated with the SKACP003-induced apoptosis. SKACP003-treated breast cancer cells showed decreased expression of Wnt/β-Catenin targeting genes such as C-Myc, P68, and COX-2 and significant downregulation of CDK-4 and CDK-6 genes. Furthermore, cytoplasmic β-catenin protein levels in SKACP003-treated cell lines were significantly lower than in control cell lines. The results of the current study suggest that the newly identified antimicrobial peptide SKACP003 has great potential as a candidate for specifically targeting the β-catenin and thus significantly reducing the progression and prognosis of breast cancer cell lines.
Collapse
Affiliation(s)
- Kanitha Selvarathinam
- Department of Biochemistry, J.J. College of Arts and Science (Autonomous), Pudukkottai 622422, Tamilnadu, India
- Correspondence: (K.S.); (A.L.K.A.)
| | - Prabhu Subramani
- Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli 622422, Tamilnadu, India
| | | | - Ravikumar Vilwanathan
- Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli 622422, Tamilnadu, India
| | - Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences (CAES), University of South Africa (UNISA), Florida—Campus, Florida Park, Roodepoort 1709, South Africa
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya 572000, China
| | - Akebe Luther King Abia
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences (CAES), University of South Africa (UNISA), Florida—Campus, Florida Park, Roodepoort 1709, South Africa
- Environmental Research Foundation, Westville 3630, South Africa
- Correspondence: (K.S.); (A.L.K.A.)
| |
Collapse
|
9
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|
10
|
Xu K, Sun S, Yan M, Cui J, Yang Y, Li W, Huang X, Dou L, Chen B, Tang W, Lan M, Li J, Shen T. DDX5 and DDX17—multifaceted proteins in the regulation of tumorigenesis and tumor progression. Front Oncol 2022; 12:943032. [PMID: 35992805 PMCID: PMC9382309 DOI: 10.3389/fonc.2022.943032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
DEAD-box (DDX)5 and DDX17, which belong to the DEAD-box RNA helicase family, are nuclear and cytoplasmic shuttle proteins. These proteins are expressed in most tissues and cells and participate in the regulation of normal physiological functions; their abnormal expression is closely related to tumorigenesis and tumor progression. DDX5/DDX17 participate in almost all processes of RNA metabolism, such as the alternative splicing of mRNA, biogenesis of microRNAs (miRNAs) and ribosomes, degradation of mRNA, interaction with long noncoding RNAs (lncRNAs) and coregulation of transcriptional activity. Moreover, different posttranslational modifications, such as phosphorylation, acetylation, ubiquitination, and sumoylation, endow DDX5/DDX17 with different functions in tumorigenesis and tumor progression. Indeed, DDX5 and DDX17 also interact with multiple key tumor-promoting molecules and participate in tumorigenesis and tumor progression signaling pathways. When DDX5/DDX17 expression or their posttranslational modification is dysregulated, the normal cellular signaling network collapses, leading to many pathological states, including tumorigenesis and tumor development. This review mainly discusses the molecular structure features and biological functions of DDX5/DDX17 and their effects on tumorigenesis and tumor progression, as well as their potential clinical application for tumor treatment.
Collapse
Affiliation(s)
- Kun Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Shenghui Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yao Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Wenlin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ming Lan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- *Correspondence: Tao Shen,
| |
Collapse
|
11
|
Hu X, Zhang Q, Xing W, Wang W. Role of microRNA/lncRNA Intertwined With the Wnt/β-Catenin Axis in Regulating the Pathogenesis of Triple-Negative Breast Cancer. Front Pharmacol 2022; 13:814971. [PMID: 35814205 PMCID: PMC9263262 DOI: 10.3389/fphar.2022.814971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Objective (s): In this mini-review, we aimed to discuss the Wnt/β-catenin signaling pathway modulation in triple-negative breast cancer, particularly the contribution of lncRNAs and miRNAs in its regulation and their possible entwining role in breast cancer pathogenesis, proliferation, migration, or malignancy.Background: Malignant tumor formation is very high for breast cancer in women and is a leading cause of death all over the globe. Among breast cancer subtypes, triple-negative breast cancer is rife in premenopausal women, most invasive, and prone to metastasis. Complex pathways are involved in this cancer’s pathogenesis, advancement, and malignancy, including the Wnt/β-catenin signaling pathway. This pathway is conserved among vertebrates and is necessary for sustaining cell homeostasis. It is regulated by several elements such as transcription factors, enhancers, non-coding RNAs (lncRNAs and miRNAs), etc.Methods: We evaluated lncRNAs and miRNAs differentially expressed in triple-negative breast cancer (TNBC) from the cDNA microarray data set literature survey. Using in silico analyses combined with a review of the current literature, we anticipated identifying lncRNAs and miRNAs that might modulate the Wnt/β-catenin signaling pathway.Result: The miRNAs and lncRNAs specific to triple-negative breast cancer have been identified based on literature and database searches. Tumorigenesis, metastasis, and EMT were all given special attention. Apart from cross-talk being essential for TNBC tumorigenesis and treatment outcomes, our results indicated eight upregulated and seven downregulated miRNAs and 19 upregulated and three downregulated lncRNAs that can be used as predictive or diagnostic markers. This consolidated information could be useful in the clinic and provide a combined literature resource for TNBC researchers working on the Wnt/β-catenin miRNA/lncRNA axis.Conclusion: In conclusion, because the Wnt pathway and miRNAs/lncRNAs can modulate TNBC, their intertwinement results in a cascade of complex reactions that affect TNBC and related processes. Their function in TNBC pathogenesis has been highlighted in molecular processes underlying the disease progression.
Collapse
Affiliation(s)
- Xue Hu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Wanying Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wan Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Wan Wang,
| |
Collapse
|
12
|
Ling X, Wu W, Aljahdali IAM, Liao J, Santha S, Fountzilas C, Boland PM, Li F. FL118, acting as a 'molecular glue degrader', binds to dephosphorylates and degrades the oncoprotein DDX5 (p68) to control c-Myc, survivin and mutant Kras against colorectal and pancreatic cancer with high efficacy. Clin Transl Med 2022; 12:e881. [PMID: 35604033 PMCID: PMC9126027 DOI: 10.1002/ctm2.881] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), a difficult-to-treat cancer, is expected to become the second-largest cause of cancer-related deaths by 2030, while colorectal cancer (CRC) is the third most common cancer and the third leading cause of cancer deaths. Currently, there is no effective treatment for PDAC patients. The development of novel agents to effectively treat these cancers remains an unmet clinical need. FL118, a novel anticancer small molecule, exhibits high efficacy against cancers; however, the direct biochemical target of FL118 is unknown. METHODS FL118 affinity purification, mass spectrometry, Nanosep centrifugal device and isothermal titration calorimetry were used for identifying and confirming FL118 binding to DDX5/p68 and its binding affinity. Immunoprecipitation (IP), western blots, real-time reverse transcription PCR, gene silencing, overexpression (OE) and knockout (KO) were used for analysing gene/protein function and expression. Chromatin IP was used for analysing protein-DNA interactions. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromid assay and human PDAC/CRC cell/tumour models were used for determining PDAC/CRC cell/tumour in vitro and in vivo growth. RESULTS We discovered that FL118 strongly binds to dephosphorylates and degrades the DDX5 oncoprotein via the proteasome degradation pathway without decreasing DDX5 mRNA. Silencing and OE of DDX5 indicated that DDX5 is a master regulator for controlling the expression of multiple oncogenic proteins, including survivin, Mcl-1, XIAP, cIAP2, c-Myc and mutant Kras. Genetic manipulation of DDX5 in PDAC cells affects tumour growth. PDAC cells with DDX5 KO are resistant to FL118 treatment. Our human tumour animal model studies further indicated that FL118 exhibits high efficacy to eliminate human PDAC and CRC tumours that have a high expression of DDX5, while FL118 exhibits less effectiveness in PDAC and CRC tumours with low DDX5 expression. CONCLUSION DDX5 is a bona fide FL118 direct target and can act as a biomarker for predicting PDAC and CRC tumour sensitivity to FL118. This would greatly impact FL118 precision medicine for patients with advanced PDAC or advanced CRC in the clinic. FL118 may act as a 'molecular glue degrader' to directly glue DDX5 and ubiquitination regulators together to degrade DDX5.
