1
|
Mfotie Njoya E, van Dyk H, Nambooze J, Chukwuma CI, Brink A, Makhafola TJ. Insight into the molecular mechanism of anti-breast cancer therapeutic potential of substituted salicylidene-based compounds using cell-based assays and molecular docking studies. Eur J Pharmacol 2024; 985:177129. [PMID: 39542411 DOI: 10.1016/j.ejphar.2024.177129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Targeting oxidative stress and inflammatory signaling pathways is an effective cancer prevention and therapy approach. The mechanism of action of synthesized salicylidene-based compounds was investigated in regulating key molecular targets of breast cancer development. Compounds (1), (4), (5), and (7) were found to be more cytotoxic to MCF-7 and 4T1 cells compared to non-cancerous Chang liver cells, while these compounds were cytotoxic to MDA-MB-231 cells, but with poor selectivity. The colony formation assay indicated that bioactive compounds induced significant damage to breast cancer cells, as observed by a reduction in the number of colonies compared to control cells. By inducing a concentration and time-dependent increase of luminescence and fluorescence of phosphatidylserine, and activating the expression of caspases-3, -7, -8, -9 in breast cancer cells, (1) and (7) have shown to induce caspase-dependent apoptosis. The downregulation of NF-kB-p65 and an upregulation of TP53 expression after exposure to bioactive compounds, demonstrated the suppression of two key targets of breast cancer development. Molecular docking studies revealed that selected protein targets strongly interact with bioactive compounds, and the estimated inhibition constants (Ki) of JAK2, STAT3, COX-2, HPV31 E6, EGFR1, TP53, and PARP1 were significantly decreased compared to acetylsalicylic acid. This could be a clear indication that these protein targets are implicated with antiproliferative efficacy, thereby warranting the potential of (1) and (7) to be used as anti-breast cancer drug candidates.
Collapse
Affiliation(s)
- Emmanuel Mfotie Njoya
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9301, Free State, South Africa
| | - Hannah van Dyk
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9301, Free State, South Africa
| | - Jennifer Nambooze
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9301, Free State, South Africa
| | - Chika I Chukwuma
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9301, Free State, South Africa
| | - Alice Brink
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9301, Free State, South Africa
| | - Tshepiso Jan Makhafola
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9301, Free State, South Africa.
| |
Collapse
|
2
|
Bouhoudan A, Bakkach J, Khaddor M, Mourabit N. Anticancer Effect of Mycotoxins From Penicillium aurantiogriseum: Exploration of Natural Product Potential. Int J Microbiol 2024; 2024:5553860. [PMID: 39669001 PMCID: PMC11637627 DOI: 10.1155/ijm/5553860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
Research into biologically natural substances with antitumor properties, known for their potential to induce fewer side effects and exhibit specificity toward cancerous cells, remains imperative. The pressing demand for novel agents in cancer therapy underscores the intensive investigation of natural products from microorganisms. Penicillium aurantiogriseum, frequently isolated from food and feed, emerges as a promising candidate against pathogenic bacteria and fungi. This species harbors numerous mycotoxins that warrant extensive clinical study due to their potential in cancer treatment. Identifying mycotoxins with anticancer properties produced by P. aurantiogriseum could unveil novel therapeutic targets and enrich the pharmacological landscape. This review provides a comprehensive overview of the utilization of P. aurantiogriseum mycotoxins in cancer research and elucidates therapeutic agents' advantages and limitations. P. aurantiogriseum produces at least 15 mycotoxins with potent anticancer effects mediated through diverse mechanisms, including enzyme inhibition (e.g., pseurotin), induction of apoptosis (e.g., auranthine, aurantiamides A, aurantiomides A-C, penicillic acid, penitrem, verrucisidinol, acetate verrucosidinol, and chaetoglobosin A), and cell-cycle arrest (e.g., anicequol, aurantiamine, and Taxol). Although certain mycotoxins, such as Taxol, Anacin, and Compactin, are used in commerce, many others remain relatively unexplored. The mycotoxins derived from P. aurantiogriseum hold considerable potential for cancer treatment, offering novel therapeutic avenues and enhancing current treatments through synergistic combinations and advanced delivery systems.
Collapse
Affiliation(s)
- Assia Bouhoudan
- Department of Biology, Laboratory of Research and Development in Engineering Sciences, Faculty of Sciences and Techniques of Al-Hoceima, Abdelmalek Essaadi University, Tetouan 93000, Al-Hoceima, Morocco
| | - Joaira Bakkach
- Department of Biology, Higher Institute of Nursing Professions and Health Techniques of Tetouan, Al-Hoceima 93000, Morocco
| | - Mustapha Khaddor
- Regional Center for Careers Education and Training of Tangier, Tangier 90000, Morocco
| | - Nadira Mourabit
- Department of Biology, Laboratory of Research and Development in Engineering Sciences, Faculty of Sciences and Techniques of Al-Hoceima, Abdelmalek Essaadi University, Tetouan 93000, Al-Hoceima, Morocco
| |
Collapse
|
3
|
Antonucci L, Karin M. The Past and Future of Inflammation as a Target to Cancer Prevention. Cancer Prev Res (Phila) 2024; 17:141-155. [PMID: 38271694 PMCID: PMC10987280 DOI: 10.1158/1940-6207.capr-23-0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Inflammation is an essential defense mechanism in which innate immune cells are coordinately activated on encounter of harmful stimuli, including pathogens, tissue injury, and toxic compounds and metabolites to neutralize and eliminate the instigator and initiate healing and regeneration. Properly terminated inflammation is vital to health, but uncontrolled runaway inflammation that becomes chronic begets a variety of inflammatory and metabolic diseases and increases cancer risk. Making damaged tissues behave as "wounds that do not heal" and sustaining the production of growth factors whose physiologic function is tissue healing, chronic inflammation accelerates cancer emergence from premalignant lesions. In 1863, Rudolf Virchow, a leading German pathologist, suggested a possible association between inflammation and tumor formation, but it took another 140 years to fully elucidate and appreciate the tumorigenic role of inflammation. Key findings outlined molecular events in the inflammatory cascade that promote cancer onset and progression and enabled a better appreciation of when and where inflammation should be inhibited. These efforts triggered ongoing research work to discover and develop inflammation-reducing chemopreventive strategies for decreasing cancer risk and incidence.