Collapse
Affiliation(s)
- Xiang Ling
- Department of Pharmacology & TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Canget BioTekpharma LLCBuffaloNew YorkUSA
| | - Wenjie Wu
- Department of Pharmacology & TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Canget BioTekpharma LLCBuffaloNew YorkUSA
| | - Ieman A. M. Aljahdali
- Department of Pharmacology & TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Department of Cellular & Molecular BiologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | | | | | - Christos Fountzilas
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Developmental Therapeutics (DT) ProgramRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Patrick M. Boland
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Present address:
Development of Medical Oncology, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Fengzhi Li
- Department of Pharmacology & TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Developmental Therapeutics (DT) ProgramRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| |
Collapse
|
13
|
Tabassum S, Ghosh MK. DEAD-box RNA helicases with special reference to p68: Unwinding their biology, versatility, and therapeutic opportunity in cancer. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Zhou X, Liu Z, He T, Zhang C, Jiang M, Jin Y, Wu Z, Gu C, Zhang W, Yang X. DDX10 promotes the proliferation and metastasis of colorectal cancer cells via splicing RPL35. Cancer Cell Int 2022; 22:58. [PMID: 35109823 PMCID: PMC8812018 DOI: 10.1186/s12935-022-02478-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal cancer (CRC) has become the second deadliest cancer in the world and severely threatens human health. An increasing number of studies have focused on the role of the RNA helicase DEAD-box (DDX) family in CRC. However, the mechanism of DDX10 in CRC has not been elucidated. Methods In our study, we analysed the expression data of CRC samples from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Subsequently, we performed cytological experiments and animal experiments to explore the role of DDX10 in CRC cells. Furthermore, we performed Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein–protein interaction (PPI) network analyses. Finally, we predicted the interacting protein of DDX10 by LC–MS/MS and verified it by coimmunoprecipitation (Co-IP) and qPCR. Results In the present study, we identified that DDX10 mRNA was extremely highly expressed in CRC tissues compared with normal colon tissues in the TCGA and GEO databases. The protein expression of DDX10 was measured by immunochemistry (IHC) in 17 CRC patients. The biological roles of DDX10 were explored via cell and molecular biology experiments in vitro and in vivo and cell cycle assays. We found that DDX10 knockdown markedly reduced CRC cell proliferation, migration and invasion. Then, we constructed a PPI network with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). GO and KEGG enrichment analysis and gene set enrichment analysis (GSEA) showed that DDX10 was closely related to RNA splicing and E2F targets. Using LC–MS/MS and Co-IP assays, we discovered that RPL35 is the interacting protein of DDX10. In addition, we hypothesize that RPL35 is related to the E2F pathway and the immune response in CRC. Conclusions In conclusion, provides a better understanding of the molecular mechanisms of DDX10 in CRC and provides a potential biomarker for the diagnosis and treatment of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02478-1.
Collapse
Affiliation(s)
- Xin Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Zhihong Liu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Tengfei He
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Cuifeng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Manman Jiang
- Soochow University, 1 Shizi Street, Suzhou, China
| | - Yuxiao Jin
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Ziyu Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Changji Gu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Wei Zhang
- Department of Radiotherapy, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
15
|
Li F, Fountzilas C, Puzanov I, Attwood KM, Morrison C, Ling X. Multiple functions of the DEAD-box RNA helicase, DDX5 (p68), make DDX5 a superior oncogenic biomarker and target for targeted cancer therapy. Am J Cancer Res 2021; 11:5190-5213. [PMID: 34765320 PMCID: PMC8569338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023] Open
Abstract
DDX5 (p68) is a well-known multifunctional DEAD-box RNA helicase and a transcription cofactor. Since its initial discovery more than three decades ago, DDX5 is gradually recognized as a potential biomarker and target for the treatment of various cancer types. Studies over the years significantly expanded our understanding of the functional diversity of DDX5 in various cancer types and extended our knowledge of its Mechanism of Action (MOA). This provides a rationale for the development of novel cancer therapeutics by using DDX5 as a biomarker and a therapeutic target. However, while most of the published studies have found DDX5 to be an oncogenic target and a cancer treatment-resistant biomarker, a few studies have reported that in certain scenarios, DDX5 may act as a tumor suppressor. After careful review of all the available relevant studies in the literature, we found that the multiple functions of DDX5 make it both a superior independent oncogenic biomarker and target for targeted cancer therapy. In this article, we will summarize the relevant studies on DDX5 in literature with a careful analysis and discussion of any inconsistencies encountered, and then provide our conclusions with respect to understanding the MOA of FL118, a novel small molecule. We hope that such a review will stimulate further discussion on this topic and assist in developing better strategies to treat cancer by using DDX5 as both an oncogenic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Developmental Therapeutics Program, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Christos Fountzilas
- Department of Medicine, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Alliance for Clinical Trials in Oncology Pancreatic Ductal Adenocarcinoma Working Group, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Developmental Therapeutics Program, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Developmental Therapeutics Program, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Kristopher M Attwood
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Developmental Therapeutics Program, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Carl Morrison
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Canget BioTekpharma LLCBuffalo, New York 14203, USA
| |
Collapse
|
16
|
DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells 2021; 10:cells10061540. [PMID: 34207140 PMCID: PMC8234093 DOI: 10.3390/cells10061540] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regulation has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis. In this review, we discuss the essential roles and mechanisms of RNA helicases in the regulation of the cell cycle at different phases. For that, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. We also discuss the different targeting strategies against RNA helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on specific RNA helicases, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
|
17
|
The DEAD-box protein family of RNA helicases: sentinels for a myriad of cellular functions with emerging roles in tumorigenesis. Int J Clin Oncol 2021; 26:795-825. [PMID: 33656655 DOI: 10.1007/s10147-021-01892-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
DEAD-box RNA helicases comprise a family within helicase superfamily 2 and make up the largest group of RNA helicases. They are a profoundly conserved family of RNA-binding proteins, carrying a generic Asp-Glu-Ala-Asp (D-E-A-D) motif that gives the family its name. Members of the DEAD-box family of RNA helicases are engaged in all facets of RNA metabolism from biogenesis to decay. DEAD-box proteins ordinarily function as constituents of enormous multi-protein complexes and it is believed that interactions with other components in the complexes might be answerable for the various capacities ascribed to these proteins. Therefore, their exact function is probably impacted by their interacting partners and to be profoundly context dependent. This may give a clarification to the occasionally inconsistent reports proposing that DEAD-box proteins have both pro- and anti-proliferative functions in cancer. There is emerging evidence that DEAD-box family of RNA helicases play pivotal functions in various cellular processes and in numerous cases have been embroiled in cellular proliferation and/or neoplastic transformation. In various malignancy types, DEAD-box RNA helicases have been reported to possess pro-proliferation or even oncogenic roles as well as anti-proliferative or tumor suppressor functions. Clarifying the exact function of DEAD-box helicases in cancer is probably intricate, and relies upon the cellular milieu and interacting factors. This review aims to summarize the current data on the numerous capacities that have been ascribed to DEAD-box RNA helicases. It also highlights their diverse actions upon malignant transformation in the various tumor types.