Collapse
Affiliation(s)
- Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine; La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine; La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Fernandes Q, Inchakalody VP, Bedhiafi T, Mestiri S, Taib N, Uddin S, Merhi M, Dermime S. Chronic inflammation and cancer; the two sides of a coin. Life Sci 2024; 338:122390. [PMID: 38160787 DOI: 10.1016/j.lfs.2023.122390] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The correlation between chronic inflammation and cancer was initially identified in the 19th century. Biomolecules like interleukins, chemokines, tumor necrosis factors, growth factors, and adhesion molecules, which regulate inflammation, are recognized contributors to neoplastic transformation through various mechanisms, including oncogenic mutations, resistance to apoptosis, and adaptive responses like angiogenesis. This review aims to establish connections between the intricate and complex mechanisms of chronic inflammation and cancer. We illuminate implicit signaling mechanisms that drive the association between chronic inflammation and the initiation/progression of cancer, exploring potential impacts on other diseases. Additionally, we discuss the modalities of currently available therapeutic options for chronic inflammation and cancer, emphasizing the dual nature of such therapies. A thorough understanding of the molecular basis of chronic inflammation is crucial for developing novel approaches in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
5
|
Carcel C, Haupt S, Arnott C, Yap ML, Henry A, Hirst JE, Woodward M, Norton R. A life-course approach to tackling noncommunicable diseases in women. Nat Med 2024; 30:51-60. [PMID: 38242981 DOI: 10.1038/s41591-023-02738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/27/2023] [Indexed: 01/21/2024]
Abstract
Women's health has been critically underserved by a failure to look beyond women's sexual and reproductive systems to adequately consider their broader health needs. In almost every country in the world, noncommunicable diseases are the leading causes of death for women. Among these, cardiovascular disease (including heart disease and stroke) and cancer are the major causes of mortality. Risks for these conditions exist at each stage of women's lives, but recognition of the unique needs of women for the prevention and management of noncommunicable diseases is relatively recent and still emerging. Once they are diagnosed, treatments for these diseases are often costly and noncurative. Therefore, we call for a strategic, innovative life-course approach to identifying disease triggers and instigating cost-effective measures to minimize exposure in a timely manner. Prohibitive barriers to implementing this holistic approach to women's health exist in both the social arena and the medical arena. Recognizing these impediments and implementing practical approaches to surmounting them is a rational approach to advancing health equity for women, with ultimate benefits for society as a whole.
Collapse
Affiliation(s)
- Cheryl Carcel
- The George Institute for Global Health, UNSW, Sydney, New South Wales, Australia.
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
| | - Sue Haupt
- The George Institute for Global Health, UNSW, Sydney, New South Wales, Australia
| | - Clare Arnott
- The George Institute for Global Health, UNSW, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mei Ling Yap
- The George Institute for Global Health, UNSW, Sydney, New South Wales, Australia
- Liverpool and Macarthur Cancer Therapy Centres, South-West Sydney Local Health District, Sydney, New South Wales, Australia
- Collaboration for Cancer Outcomes, Research and Evaluation (CCORE), South-Western Sydney Clinical School, Ingham Institute, UNSW, Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Amanda Henry
- The George Institute for Global Health, UNSW, Sydney, New South Wales, Australia
- Discipline of Women's Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW, Sydney, New South Wales, Australia
- Department of Women's and Children's Health, St George Hospital, Sydney, New South Wales, Australia
| | - Jane E Hirst
- The George Institute for Global Health, School of Public Health, Imperial College London, London, UK
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Mark Woodward
- The George Institute for Global Health, UNSW, Sydney, New South Wales, Australia
- The George Institute for Global Health, School of Public Health, Imperial College London, London, UK
| | - Robyn Norton
- The George Institute for Global Health, UNSW, Sydney, New South Wales, Australia
- The George Institute for Global Health, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
6
|
Bakierzynska M, Cullinane MC, Redmond HP, Corrigan M. Prophylactic aspirin intake and breast cancer risk; A systematic review and meta-analysis of observational cohort studies. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:106940. [PMID: 37321932 DOI: 10.1016/j.ejso.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Breast Cancer (BC) is the most common cancer amongst women. The chemo-preventative effects of aspirin on breast cancer have been demonstrated in several longitudinal studies however previous meta-analysis have shown inconsistent results. This study aimed to assess the relationship between aspirin use and BC risk, and to determine if there is a dose-response relationship between aspirin and BC risk. Studies incorporating BC risk with aspirin use published within the last twenty years were included. The study report is based on the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and Meta-Analysis of Observational Studies in Epidemiology. Twenty-eight cohort studies that reported BC incidence during a follow up of 4.4-32 years were included. Compared to non-users, aspirin users had a reduced risk of BC (HR = 0.91, c.i 0.81-0.97, p = 0.002). There was no obvious association between BC risk reduction and aspirin dose (HR = 0.94, c.i 0.85-1.04) or duration (HR = 0.86, c.i 0.71-1.03). Frequency, however, was associated with a reduced risk of BC (HR = 0.90, c.i 0.82-0.98). A risk reduction was observed in oestrogen receptor (ER) positive tumours (HR = 0.90, c.i 0.86-0.96, p = 0.0004) while no relationship was observed with ER negative tumours (HR = 0.94, c.i 0.85-1.05). This meta-analysis found an association between aspirin intake and BC risk reduction. A more favourable outcome was noted with ingestion of greater than 6 tablets of aspirin per week. Aspirin had a significant risk reduction in patients with ER positive tumours compared to ER negative BC.
Collapse
Affiliation(s)
| | | | - Henry Paul Redmond
- Department of Surgery, Cork University Hospital, University College Cork, Cork, Ireland
| | - Mark Corrigan
- Department of Surgery, Cork University Hospital, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Terry MB, Colditz GA. Epidemiology and Risk Factors for Breast Cancer: 21st Century Advances, Gaps to Address through Interdisciplinary Science. Cold Spring Harb Perspect Med 2023; 13:a041317. [PMID: 36781224 PMCID: PMC10513162 DOI: 10.1101/cshperspect.a041317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Research methods to study risk factors and prevention of breast cancer have evolved rapidly. We focus on advances from epidemiologic studies reported over the past two decades addressing scientific discoveries, as well as their clinical and public health translation for breast cancer risk reduction. In addition to reviewing methodology advances such as widespread assessment of mammographic density and Mendelian randomization, we summarize the recent evidence with a focus on the timing of exposure and windows of susceptibility. We summarize the implications of the new evidence for application in risk stratification models and clinical translation to focus prevention-maximizing benefits and minimizing harm. We conclude our review identifying research gaps. These include: pathways for the inverse association of vegetable intake and estrogen receptor (ER)-ve tumors, prepubertal and adolescent diet and risk, early life adiposity reducing lifelong risk, and gaps from changes in habits (e.g., vaping, binge drinking), and environmental exposures.
Collapse
Affiliation(s)
- Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, Chronic Disease Unit Leader, Department of Epidemiology, Herbert Irving Comprehensive Cancer Center, Associate Director, New York, New York 10032, USA
| | - Graham A Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine and Alvin J. Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital in St Louis, St. Louis, Missouri 63110, USA
| |
Collapse
|
8
|
Torres W, Pérez JL, Díaz MP, D’Marco L, Checa-Ros A, Carrasquero R, Angarita L, Gómez Y, Chacín M, Ramírez P, Villasmil N, Durán-Agüero S, Cano C, Bermúdez V. The Role of Specialized Pro-Resolving Lipid Mediators in Inflammation-Induced Carcinogenesis. Int J Mol Sci 2023; 24:12623. [PMID: 37628804 PMCID: PMC10454572 DOI: 10.3390/ijms241612623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a process involving cell mutation, increased proliferation, invasion, and metastasis. Over the years, this condition has represented one of the most concerning health problems worldwide due to its significant morbidity and mortality. At present, the incidence of cancer continues to grow exponentially. Thus, it is imperative to open new avenues in cancer research to understand the molecular changes driving DNA transformation, cell-to-cell interaction derangements, and immune system surveillance decay. In this regard, evidence supports the relationship between chronic inflammation and cancer. In light of this, a group of bioactive lipids derived from polyunsaturated fatty acids (PUFAs) may have a position as novel anti-inflammatory molecules known as the specialized pro-resolving mediators (SPMs), a group of pro-resolutive inflammation agents that could improve the anti-tumor immunity. These molecules have the potential role of chemopreventive and therapeutic agents for various cancer types, and their effects have been documented in the scientific literature. Thus, this review objective centers around understanding the effect of SPMs on carcinogenesis and their potential therapeutic effect.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - José Luis Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Luis D’Marco
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Samuel Durán-Agüero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Los Leones 8420524, Chile
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| |
Collapse
|
9
|
Zhou H, Yun X, Shu Y, Xu K. Aspirin increases the efficacy of gemcitabine in pancreatic cancer by modulating the PI3K/AKT/mTOR signaling pathway and reversing epithelial‑mesenchymal transition. Oncol Lett 2023; 25:101. [PMID: 36817049 PMCID: PMC9932045 DOI: 10.3892/ol.2023.13687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/15/2022] [Indexed: 02/04/2023] Open
Abstract
Gemcitabine is regarded as a standard medication for patients with pancreatic cancer. The aim of the present study was to investigate the impact of aspirin (ASA) on the efficacy of gemcitabine in pancreatic cancer and the potential mechanism. The SW1990 and BxPC-3 human pancreatic cell lines were treated with 2 mmol/l ASA and/or 1 mg/l gemcitabine. The effects of the treatments were tested on the viability, migration and invasion of the cells using MTT, wound healing and Transwell invasion assays. In addition, cell apoptosis was evaluated via flow cytometry with Annexin V-FITC/PI and the western blotting of Bax and Bcl-2. The expression of epithelial-mesenchymal transition (EMT)-associated proteins and activation of the PI3K/AKT/mTOR pathway were also assessed using western blotting. The results reveal that ASA increased the efficacy of gemcitabine in reducing the proliferation, migration and invasion of pancreatic cancer cells and increasing their apoptosis. These effects are associated with inhibition of the PI3K/AKT/mTOR pathway and the reversal of EMT. Thus, the combined use of ASA and gemcitabine is suggested to be a potential therapeutic strategy for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hanyu Zhou