Collapse
|
18
|
Cui F, Luo P, Bai Y, Meng J. Silencing of Long Non-Coding RNA FGD5-AS1 Inhibits the Progression of Non-Small Cell Lung Cancer by Regulating the miR-493-5p/DDX5 Axis. Technol Cancer Res Treat 2021; 20:1533033821990007. [PMID: 33550957 PMCID: PMC7876571 DOI: 10.1177/1533033821990007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Long non-coding RNA FGD5 antisense RNA 1 (FGD5-AS1), identified to be a carcinogenic lncRNA, exhibits a regulatory role in some malignancies including non-small cell lung cancer (NSCLC). The aim of the present research is to decipher the function and underlying mechanism of FGD5-AS1 in progression of NSCLC. Methods: Expression of FGD5-AS1, miR-493-5p and DEAD-box protein 5 (DDX5) in NSCLC tissues and cells was quantified utilizing qRT-PCR. Cell proliferation was assessed by CCK-8 method. Scratch healing test and Transwell assay were used for assaying cell migration and invasion. Expressions of DDX5 and epithelial-mesenchymal transition (EMT)-related proteins were examined by Western blot. Additionally, targeting relationships between FGD5-AS1 and miR-493-5p, miR-493-5p and DDX5 were verified by dual-luciferase reporter gene assay. Results: Expression of FGD5-AS1 in NSCLC tissues and cell lines was up-regulated. Expression of FGD5-AS1 was in association with enlarged tumor size and lymph node metastasis of the patients. Knockdown of FGD5-AS1 led to the inhibition of proliferation, migration, invasion and EMT of NSCLC cells. FGD5-AS1 directly targeted miR-493-5p, while DDX5 was the target of miR-493-5p in NSCLC cells. Additionally, FGD5-AS1 could positively regulate the expression of DDX5 via suppressing miR-493-5p. Conclusion: FGD5-AS1 facilitates the proliferation, migration, invasion and EMT of NSCLC cells by sponging miR-493-5p and up-regulating DDX5.
Collapse
Affiliation(s)
- Fang Cui
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Luo
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangping Meng
- Assisted Reproductive Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Asberger J, Erbes T, Jaeger M, Rücker G, Nöthling C, Ritter A, Berner K, Juhasz-Böss I, Hirschfeld M. Endoxifen and fulvestrant regulate estrogen-receptor α and related DEADbox proteins. Endocr Connect 2020; 9:1156-1167. [PMID: 33112831 PMCID: PMC7774761 DOI: 10.1530/ec-20-0281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) represents the most common type of cancer in females worldwide. Endocrine therapy evolved as one of the main concepts in treatment of hormone-receptor positive BC. Current research focuses on the elucidation of tumour resistance mechanisms against endocrine therapy. In a translational in vitro approach, potential regulatory effects of clinically implemented BC anti-oestrogens on ERα, its coactivators DDX5, DDX17 and other DEADbox proteins as well as on the proliferation markers cyclin D1 and Ki67 were investigated on both the RNA and protein level. BC in vitro models for hormone-receptor positive (MCF-7, T-47D) and hormone-receptor negative cells (BT-20) were subjected to endocrine therapy. Anti-oestrogen-dependent expression regulation of target genes on the transcriptional and translational level was quantified and statistically assessed. Endocrine therapy decreases the expression levels of Ki67, cyclin D1 and ERα in hormone-receptor positive cells. In the hormone-receptor negative cells, the three parameters remained stable after endocrine therapy. Endoxifen triggers a downregulation of DDX5 and DDX23 in MCF-7 cells. Fulvestrant treatment downregulates the expression levels of all investigated DEADbox proteins in MCF-7 cells. In T-47D cells, endoxifen and fulvestrant lead to a decrease of all target gene expression levels. Interestingly, endocrine therapy affects DEADbox RNA expression levels in BT-20 cells, too. However, this result could only be confirmed for DDX1, immunocytologically. The investigated DEADbox proteins appear to correlate with the oestrogen-dependent tumourigenesis in hormone-receptor positive BC and show expression alterations after endocrine treatment.
Collapse
Affiliation(s)
- Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Correspondence should be addressed to J Asberger:
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jaeger
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Medical Center – University of Freiburg, Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| |
Collapse
|
20
|
Zhang L, Li LX, Zhou JX, Harris PC, Calvet JP, Li X. RNA helicase p68 inhibits the transcription and post-transcription of Pkd1 in ADPKD. Am J Cancer Res 2020; 10:8281-8297. [PMID: 32724471 PMCID: PMC7381742 DOI: 10.7150/thno.47315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations of the PKD1 and PKD2 genes. Dysregulation of the expression of PKD genes, the abnormal activation of PKD associated signaling pathways, and the expression and maturation of miRNAs regulates cyst progression. However, the upstream factors regulating these abnormal processes in ADPKD remain elusive. Methods: To investigate the roles of an RNA helicase, p68, in ADPKD, we performed Western blot and qRT-PCR analysis, immunostaining and ChIP assay in cystic renal epithelium cells and tissues. Results: We found that p68 was upregulated in cystic renal epithelial cells and tissues. p68 represses Pkd1 gene expression via transcriptional and posttranscriptional mechanisms in renal epithelial cells, in that 1) p68 binds to the promoter of the Pkd1 gene together with p53 to repress transcription; and 2) p68 promotes the expression and maturation of miR-17, miR-200c and miR-182 and via these miRNAs, post-transcriptionally regulates the expression of Pkd1 mRNA. Drosha is involved in this process by forming a complex with p68. p68 also regulates the phosphorylation and activation of PKD proliferation associated signaling and the expression of fibrotic markers in Pkd1 mutant renal epithelial cells. Silence of p68 delays cyst formation in collecting duct cell mediated 3D cultures. In addition, the expression of p68 is induced by H2O2-dependent oxidative stress and DNA damage which causes downregulation of Pkd1 transcription in cystic renal epithelial cells and tissues. Conclusions: p68 plays a critical role in negatively regulating the expression of the PKD1 gene along with positively regulating the expression and maturation of miRNAs and activation of PKD associated signaling pathways to cause renal cyst progression and fibrosis in ADPKD.