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China,Department of Oncology, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China,Department of Oncology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215001, P.R. China,Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Xiao Yun
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China,Department of Oncology, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China,Department of Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China,Dr Yongqian Shu, Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou, Nanjing, Jiangsu 210029, P.R. China, E-mail:
| | - Kequn Xu
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China,Correspondence to: Dr Kequn Xu, Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Lane, Tianning, Changzhou, Jiangsu 213003, P.R. China, E-mail:
| |
Collapse
|
10
|
Novel Non-Cyclooxygenase Inhibitory Derivative of Sulindac Inhibits Breast Cancer Cell Growth In Vitro and Reduces Mammary Tumorigenesis in Rats. Cancers (Basel) 2023; 15:cancers15030646. [PMID: 36765604 PMCID: PMC9913705 DOI: 10.3390/cancers15030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The nonsteroidal anti-inflammatory drug (NSAID) sulindac demonstrates attractive anticancer activity, but the toxicity resulting from cyclooxygenase (COX) inhibition and the suppression of physiologically important prostaglandins precludes its long-term, high dose use in the clinic for cancer prevention or treatment. While inflammation is a known tumorigenic driver, evidence suggests that sulindac's antineoplastic activity is partially or fully independent of its COX inhibitory activity. One COX-independent target proposed for sulindac is cyclic guanosine monophosphate phosphodiesterase (cGMP PDE) isozymes. Sulindac metabolites, i.e., sulfide and sulfone, inhibit cGMP PDE enzymatic activity at concentrations comparable with those associated with cancer cell growth inhibitory activity. Additionally, the cGMP PDE isozymes PDE5 and PDE10 are overexpressed during the early stages of carcinogenesis and appear essential for cancer cell proliferation and survival based on gene silencing experiments. Here, we describe a novel amide derivative of sulindac, sulindac sulfide amide (SSA), which was rationally designed to eliminate COX-inhibitory activity while enhancing cGMP PDE inhibitory activity. SSA was 68-fold and 10-fold less potent than sulindac sulfide (SS) in inhibiting COX-1 and COX-2, respectively, but 10-fold more potent in inhibiting growth and inducing apoptosis in breast cancer cells. The pro-apoptotic activity of SSA was associated with inhibition of cGMP PDE activity, elevation of intracellular cGMP levels, and activation of cGMP-dependent protein kinase (PKG) signaling, as well as the inhibition of β-catenin/Tcf transcriptional activity. SSA displayed promising in vivo anticancer activity, resulting in a 57% reduction in the incidence and a 62% reduction in the multiplicity of tumors in the N-methyl-N-nitrosourea (MNU)-induced model of breast carcinogenesis. These findings provide strong evidence for cGMP/PKG signaling as a target for breast cancer prevention or treatment and the COX-independent anticancer properties of sulindac. Furthermore, this study validates the approach of optimizing off-target effects by reducing the COX-inhibitory activity of sulindac for future targeted drug discovery efforts to enhance both safety and efficacy.
Collapse
|
11
|
Salkın H, Basaran KE. Effects of non-steroidal anti-inflammatory drug (ibuprofen) in low and high dose on stemness and biological characteristics of human dental pulp-derived mesenchymal stem cells. Connect Tissue Res 2023; 64:14-25. [PMID: 35647871 DOI: 10.1080/03008207.2022.2083613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The effect of ibuprofen, an NSAID, on biological characteristics such as proliferation, viability, DNA damage and cell cycle in dental pulp derived stem cells (DPSCs) can be important for regenerative medicine. Our aim is to investigate how low and high doses of ibuprofen affect stem cell characteristics in DPSCs. MATERIALS AND METHODS DPSCs were isolated from human teeth and characterized by flow cytometry and differentiation tests. Low dose (0.1 mmol/L) and high dose (3 mmol/L) ibuprofen were administered to DPSCs. Surface markers between groups were analyzed by immunofluorescence staining. Membrane depolarization, DNA damage, viability and cell cycle analysis were performed between groups using biological activity test kits. Cellular proliferation was measured by the MTT and cell count kit. Statistical analyzes were performed using GraphPad Prism software. RESULTS High dose ibuprofen significantly increased CD44 and CD73 expression in DPSCs. High-dose ibuprofen significantly reduced mitochondrial membrane depolarization in DPSCs. It was determined that DNA damage in DPSCs decreased significantly with high dose ibuprofen. Parallel to this, cell viability increased significantly in the ibuprofen applied groups. High-dose ibuprofen was found to increase mitotic activity in DPSCs. Proliferation in DPSCs increased in parallel with the increase in mitosis stage because of high-dose ibuprofen administration compared to the control and low-dose ibuprofen groups. Our proliferation findings appeared to support cell cycle analyses. CONCLUSION High dose ibuprofen improved the immunophenotypes and biological activities of DPSCs. The combination of ibuprofen in the use of DPSCs in regenerative medicine can make stem cell therapy more effective.