Collapse
|
21
|
Zhao X, Bao M, Zhang F, Wang W. Camptothecin induced DDX5 degradation increased the camptothecin resistance of osteosarcoma. Exp Cell Res 2020; 394:112148. [PMID: 32585151 DOI: 10.1016/j.yexcr.2020.112148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. Unfortunately, chemo-resistance is a huge obstacle in the treatment of OS. However, the underlying molecular mechanisms of OS chemo-resistance still remain unknown. Here we reported that the resistance to camptothecin (cpt) therapy was driven by degradation of DDX5. DDX5 knockdown decreased cell death and DNA damage and recovered cell proliferation in cpt treated 143B cells. Furthermore, we found that DDX5 bound to NONO, a kind of DNA repairing protein, and regulated NONO functions. Our data verified that cpt-induced degradation of DDX5 following by breaking down the protein bound of NONO, which participated in the resistance of cpt. In the summary, according to our results, DDX5 might be a potential therapeutic target for improving clinical outcomes of cpt in OS.
Collapse
Affiliation(s)
- Xingkai Zhao
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Miao Bao
- The First Affiliated Hospital of Xi'an Medical University, China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China.
| | - Wenbo Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
22
|
Wang T, Cao L, Dong X, Wu F, De W, Huang L, Wan Q. LINC01116 promotes tumor proliferation and neutrophil recruitment via DDX5-mediated regulation of IL-1β in glioma cell. Cell Death Dis 2020; 11:302. [PMID: 32358484 PMCID: PMC7195423 DOI: 10.1038/s41419-020-2506-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Tumor-associated neutrophils (TANs) are important inflammatory infiltrating cells in the tumor microenvironment and are closely related to the development of human tumor. However, the underlying mechanism of TANs recruiting to glioma remains unknown. Herein, we identified that LINC01116 was significantly upregulated in glioma, and positively correlated with clinical malignancy and survival prognosis. LINC01116 regulated the progression of glioma in vitro and in vivo. RNA-seq analysis demonstrated that LINC01116 knockdown affected the expression of IL-1β, which promoted glioma proliferation and neutrophil recruitment. Furthermore, the co-culture of glioma cells and neutrophils showed that the accumulation of TANs promoted tumor proliferation via producing a host of cytokines. Mechanistically, LINC01116 activated IL-1β expression by recruiting the transcriptional regulator DDX5 to the IL-1β promoter. Our findings reveal that LINC01116 can promote glioma proliferation and neutrophil recruitment by regulating IL-1β, and may be served as a novel target for glioma therapy and prognosis.
Collapse
Affiliation(s)
- Teng Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lihua Cao
- Department of Neurology, Nanjing PuKou Central Hospital, Nanjing, Jiangsu Province, China
| | - Xin Dong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fei Wu
- Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Huang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Qi Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
23
|
You Z, Liu C, Wang C, Ling Z, Wang Y, Wang Y, Zhang M, Chen S, Xu B, Guan H, Chen M. LncRNA CCAT1 Promotes Prostate Cancer Cell Proliferation by Interacting with DDX5 and MIR-28-5P. Mol Cancer Ther 2019; 18:2469-2479. [PMID: 31387890 DOI: 10.1158/1535-7163.mct-19-0095] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/11/2019] [Accepted: 07/29/2019] [Indexed: 01/17/2023]
Abstract
Accumulated evidence indicates that CCAT1 functions as an oncogene in the progression of a variety of tumors. However, little is known as to how CCAT1 impacts tumorigenesis in human prostate cancer. In this study, we found from The Cancer Genome Atlas and Memorial Sloan Kettering Cancer Center database that CCAT1 is highly upregulated in castration-resistant prostate cancer (CRPC) compared with androgen-dependent prostate cancer (ADPC). Higher level of CCAT1 leads to increased mortality in patients with CRPC. In vitro and in vivo studies show that CCAT1 promotes prostate cancer cell proliferation as well as the tumor growth of prostate cancer xenografts. Mechanistically, in cytoplasm, CCAT1 sponges MIR-28-5P to prevent the anticancer effect. In nucleus, CCAT1 acts as a scaffold for DDX5 (P68) and AR transcriptional complex to facilitate the expression of AR-regulated genes, thus stimulating CRPC progression. Our findings suggest that CCAT1 is an oncogenic factor in the progression of CRPC with different regulatory mechanisms in the nucleus and cytoplasm of cells.
Collapse
Affiliation(s)
- Zonghao You
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| | - Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Can Wang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Zhixin Ling
- Department of Urology, The First Affiliated Hospital of SooChow University, Suzhou, China
| | - Yiduo Wang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yali Wang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Minghao Zhang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| | - Han Guan
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| |
Collapse
|
24
|
Endogenous interaction profiling identifies DDX5 as an oncogenic coactivator of transcription factor Fra-1. Oncogene 2019; 38:5725-5738. [PMID: 31015574 DOI: 10.1038/s41388-019-0824-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 01/06/2023]
Abstract
Fra-1, a member of the activator protein 1 (AP-1) family, is overexpressed in triple-negative breast cancer (TNBC) and plays crucial roles in tumor growth. Here we report the identification of 118 proteins interacting with endogenous chromatin-bound Fra-1 in TNBC cells, highlighting DDX5 as the most enriched Fra-1-interacting protein. DDX5, a previously unrecognized protein in the Fra-1 transcriptional network, shows extensive overlap with Fra-1 cistrome and transcriptome that are highly associated with the TNBC cell growth. We provide evidence that DDX5 expression enhances Fra-1 transcriptional activity and potentiates Fra-1-driven cell proliferation. Furthermore, we show that the DDX5 target gene signature predicts poor clinical outcome in breast cancer patients. DDX5 protein level was higher in triple-negative basal-like tumors than in non-basal-like tumors, including luminal A, luminal B, and HER2-enriched subtypes. Collectively, by combining proteomic and genomic approaches we reveal a role for DDX5 as a regulatory protein of Fra-1 signaling and suggest DDX5 as a potential therapeutic target for TNBC.
Collapse
|
25
|
Liu C, Wang L, Jiang Q, Zhang J, Zhu L, Lin L, Jiang H, Lin D, Xiao Y, Fang W, Guo S. Hepatoma-Derived Growth Factor and DDX5 Promote Carcinogenesis and Progression of Endometrial Cancer by Activating β-Catenin. Front Oncol 2019; 9:211. [PMID: 31032220 PMCID: PMC6470266 DOI: 10.3389/fonc.2019.00211] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Our previous work determined the correlation between high nuclear expression of hepatoma-derived growth factor (HDGF) and clinicopathological data of endometrial cancer (EC); however, the modulatory mechanisms and biological role of HDGF in EC have not been reported. Methods: Lentiviral particles carrying human HDGF short hairpin RNA (shHDGF-1, -2, and -3) vector and plasmids for HDGF, DDX5, and β-catenin expression were, respectively introduced into EC cells to evaluate the effects and molecular mechanisms underlying EC cell proliferation, migration, invasion, and metastasis. Quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) and western blotting were used to determine HDGF and DDX5 expression. Co-immunoprecipitation (co-IP), mass spectrometry, and an immunofluorescence co-localization study were conducted to explore the relationship between HDGF, DDX5, and β-catenin. Immunohistochemistry was used to analyze the clinical associations between HDGF and DDX5 in EC. Results: Knocking down HDGF expression significantly decreased EC cellular proliferation, migration, invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, HDGF overexpression reversed these effects. Stable knockdown-based HDGF suppression activated the PI3K/AKT signaling pathway, along with downstream β-catenin-mediated cell cycle and epithelial-mesenchymal transition signaling. Furthermore, co-IP combined with mass spectrometry and an immunofluorescence co-localization study indicated that HDGF interacts with DDX5, whereas β-catenin was associated with DDX5 but not HDGF. Overexpression of DDX5 reversed the suppression of shHDGF. Immunohistochemistry analysis showed that high expression of DDX5 constituted an unfavorable factor with respect to the clinicopathological characteristics of EC tissues and that HDGF and DDX5 high expression (HDGF+/DDX5+) led to a worse prognosis for patients with EC (P < 0.001). In addition, we found that the expression of HDGF and DDX5 was positively correlated in EC tissues (r = 0.475, P < 0.001). Conclusion: Our results provide novel evidence that HDGF interacts with DDX5 and promotes the progression of EC through the induction of β-catenin.
Collapse
Affiliation(s)
- Chunhua Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Lijing Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qingping Jiang
- Department of Pathology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junyi Zhang
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Litong Zhu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Li Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huiping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Dan Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yanyi Xiao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Weiyi Fang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Giraud G, Terrone S, Bourgeois CF. Functions of DEAD box RNA helicases DDX5 and DDX17 in chromatin organization and transcriptional regulation. BMB Rep 2019. [PMID: 30293550 PMCID: PMC6330936 DOI: 10.5483/bmbrep.2018.51.12.234] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA helicases DDX5 and DDX17 are multitasking proteins that regulate gene expression in different biological contexts through diverse activities. Special attention has long been paid to their function as coregulators of transcription factors, providing insight about their functional association with a number of chromatin modifiers and remodelers. However, to date, the variety of described mechanisms has made it difficult to understand precisely how these proteins work at the molecular level, and the contribution of their ATPase domain to these mechanisms remains unclear as well. In light of their association with long noncoding RNAs that are key epigenetic regulators, an emerging view is that DDX5 and DDX17 may act through modulating the activity of various ribonucleoprotein complexes that could ensure their targeting to specific chromatin loci. This review will comprehensively describe the current knowledge on these different mechanisms. We will also discuss the potential roles of DDX5 and DDX17 on the 3D chromatin organization and how these could impact gene expression at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Guillaume Giraud
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Sophie Terrone
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| |
Collapse
|
27
|
Chen Y, Wang Q, Wang Q, Liu J, Jiang X, Zhang Y, Liu Y, Zhou F, Liu H. DEAD-Box Helicase 5 Interacts With Transcription Factor 12 and Promotes the Progression of Osteosarcoma by Stimulating Cell Cycle Progression. Front Pharmacol 2019; 9:1558. [PMID: 30733679 PMCID: PMC6353832 DOI: 10.3389/fphar.2018.01558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is a common malignant primary bone tumor. Its mechanism of development and progression is poorly understood. Currently, there is no effective therapeutic regimens available for the treatment of OS. DEAD-box helicase 5 (DDX5) is involved in oncogenic processes. This study aimed to explore the role of DDX5 in the development and progression of OS and its relationship with transcription factor 12 (TCF12), which is as an important molecule of Wnt signaling pathway. We found that the expressions of DDX5 and TCF12 protein were significantly higher in OS patients tissues and in the MG63 cells than in the corresponding normal tissues and human osteoblast cell hFOB 1.19. Overexpressions of both DDX5 and TCF12 were associated with clinicopathological features and poor prognosis of OS patients. siRNA based knockdown of DDX5 inhibited the proliferation of MG63 cells as demonstrated by an in vitro MTS assay and 5-ethynyl-2-deoxyuridine DNA proliferation detection, and promoted apoptosis of MG63 cells measured by flow cytometry. In addition, DDX5 knockdown inhibited the MG63 cell migration and invasion on transwell assays. Further experiments showed that DDX5 knockdown not only inhibited the expression of TCF12 but also decreased the mRNA and protein levels of Cyclin E1, an important regulator of G1–S phase progression, suggesting that DDX5 was required for the entry of cells into S phase. Overexpression of TCF12 reversed the cell proliferation, migration and invasion in MG63 cells induced by DDX5 knockdown accompanied by the upregulation of Cyclin E1. Additionally, we observed that DDX5 interacted with TCF12 in both OS tissues and MG63 cells by Co-immunoprecipitation assays. Taken together, our study revealed that DDX5 interacts with TCF12 and promotes the progression of OS by stimulating cell cycle progression. Our results suggest that DDX5 and TCF12 could be potential biomarkers for the diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Yanchun Chen
- Department of Histology and Embryology, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Qiaozhen Wang
- Department of Human Anatomy, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Qing Wang
- Department of Human Anatomy, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jinmeng Liu
- Department of Histology and Embryology, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xin Jiang
- Department of Histology and Embryology, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yawen Zhang
- Department of Histology and Embryology, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yongxin Liu
- Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Fenghua Zhou
- Department of Pathology, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Huancai Liu
- Department of Joint Surgery, Affiliated Hospital, Weifang Medical University, Weifang, China
| |
Collapse
|
28
|
Roles of DDX5 in the tumorigenesis, proliferation, differentiation, metastasis and pathway regulation of human malignancies. Biochim Biophys Acta Rev Cancer 2019; 1871:85-98. [DOI: 10.1016/j.bbcan.2018.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
|
29
|
Wang R, Bao H, Du W, Chen X, Liu H, Han D, Wang L, Wu J, Wang C, Yang M, Liu Z, Zhang N, Teng L. P68 RNA helicase promotes invasion of glioma cells through negatively regulating DUSP5. Cancer Sci 2019; 110:107-117. [PMID: 30387548 PMCID: PMC6317933 DOI: 10.1111/cas.13858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Gliomas are the most common central nervous system tumors. They show malignant characteristics indicating rapid proliferation and a high invasive capacity and are associated with a poor prognosis. In our previous study, p68 was overexpressed in glioma cells and correlated with both the degree of glioma differentiation and poor overall survival. Downregulating p68 significantly suppressed proliferation in glioma cells. Moreover, we found that the p68 gene promoted glioma cell growth by activating the nuclear factor-κB signaling pathway by a downstream molecular mechanism that remains incompletely understood. In this study, we found that dual specificity phosphatase 5 (DUSP5) is a downstream target of p68, using microarray analysis, and that p68 negatively regulates DUSP5. Upregulating DUSP5 in stably expressing cell lines (U87 and LN-229) suppressed proliferation, invasion, and migration in glioma cells in vitro, consistent with the downregulation of p68. Furthermore, upregulating DUSP5 inhibited ERK phosphorylation, whereas downregulating DUSP5 rescued the level of ERK phosphorylation, indicating that DUSP5 might negatively regulate ERK signaling. Additionally, we show that DUSP5 levels were lower in high-grade glioma than in low-grade glioma. These results suggest that the p68-induced negative regulation of DUSP5 promoted invasion by glioma cells and mediated the activation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Rui Wang
- Department of NeurologyThe Second Clinical College of Harbin Medical UniversityHarbinChina
| | - Hong‐Bo Bao
- Department of NeurosurgeryCancer Hospital of Harbin Medical UniversityHarbinChina
| | - Wen‐Zhong Du
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Xiao‐Feng Chen
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Huai‐Lei Liu
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Da‐Yong Han