Collapse
Affiliation(s)
- Hasan Salkın
- Vocational School, Department of Medical Services and Techniques, Program of Pathology Laboratory Techniques, Beykent University, Istanbul, Turkey
| | - Kemal Erdem Basaran
- Faculty of Medicine, Department of Physiology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
12
|
Ramos-Inza S, Encío I, Raza A, Sharma AK, Sanmartín C, Plano D. Design, synthesis and anticancer evaluation of novel Se-NSAID hybrid molecules: Identification of a Se-indomethacin analog as a potential therapeutic for breast cancer. Eur J Med Chem 2022; 244:114839. [DOI: 10.1016/j.ejmech.2022.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022]
|
13
|
Kuźmycz O, Kowalczyk A, Stączek P. Biological Activity of fac-[Re(CO) 3(phen)(aspirin)], fac-[Re(CO) 3(phen)(indomethacin)] and Their Original Counterparts against Ishikawa and HEC-1A Endometrial Cancer Cells. Int J Mol Sci 2022; 23:ijms231911568. [PMID: 36232870 PMCID: PMC9569891 DOI: 10.3390/ijms231911568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are inhibitors of cyclooxygenase enzyme (COX) and were found to have positive effects in reducing the risk of developing gynecological cancers. However, long-term administration of NSAIDs carries the risk of various side effects, including those in the digestive and circulatory systems. Therefore, there is a constant need to develop new NSAID derivatives. In this work, we investigated rhenium NSAIDs, comparing their effects on endometrial cancer cells with original NSAIDs, demonstrating the high activity of aspirin and indomethacin derivatives. The cytotoxic activity of rhenium derivatives against the Ishikawa and HEC-1A cancer cell lines was higher than that of the original NSAIDs. The IC50 after 24-h incubation of Ishikawa and HEC-1A were 188.06 µM and 394.06 µM for rhenium aspirin and 228.6 µM and 1459.3 µM for rhenium indomethacin, respectively. At the same time, IC50 of aspirin and indomethacin were 10,024.42 µM and 3295.3 µM for Ishikawa, and 27,255.8 µM and 5489.3 µM for HEC-1A, respectively. Moreover, these derivatives were found to inhibit the proliferation of both cell lines in a time- and state-dependent manner. The Ishikawa cell proliferation was strongly inhibited by rhenium aspirin and rhenium indomethacin after 72-h incubation (*** = p < 0.001), while the HEC-1A proliferation was inhibited by the same agents already after 24-h incubation (*** = p < 0.001). Furthermore, the ROS level in the mitochondria of the tested cells generated in the presence of rhenium derivatives was higher than the original NSAIDs. That was associated with rhenium indomethacin exclusively, which had a significant effect (*** = p < 0.001) on both Ishikawa and HEC-1A cancer cells. Rhenium aspirin had a significant effect (*** = p < 0.001) on the mitochondrial ROS level of Ishikawa cells only. Overall, the research revealed a high potential of the rhenium derivatives of aspirin and indomethacin against endometrial cancer cells compared with the original NSAIDs.
Collapse
|
14
|
Gadi V, Shetty SR. Potential of Anti-inflammatory Molecules in the Chemoprevention of Breast Cancer. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:60-76. [PMID: 36043708 DOI: 10.2174/2772270816666220829090716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/20/2023]
Abstract
Breast cancer is a global issue, affecting greater than 1 million women per annum. Over the past two decades, there have been numerous clinical trials involving the use of various pharmacological substances as chemopreventive agents for breast cancer. Various pre-clinical as well as clinical studies have established numerous anti-inflammatory molecules, including nonsteroidal anti-inflammatory drugs (NSAIDs) and dietary phytochemicals as promising agents for chemoprevention of several cancers, including breast cancer. The overexpression of COX-2 has been detected in approximately 40% of human breast cancer cases and pre-invasive ductal carcinoma in-situ lesions, associated with aggressive elements of breast cancer such as large size of the tumour, ER/PR negative and HER-2 overexpression, among others. Anti-inflammatory molecules inhibit COX, thereby inhibiting the formation of prostaglandins and inhibiting nuclear factor-κBmediated signals (NF-kB). Another probable explanation entails inflammation-induced degranulation, with the production of angiogenesis-regulating factors, such as vascular endothelial growth factor, which can be possibly regulated by anti-inflammatory molecules. Apart from NSAIDS, many dietary phytochemicals have the ability to decrease, delay, or stop the progression and/or incidence of breast cancer by their antioxidant action, regulating inflammatory and proliferative cell signalling pathways as well as inducing apoptosis. The rapid progress in chemoprevention research has also established innovative strategies that can be implemented to prevent breast cancer. This article gives a comprehensive overview of the recent advancements in using antiinflammatory molecules in the chemoprevention of breast cancer along with their mechanism of action, supported by latest preclinical and clinical data. The merits of anti-inflammatory chemopreventive agents in the prevention of cardiotoxicity have been described. We have also highlighted the ongoing research and advancements in improving the efficacy of using antiinflammatory molecules as chemopreventive agents.
Collapse
Affiliation(s)
- Vaishnavi Gadi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMS Narsee Monjee Institute of Management Studies, Mumbai-56, Maharashtra, India
| | - Saritha Rakesh Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMS Narsee Monjee Institute of Management Studies, Mumbai-56, Maharashtra, India
| |
Collapse
|
15
|
Adherence to the 2020 American Cancer Society Guideline for Cancer Prevention and risk of breast cancer for women at increased familial and genetic risk in the Breast Cancer Family Registry: an evaluation of the weight, physical activity, and alcohol consumption recommendations. Breast Cancer Res Treat 2022; 194:673-682. [PMID: 35780210 DOI: 10.1007/s10549-022-06656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE The American Cancer Society (ACS) published an updated Guideline for Cancer Prevention (ACS Guideline) in 2020. Research suggests that adherence to the 2012 ACS Guideline might lower breast cancer risk, but there is limited evidence that this applies to women at increased familial and genetic risk of breast cancer. METHODS Using the Breast Cancer Family Registry (BCFR), a cohort enriched for increased familial and genetic risk of breast cancer, we examined adherence to three 2020 ACS Guideline recommendations (weight management (body mass index), physical activity, and alcohol consumption) with breast cancer risk in 9615 women. We used Cox proportional hazard regression modeling to calculate hazard ratios (HRs) and 95% confidence intervals (CI) overall and stratified by BRCA1 and BRCA2 pathogenic variant status, family history of breast cancer, menopausal status, and estrogen receptor-positive (ER +) breast cancer. RESULTS We observed 618 incident invasive or in situ breast cancers over a median 12.9 years. Compared with being adherent to none (n = 55 cancers), being adherent to any ACS recommendation (n = 563 cancers) was associated with a 27% lower breast cancer risk (HR = 0.73, 95% CI: 0.55-0.97). This was evident for women with a first-degree family history of breast cancer (HR = 0.68, 95% CI: 0.50-0.93), women without BRCA1 or BRCA2 pathogenic variants (HR = 0.71, 95% CI: 0.53-0.95), postmenopausal women (HR = 0.63, 95% CI: 0.44-0.89), and for risk of ER+ breast cancer (HR = 0.63, 95% CI: 0.40-0.98). DISCUSSION Adherence to the 2020 ACS Guideline recommendations for BMI, physical activity, and alcohol consumption could reduce breast cancer risk for postmenopausal women and women at increased familial risk.
Collapse
|
16
|
Roszik J, Lee JJ, Wu YH, Liu X, Kawakami M, Kurie JM, Belouali A, Boca SM, Gupta S, Beckman RA, Madhavan S, Dmitrovsky E. Real-World Studies Link Nonsteroidal Anti-inflammatory Drug Use to Improved Overall Lung Cancer Survival. CANCER RESEARCH COMMUNICATIONS 2022; 2:590-601. [PMID: 35832288 PMCID: PMC9273107 DOI: 10.1158/2767-9764.crc-22-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/26/2023]
Abstract
Inflammation is a cancer hallmark. Nonsteroidal anti-inflammatory drugs (NSAIDs) improve overall survival (OS) in certain cancers. Real-world studies explored here if NSAIDs improve non-small cell lung cancer (NSCLC) OS. Analyses independently interrogated clinical databases from The University of Texas MD Anderson Cancer Center (MDACC cohort, 1987 to 2015; 33,162 NSCLCs and 3,033 NSAID users) and Georgetown-MedStar health system (Georgetown cohort, 2000 to 2019; 4,497 NSCLCs and 1,993 NSAID users). Structured and unstructured clinical data were extracted from electronic health records (EHRs) using natural language processing (NLP). Associations were made between NSAID use and NSCLC prognostic features (tobacco use, gender, race, and body mass index, BMI). NSAIDs were statistically-significantly (P < 0.0001) associated with increased NSCLC survival (5-year OS 29.7% for NSAID users versus 13.1% for non-users) in the MDACC cohort. NSAID users gained 11.6 months over nonusers in 5-year restricted mean survival time. Stratified analysis by stage, histopathology and multicovariable assessment substantiated benefits. NSAID users were pooled independent of NSAID type and by NSAID type. Landmark analysis excluded immortal time bias. Survival improvements (P < 0.0001) were confirmed in the Georgetown cohort. Thus, real-world NSAID usage was independently associated with increased NSCLC survival in the MDACC and Georgetown cohorts. Findings were confirmed by landmark analyses and NSAID type. The OS benefits persisted despite tobacco use and did not depend on gender, race, or BMI (MDACC cohort, P < 0.0001). These real-world findings could guide future NSAID lung cancer randomized trials.
Collapse
Affiliation(s)
- Jason Roszik
- Departments of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J. Jack Lee
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yi-Hung Wu
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xi Liu
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Masanori Kawakami
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jonathan M. Kurie
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anas Belouali
- Georgetown Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, District of Columbia
| | - Simina M. Boca
- Georgetown Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, District of Columbia
- AstraZeneca, Gaithersburg, Maryland
| | - Samir Gupta
- Georgetown Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, District of Columbia
| | - Robert A. Beckman
- Georgetown Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, District of Columbia
| | - Subha Madhavan
- Georgetown Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, District of Columbia
- AstraZeneca, Gaithersburg, Maryland
| | - Ethan Dmitrovsky
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
- Cancer Biology The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
17
|
Acheampong T, Lee Argov EJ, Terry MB, Rodriguez CB, Agovino M, Wei Y, Athilat S, Tehranifar P. Current regular aspirin use and mammographic breast density: a cross-sectional analysis considering concurrent statin and metformin use. Cancer Causes Control 2022; 33:363-371. [PMID: 35022893 DOI: 10.1007/s10552-021-01530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE The nonsteroidal anti-inflammatory drug aspirin is an agent of interest for breast cancer prevention. However, it is unclear if aspirin affects mammographic breast density (MBD), a marker of elevated breast cancer risk, particularly in the context of concurrent use of medications indicated for common cardiometabolic conditions, which may also be associated with MBD. METHODS We used data from the New York Mammographic Density Study for 770 women age 40-60 years old with no history of breast cancer. We evaluated the association between current regular aspirin use and MBD, using linear regression for continuous measures of absolute and percent dense areas and absolute non-dense area, adjusted for body mass index (BMI), sociodemographic and reproductive factors, and use of statins and metformin. We assessed effect modification by BMI and reproductive factors. RESULTS After adjustment for co-medication, current regular aspirin use was only positively associated with non-dense area (β = 18.1, 95% CI: 6.7, 29.5). Effect modification by BMI and parity showed current aspirin use to only be associated with larger non-dense area among women with a BMI ≥ 30 (β = 28.2, 95% CI: 10.8, 45.7), and with lower percent density among parous women (β = -3.3, 95% CI: -6.4, -0.3). CONCLUSIONS Independent of co-medication use, current regular aspirin users had greater non-dense area with stronger estimates for women with higher BMI. We found limited support for an association between current aspirin use and mammographically dense breast tissue among parous women.