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Li‐Gang Wang
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Jia‐Ning Wu
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Chun‐Lei Wang
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Ming‐Chun Yang
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Zhan‐Wen Liu
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Na Zhang
- Department of Laboratory DiagnosticsThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Lei Teng
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| |
Collapse
|
30
|
Hashemi V, Masjedi A, Hazhir-Karzar B, Tanomand A, Shotorbani SS, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Anvari E, Baradaran B, Jadidi-Niaragh F. The role of DEAD-box RNA helicase p68 (DDX5) in the development and treatment of breast cancer. J Cell Physiol 2018; 234:5478-5487. [PMID: 30417346 DOI: 10.1002/jcp.26912] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
RNA helicase p68 or DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5) is a unique member of the highly conserved protein family, which is involved in a broad spectrum of biological processes, including transcription, translation, precursor messenger RNA processing or alternative splicing, and microRNA (miRNA) processing. It has been shown that p68 is necessary for cell growth and participates in the early development and maturation of some organs. Interestingly, p68 is a transcriptional coactivator of numerous oncogenic transcription factors, including nuclear factor-κβ (NF-κβ), estrogen receptor α (ERα), β-catenin, androgen receptor, Notch transcriptional activation complex, p53 and signal transducer, and activator of transcription 3 (STAT3). Recent studies on the role of p68 (DDX5) in multiple dysregulated cellular processes in various cancers and its abnormal expression indicate the importance of this factor in tumor development. Discussion of the precise role of p68 in cancer is complex and depends on the cellular microenvironment and interacting factors. In terms of the deregulated expression of p68 in breast cancer and the high prevalence of this cancer among women, it can be informative to review the precise function of this factor in the breast cancer. Therefore, an attempt will be made in this review to clarify the tumorigenic function of p68 in association with its targeting potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Vida Hashemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Basic Sciences, Faculty of Medicine, Maragheh University of Medical Science, Maragheh, Iran
| | - Ali Masjedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bita Hazhir-Karzar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Tanomand
- Department of Basic Sciences, Faculty of Medicine, Maragheh University of Medical Science, Maragheh, Iran
| | | | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Zhang M, Weng W, Zhang Q, Wu Y, Ni S, Tan C, Xu M, Sun H, Liu C, Wei P, Du X. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J Hematol Oncol 2018; 11:113. [PMID: 30185232 PMCID: PMC6125951 DOI: 10.1186/s13045-018-0656-7] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Background The long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) has been reported to be overexpressed in colorectal cancer (CRC). However, its underlying mechanisms in the progression of CRC have not been well studied. Methods To investigate the clinical significance of NEAT1, we analyzed its expression levels in a publicly available dataset and in 71 CRC samples from Fudan University Shanghai Cancer Center. Functional assays, including the CCK8, EdU, colony formation, wound healing, and Transwell assays, were used to determine the oncogenic role of NEAT1 in human CRC progression. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and Dual-Luciferase Reporter Assays were used to determine the mechanism of NEAT1 in CRC progression. Animal experiments were used to determine the role of NEAT1 in CRC tumorigenicity and metastasis in vivo. Results NEAT1 expression was significantly upregulated in CRC tissues compared with its expression in normal tissues. Altered NEAT1 expression led to marked changes in proliferation, migration, and invasion of CRC cells both in vitro and in vivo. Mechanistically, we found that NEAT1 directly bound to the DDX5 protein, regulated its stability, and sequentially activated Wnt signaling. Our study showed that NEAT1 indirectly activated the Wnt/β-catenin signaling pathway via DDX5 and fulfilled its oncogenic functions in a DDX5-mediated manner. Clinically, concomitant NEAT1 and DDX5 protein levels negatively correlated with the overall survival and disease-free survival of CRC patients. Conclusions Our findings indicated that NEAT1 activated Wnt signaling to promote colorectal cancer progression and metastasis. The NEAT1/DDX5/Wnt/β-catenin axis could be a potential therapeutic target of pharmacological strategies. Electronic supplementary material The online version of this article (10.1186/s13045-018-0656-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiongyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Wu
- Institute of Pathology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenchen Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Institute of Pathology, Fudan University, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China. .,Institute of Pathology, Fudan University, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Fu Q, Song X, Liu Z, Deng X, Luo R, Ge C, Li R, Li Z, Zhao M, Chen Y, Lin X, Zhang Q, Fang W. miRomics and Proteomics Reveal a miR-296-3p/PRKCA/FAK/Ras/c-Myc Feedback Loop Modulated by HDGF/DDX5/β-catenin Complex in Lung Adenocarcinoma. Clin Cancer Res 2017; 23:6336-6350. [PMID: 28751441 DOI: 10.1158/1078-0432.ccr-16-2813] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/19/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Purpose: This study was performed to identify the detailed mechanisms by which miR-296-3p functions as a tumor suppressor to prevent lung adenocarcinoma (LADC) cell growth, metastasis, and chemoresistance.Experimental Design: The miR-296-3p expression was examined by real-time PCR and in situ hybridization. MTT, EdU incorporation, Transwell assays, and MTT cytotoxicity were respectively performed for cell proliferation, metastasis, and chemoresistance; Western blotting was performed to analyze the pathways by miR-296-3p and HDGF/DDX5 complex. The miRNA microarray and luciferase reporter assays were respectively used for the HDGF-mediated miRNAs and target genes of miR-296-3p. The ChIP, EMSA assays, and coimmunoprecipitation combined with mass spectrometry and GST pull-down were respectively designed to analyze the DNA-protein complex and HDGF/DDX5/β-catenin complex.Results: We observed that miR-296-3p not only controls cell proliferation and metastasis, but also sensitizes LADC cells to cisplatin (DDP) in vitro and in vivo Mechanistic studies demonstrated that miR-296-3p directly targets PRKCA to suppress FAK-Ras-c-Myc signaling, thus stimulating its own expression in a feedback loop that blocks cell cycle and epithelial-mesenchymal transition (EMT) signal. Furthermore, we observed that suppression of HDGF-β-catenin-c-Myc signaling activates miR-296-3p, ultimately inhibiting the PRKCA-FAK-Ras pathway. Finally, we found that DDX5 directly interacts with HDGF and induces β-catenin-c-Myc, which suppresses miR-296-3p and further activates PRKCA-FAK-Ras, cell cycle, and EMT signaling. In clinical samples, reduced miR-296-3p is an unfavorable factor that inversely correlates with HDGF/DDX5, but not PRKCA.Conclusions: Our study provides a novel mechanism that the miR-296-3p-PRKCA-FAK-Ras-c-Myc feedback loop modulated by HDGF/DDX5/β-catenin complex attenuates cell growth, metastasis, and chemoresistance in LADC. Clin Cancer Res; 23(20); 6336-50. ©2017 AACR.
Collapse
Affiliation(s)
- Qiaofen Fu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Xin Song
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Zhen Liu
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Xiaojie Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Rongcheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Chunlei Ge
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Mengyang Zhao
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yiyu Chen
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xian Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Qianbing Zhang
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
33
|
Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:49-82. [PMID: 27975270 DOI: 10.1007/978-3-319-46095-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented. This section will be followed by a review of translational mechanisms operating in oocytes, eggs, and early cleavage-stage embryos and conclude with a discussion of how the regulation of key maternal cell-fate determinants at the level of translation functions in Xenopus embryogenesis. A key theme is that the molecular asymmetries critical for forming the body axes are established and further elaborated upon by the selective temporal and spatial regulation of maternal mRNA translation.
Collapse
|
34
|
Bhowmik A, Chakravarti S, Ghosh A, Shaw R, Bhandary S, Bhattacharyya S, Sen PC, Ghosh MK. Anti-SSTR2 peptide based targeted delivery of potent PLGA encapsulated 3,3'-diindolylmethane nanoparticles through blood brain barrier prevents glioma progression. Oncotarget 2017; 8:65339-65358. [PMID: 29029435 PMCID: PMC5630335 DOI: 10.18632/oncotarget.18689] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/22/2017] [Indexed: 12/27/2022] Open
Abstract
Current therapy for Glioblastoma is insufficient because of the presence of blood brain barrier. It limits the transport of essential drugs to the tumor sites. To overcome this limitation we strategized the delivery of an anticancer compound 3,3’-diindolylmethane by encapsulation in poly (lactic-co-glycolic acid) nanoparticles. These nanoparticles were tagged with a novel peptide against somatostatin receptor 2 (SSTR2), a potential target in glioma. The nanoformulation (27-87nm) had loading and encapsulation efficiency of 7.2% and 70% respectively. It was successfully internalized inside the glioma cells resulting in apoptosis. Furthermore, an in vivo bio-distribution study revealed the selective accumulation of the nanoformulation into rat brain tumor sites by crossing the blood brain barrier. This resulted in abrogation of epidermal growth factor receptor pathway activation in glioma cells. Our novel nanopreparation therefore shows great promise to serve as a template for targeted delivery of other therapeutics in treating GBM.
Collapse
Affiliation(s)
- Arijit Bhowmik
- Signal Transduction in Cancer and Stem Cells Laboratory, Translational Research Unit of Excellence (TRUE), Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700091, India
| | - Sayak Chakravarti
- Signal Transduction in Cancer and Stem Cells Laboratory, Translational Research Unit of Excellence (TRUE), Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700091, India
| | - Aparajita Ghosh
- Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata 700054, India
| | - Rajni Shaw
- Signal Transduction in Cancer and Stem Cells Laboratory, Translational Research Unit of Excellence (TRUE), Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700091, India
| | - Suman Bhandary
- Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata 700054, India
| | | | - Parimal C Sen
- Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata 700054, India
| | - Mrinal K Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Translational Research Unit of Excellence (TRUE), Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700091, India
| |
Collapse
|
35
|
Wnt signaling in triple-negative breast cancer. Oncogenesis 2017; 6:e310. [PMID: 28368389 PMCID: PMC5520491 DOI: 10.1038/oncsis.2017.14] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/09/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling regulates a variety of cellular processes, including cell fate, differentiation, proliferation and stem cell pluripotency. Aberrant Wnt signaling is a hallmark of many cancers. An aggressive subtype of breast cancer, known as triple-negative breast cancer (TNBC), demonstrates dysregulation in canonical and non-canonical Wnt signaling. In this review, we summarize regulators of canonical and non-canonical Wnt signaling, as well as Wnt signaling dysfunction that mediates the progression of TNBC. We review the complex molecular nature of TNBC and the emerging therapies that are currently under investigation for the treatment of this disease.
Collapse
|
36
|
Cai W, Xiong Chen Z, Rane G, Satendra Singh S, Choo Z, Wang C, Yuan Y, Zea Tan T, Arfuso F, Yap CT, Pongor LS, Yang H, Lee MB, Cher Goh B, Sethi G, Benoukraf T, Tergaonkar V, Prem Kumar A. Wanted DEAD/H or Alive: Helicases Winding Up in Cancers. J Natl Cancer Inst 2017; 109:2957323. [PMID: 28122908 DOI: 10.1093/jnci/djw278] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/08/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the most studied areas of human biology over the past century. Despite having attracted much attention, hype, and investments, the search to find a cure for cancer remains an uphill battle. Recent discoveries that challenged the central dogma of molecular biology not only further increase the complexity but also demonstrate how various types of noncoding RNAs such as microRNA and long noncoding RNA, as well as their related processes such as RNA editing, are important in regulating gene expression. Parallel to this aspect, an increasing number of reports have focused on a family of proteins known as DEAD/H-box helicases involved in RNA metabolism, regulation of long and short noncoding RNAs, and novel roles as "editing helicases" and their association with cancers. This review summarizes recent findings on the roles of RNA helicases in various cancers, which are broadly classified into adult solid tumors, childhood solid tumors, leukemia, and cancer stem cells. The potential small molecule inhibitors of helicases and their therapeutic value are also discussed. In addition, analyzing next-generation sequencing data obtained from public portals and reviewing existing literature, we provide new insights on the potential of DEAD/H-box helicases to act as pharmacological drug targets in cancers.
Collapse
Affiliation(s)
- Wanpei Cai
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Zhi Xiong Chen
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Grishma Rane
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Shikha Satendra Singh
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Zhang'e Choo
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Chao Wang
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Yi Yuan
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Tuan Zea Tan
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Frank Arfuso
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Celestial T Yap
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Lorinc S Pongor
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Henry Yang
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Martin B Lee
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Boon Cher Goh
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Gautam Sethi
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Touati Benoukraf
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Vinay Tergaonkar
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Alan Prem Kumar
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| |
Collapse
|
37
|
Ma Z, Feng J, Guo Y, Kong R, Ma Y, Sun L, Yang X, Zhou B, Li S, Zhang W, Jiang J, Zhang J, Qiao Z, Cheng Y, Zha D, Liu S. Knockdown of DDX5 Inhibits the Proliferation and Tumorigenesis in Esophageal Cancer. Oncol Res 2016; 25:887-895. [PMID: 28244855 PMCID: PMC7841059 DOI: 10.3727/096504016x14817158982636] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DEAD (Asp-Glu-Ala-Asp) box protein 5 (DDX5), a prototypical member of the DEAD/H-box protein family, has been involved in several human malignancies. However, the expression and biological role of DDX5 in esophageal cancer (EC) remain largely unknown. In this study, we examined the role of DDX5 in regulating EC cell proliferation and tumorigenesis and explored its possible molecular mechanism. We found that DDX5 was overexpressed in human EC cell lines. In addition, knockdown of DDX5 significantly inhibited the proliferation of EC cells in vitro and the growth of EC xenografts in vivo. Knockdown of DDX5 also suppressed the migration/invasion and epithelial-to-mesenchymal transition (EMT) phenotype in EC cells. Furthermore, we observed that knockdown of DDX5 inhibited the expression of β-catenin, c-Myc, and cyclin D1 in EC cells. In conclusion, our findings provide the first evidence that siRNA-DDX5 inhibited the proliferation and invasion of EC cells through suppressing the Wnt/β-catenin signaling pathway. Therefore, DDX5 may be a novel potential therapeutic target for the prevention and treatment of EC.