Collapse
Affiliation(s)
- Teofilia Acheampong
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th street, New York, NY, 10032, USA
| | - Erica J Lee Argov
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th street, New York, NY, 10032, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th street, New York, NY, 10032, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY, 10032, USA
| | - Carmen B Rodriguez
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th street, New York, NY, 10032, USA
| | - Mariangela Agovino
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th street, New York, NY, 10032, USA
| | - Ying Wei
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th street, New York, NY, 10032, USA.,Department of Biostatistics, Mailman School of Public Health, Columbia University, 722 West 168th street, New York, NY, 10032, USA
| | - Shweta Athilat
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th street, New York, NY, 10032, USA
| | - Parisa Tehranifar
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th street, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
18
|
Thompson PA, Huang C, Yang J, Wertheim BC, Roe D, Zhang X, Ding J, Chalasani P, Preece C, Martinez J, Chow HHS, Stopeck AT. Sulindac, a Nonselective NSAID, Reduces Breast Density in Postmenopausal Women with Breast Cancer Treated with Aromatase Inhibitors. Clin Cancer Res 2021; 27:5660-5668. [PMID: 34112707 DOI: 10.1158/1078-0432.ccr-21-0732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the effect of sulindac, a nonselective anti-inflammatory drug (NSAID), for activity to reduce breast density (BD), a risk factor for breast cancer. EXPERIMENTAL DESIGN An open-label phase II study was conducted to test the effect of 12 months' daily sulindac at 150 mg twice daily on change in percent BD in postmenopausal hormone receptor-positive breast cancer patients on aromatase inhibitor (AI) therapy. Change in percent BD in the contralateral, unaffected breast was measured by noncontrast magnetic resonance imaging (MRI) and reported as change in MRI percent BD (MRPD). A nonrandomized patient population on AI therapy (observation group) with comparable baseline BD was also followed for 12 months. Changes in tissue collagen after 6 months of sulindac treatment were explored using second-harmonic generated microscopy in a subset of women in the sulindac group who agreed to repeat breast biopsy. RESULTS In 43 women who completed 1 year of sulindac (86% of those accrued), relative MRPD significantly decreased by 9.8% [95% confidence interval (CI), -14.6 to -4.7] at 12 months, an absolute decrease of -1.4% (95% CI, -2.5 to -0.3). A significant decrease in mean breast tissue collagen fiber straightness (P = 0.032), an investigational biomarker of tissue inflammation, was also observed. MRPD (relative or absolute) did not change in the AI-only observation group (N = 40). CONCLUSIONS This is the first study to indicate that the NSAID sulindac may reduce BD. Additional studies are needed to verify these findings and determine if prostaglandin E2 inhibition by NSAIDs is important for BD or collagen modulation.
Collapse
Affiliation(s)
- Patricia A Thompson
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York. .,Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Chuan Huang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Radiology, Stony Brook University, Stony Brook, New York.,Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Jie Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | | | - Denise Roe
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona
| | - Xiaoyue Zhang
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | - Jie Ding
- Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Pavani Chalasani
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Medicine, University of Arizona, Tucson, Arizona
| | - Christina Preece
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Jessica Martinez
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | | | - Alison T Stopeck
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
19
|
Brox R, Hackstein H. Physiologically relevant aspirin concentrations trigger immunostimulatory cytokine production by human leukocytes. PLoS One 2021; 16:e0254606. [PMID: 34428217 PMCID: PMC8384208 DOI: 10.1371/journal.pone.0254606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
Acetylsalicylic acid is a globally used non-steroidal anti-inflammatory drug (NSAID) with diverse pharmacological properties, although its mechanism of immune regulation during inflammation (especially at in vivo relevant doses) remains largely speculative. Given the increase in clinical perspective of Acetylsalicylic acid in various diseases and cancer prevention, this study aimed to investigate the immunomodulatory role of physiological Acetylsalicylic acid concentrations (0.005, 0.02 and 0.2 mg/ml) in a human whole blood of infection-induced inflammation. We describe a simple, highly reliable whole blood assay using an array of toll-like receptor (TLR) ligands 1–9 in order to systematically explore the immunomodulatory activity of Acetylsalicylic acid plasma concentrations in physiologically relevant conditions. Release of inflammatory cytokines and production of prostaglandin E2 (PGE2) were determined directly in plasma supernatant. Experiments demonstrate for the first time that plasma concentrations of Acetylsalicylic acid significantly increased TLR ligand-triggered IL-1β, IL-10, and IL-6 production in a dose-dependent manner. In contrast, indomethacin did not exhibit this capacity, whereas cyclooxygenase (COX)-2 selective NSAID, celecoxib, induced a similar pattern like Acetylsalicylic acid, suggesting a possible relevance of COX-2. Accordingly, we found that exogenous addition of COX downstream product, PGE2, attenuates the TLR ligand-mediated cytokine secretion by augmenting production of anti-inflammatory cytokines and inhibiting release of pro-inflammatory cytokines. Low PGE2 levels were at least involved in the enhanced IL-1β production by Acetylsalicylic acid.
Collapse
Affiliation(s)
- Regine Brox
- Department of Transfusion Medicine and Hemostaseology, University Hospital, Erlangen, Germany
- * E-mail:
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, University Hospital, Erlangen, Germany
| |
Collapse
|
20
|
Morein D, Rubinstein-Achiasaf L, Brayer H, Dorot O, Pichinuk E, Ben-Yaakov H, Meshel T, Pasmanik-Chor M, Ben-Baruch A. Continuous Inflammatory Stimulation Leads via Metabolic Plasticity to a Prometastatic Phenotype in Triple-Negative Breast Cancer Cells. Cells 2021; 10:cells10061356. [PMID: 34072893 PMCID: PMC8229065 DOI: 10.3390/cells10061356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation promotes cancer progression by affecting the tumor cells and their microenvironment. Here, we demonstrate that a continuous stimulation (~6 weeks) of triple-negative breast tumor cells (TNBC) by the proinflammatory cytokines tumor necrosis factor α (TNFα) + interleukin 1β (IL-1β) changed the expression of hundreds of genes, skewing the cells towards a proinflammatory phenotype. While not affecting stemness, the continuous TNFα + IL-1β stimulation has increased tumor cell dispersion and has induced a hybrid metabolic phenotype in TNBC cells; this phenotype was indicated by a transcription-independent elevation in glycolytic activity and by increased mitochondrial respiratory potential (OXPHOS) of TNBC cells, accompanied by elevated transcription of mitochondria-encoded OXPHOS genes and of active mitochondria area. The continuous TNFα + IL-1β stimulation has promoted in a glycolysis-dependent manner the activation of p65 (NF-κB), and the transcription and protein expression of the prometastatic and proinflammatory mediators sICAM-1, CCL2, CXCL8 and CXCL1. Moreover, when TNBC cells were stimulated continuously by TNFα + IL-1β in the presence of a glycolysis inhibitor, their conditioned media had reduced ability to recruit monocytes and neutrophils in vivo. Such inflammation-induced metabolic plasticity, which promotes prometastatic cascades in TNBC, may have important clinical implications in treatment of TNBC patients.