Collapse
|
38
|
Sarkar M, Khare V, Ghosh MK. The DEAD box protein p68: a novel coactivator of Stat3 in mediating oncogenesis. Oncogene 2016; 36:3080-3093. [PMID: 27941883 DOI: 10.1038/onc.2016.449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 02/06/2023]
Abstract
DEAD box RNA helicase p68 acts as a transcriptional coactivator of several oncogenic transcription factors apart from being a vital player of RNA metabolism. Signal transducer and activator of transcription 3 (Stat3) is a major oncogenic contributor of diverse cancers, including that of colon. Deciphering the mechanistic insights of coactivation of Stat3 transcriptional activity may aid in improved therapeutic strategies. Here we report for the first time a novel mechanism of alliance between p68 and Stat3 in stimulating transcriptional activity of Stat3. Interestingly, we observed that the expression of p68 and Stat3 bears strong positive correlation and significant colocalization in normal and colon carcinoma patient samples. We demonstrated that p68 directly interacts with Stat3 in HEK293 cells as well as multiple colon cancer cell lines. Additionally, p68 positively modulated both mRNA and protein expression levels of Stat3 target genes; promoter activity of Stat3 target gene Mcl-1 in multiple colon cancer cell lines. Also, p68 occupied the promoters of multiple Stat3 target genes in enhancing Stat3-dependent transcription. Moreover, the strong positive correlation between the abundance of p68 and Stat3 target genes in the same set of colon carcinoma samples further supported our observations. Enhanced expression levels of Stat3 target genes observed in primary tumors and metastatic lung nodules, generated in mice colorectal allograft model using syngeneic cells stably expressing p68, further reinforced our in vitro findings. Hence, this study unravels novel modes of p68-mediated oncogenesis through coactivation of Stat3 and enhancing Stat3 signaling.
Collapse
Affiliation(s)
- M Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - V Khare
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - M K Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| |
Collapse
|
39
|
The DEAD-Box RNA Helicase DDX3 Interacts with NF-κB Subunit p65 and Suppresses p65-Mediated Transcription. PLoS One 2016; 11:e0164471. [PMID: 27736973 PMCID: PMC5063347 DOI: 10.1371/journal.pone.0164471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 09/26/2016] [Indexed: 11/29/2022] Open
Abstract
RNA helicase family members exhibit diverse cellular functions, including in transcription, pre-mRNA processing, RNA decay, ribosome biogenesis, RNA export and translation. The RNA helicase DEAD-box family member DDX3 has been characterized as a tumour-associated factor and a transcriptional co-activator/regulator. Here, we demonstrate that DDX3 interacts with the nuclear factor (NF)-κB subunit p65 and suppresses NF-κB (p65/p50)-mediated transcriptional activity. The downregulation of DDX3 by RNA interference induces the upregulation of NF-κB (p65/p50)-mediated transcription. The regulation of NF-κB (p65/p50)-mediated transcriptional activity was further confirmed by the expression levels of its downstream cytokines, such as IL-6 and IL-8. Moreover, the binding of the ATP-dependent RNA helicase domain of DDX3 to the N-terminal Rel homology domain (RHD) of p65 is involved in the inhibition of NF-κB-regulated gene transcription. In summary, the results suggest that DDX3 functions to suppress the transcriptional activity of the NF-κB subunit p65.
Collapse
|
40
|
Das N, Datta N, Chatterjee U, Ghosh MK. Estrogen receptor alpha transcriptionally activates casein kinase 2 alpha: A pivotal regulator of promyelocytic leukaemia protein (PML) and AKT in oncogenesis. Cell Signal 2016; 28:675-87. [PMID: 27012497 DOI: 10.1016/j.cellsig.2016.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 01/17/2023]
Abstract
Protein kinase CK2α is frequently upregulated in different cancers. Alteration of CK2α expression and its activity is sufficient to induce dramatic changes in cell fate. It has been established that CK2α induces oncogenesis through modulation of both AKT and PML. CK2α has been found to be overexpressed in breast cancer. In contrary, statistical reports have shown low level of PML. However, the regulation of CK2α gene expression is not fully understood. In the current study, we found that CK2α and activated AKT positively correlate with ERα, whereas PML follows an inverse correlation in human breast cancer tissues. Modulation of ERα signalling leads to recruitment of activated ERα on the ERE sites of CK2α promoter, resulting in CK2α transactivation. Furthermore, the DMBA induced tumours in rat showed elevated level of active CK2α. Consequently it mediates enhancement of AKT activity and PML degradation, resulting in increased cellular proliferation, migration and metastasis. Syngeneic ERα overexpressing stable mouse 4T1 cells produce larger primary tumours and metastatic lung nodules in mice, corroborating our in vitro findings. Hence, our study provides a novel route of ERα dependent CK2α mediated oncogenesis that causes upregulation and consequent AKT activation along with degradation of tumour suppressor PML.
Collapse
Affiliation(s)
- Nilanjana Das
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, West Bengal, India.
| | - Neerajana Datta
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, West Bengal, India.
| | - Uttara Chatterjee
- Division of Pathology, Park Clinic, 4, Gorky Terrace, Kolkata 700017, India.
| | - Mrinal Kanti Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, West Bengal, India.
| |
Collapse
|
41
|
Wang Z, Luo Z, Zhou L, Li X, Jiang T, Fu E. DDX5 promotes proliferation and tumorigenesis of non-small-cell lung cancer cells by activating β-catenin signaling pathway. Cancer Sci 2015. [PMID: 26212035 PMCID: PMC4638002 DOI: 10.1111/cas.12755] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The DEAD-box-protein DDX5 is an ATP-dependent RNA helicase that is frequently overexpressed in various cancers and acts as a transcriptional co-activator of several transcription factors, including β-catenin. DDX5 is reported to be involved in cancer progression by promoting cell proliferation and epithelial-mesenchymal transition. However, the clinical significance and biological role of DDX5 in non-small-cell lung cancer (NSCLC) remain largely unknown. In this study, we examined the expression of DDX5 in clinical NSCLC samples, investigated its role in regulating NSCLC cell proliferation and tumorigenesis, and explored the possible molecular mechanism. We found that DDX5 was significantly overexpressed in NSCLC tissues as compared with the matched normal adjacent tissues. In addition, overexpression of DDX5 was associated with advanced clinical stage, higher Ki67 index, and shorter overall survival in NSCLC patients. Upregulation of DDX5 promoted proliferation of NSCLC cells in vitro and growth of NSCLC xenografts in vivo, whereas downregulation of DDX5 showed the opposite effects. Furthermore, DDX5 directly interacted with β-catenin, promoted its nuclear translocation, and co-activated the expression of cyclin D1 and c-Myc. β-catenin silencing significantly abrogated DDX5-induced cyclin D1 and c-Myc expression and proliferation in NSCLC cells. Interestingly, DDX5 and cyclin D1 expression followed positive correlation in the same set of NSCLC samples. These findings indicated that DDX5 played an important role in the proliferation and tumorigenesis of NSCLC cells by activating the β-catenin signaling pathway. Therefore, DDX5 may serve as a novel prognostic marker and potential therapeutic target in the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhendong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhonghua Luo
- Department of Interventional Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lin Zhou
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Enqing Fu
- Department of Respiratory Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
42
|
|