Collapse
Affiliation(s)
- Dina Morein
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Linor Rubinstein-Achiasaf
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Hadar Brayer
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Orly Dorot
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel; (O.D.); (E.P.)
| | - Edward Pichinuk
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel; (O.D.); (E.P.)
| | - Hagar Ben-Yaakov
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Tsipi Meshel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Adit Ben-Baruch
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
- Correspondence: ; Tel.: +972-3-6405491; Fax: +972-3-6422046
| |
Collapse
|
21
|
Zhang Z, Ji J, Liu H. Drug Repurposing in Oncology: Current Evidence and Future Direction. Curr Med Chem 2021; 28:2175-2194. [PMID: 33109032 DOI: 10.2174/0929867327999200820124111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug repurposing, the application of known drugs and compounds with a primary non-oncology purpose, might be an attractive strategy to offer more effective treatment options to cancer patients at a low cost and reduced time. METHODS This review described a total of 10 kinds of non-oncological drugs from more than 100 mechanical studies as well as evidence from population-based studies. The future direction of repurposed drug screening is discussed by using patient-derived tumor organoids. RESULTS Many old drugs showed previously unknown effects or off-target effects and can be intelligently applied for cancer chemoprevention and therapy. The identification of repurposed drugs needs to combine evidence from mechanical studies and population-based studies. Due to the heterogeneity of cancer, patient-derived tumor organoids can be used to screen the non-oncological drugs in vitro. CONCLUSION These identified old drugs could be repurposed in oncology and might be added as adjuvants and finally benefit patients with cancers.
Collapse
Affiliation(s)
- Zhenzhan Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Harikrishnan A, Khanna S, Veena V. Design of New Improved Curcumin Derivatives to Multi-targets of Cancer and Inflammation. Curr Drug Targets 2021; 22:573-589. [PMID: 32753008 DOI: 10.2174/1389450121666200804113745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a major active principle of Curcuma longa. There are more than 1700 citations in the Medline, reflecting various biological effects of curcumin. Most of these biological activities are associated with the antioxidant, anti-inflammatory and antitumor activity of the molecule. Several reports suggest various targets of natural curcumin that include growth factors, growth factor receptor, cytokines, enzymes and gene regulators of apoptosis. This review focuses on the improved curcumin derivatives that target the cancer and inflammation. METHODOLOGY In this present review, we explored the anticancer drugs with curcumin-based drugs under pre-clinical and clinical studies with critical examination. Based on the strong scientific reports of patentable and non-patented literature survey, we have investigated the mode of the interactions of curcumin-based molecules with the target molecules. RESULTS Advanced studies have added new dimensions of the molecular response of cancer cells to curcumin at the genomic level. However, poor bioavailability of the molecule seems to be the major limitation of the curcumin. Several researchers have been involved to improve the curcumin derivatives to overcome this limitation. Sufficient data of clinical trials to various cancers that include multiple myeloma, pancreatic cancer and colon cancer, have also been discussed. CONCLUSION The detailed analysis of the structure-activity relationship (SAR) and common synthesis of curcumin-based derivatives have been discussed in the review. Utilising the predictions of in silico coupled with validation reports of in vitro and in vivo studies have concluded many targets for curcumin. Among them, cancer-related inflammation genes regulating curcumin-based molecules are a very promising target to overcome hurdles in the multimodality therapy of cancer.
Collapse
Affiliation(s)
- A Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) campus, Paiyanoor, Chennai-603104, Tamil Nadu, India
| | - Sunali Khanna
- Nair Hospital Dental College, Municipal Corporation of Greater Mumbai, Mumbai, 400 008, India
| | - V Veena
- Department of Biotechnology, School of Applied Sciences, REVA University, Rukmini knowledge park, Kattigenahalli, Yelahanka, Bengaluru - 5600 064. Karnataka State, India
| |
Collapse
|
23
|
Upadhyay A, Amanullah A, Joshi V, Dhiman R, Prajapati VK, Poluri KM, Mishra A. Ibuprofen-based advanced therapeutics: breaking the inflammatory link in cancer, neurodegeneration, and diseases. Drug Metab Rev 2021; 53:100-121. [PMID: 33820460 DOI: 10.1080/03602532.2021.1903488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ibuprofen is a classical nonsteroidal anti-inflammatory drug (NSAID) highly prescribed to reduce acute pain and inflammation under an array of conditions, including rheumatoid arthritis, osteoarthritis, dysmenorrhea, and gout. Ibuprofen acts as a potential inhibitor for cyclooxygenase enzymes (COX-1 and COX-2). In the past few decades, research on this small molecule has led to identifying other possible therapeutic benefits. Anti-tumorigenic and neuroprotective functions of Ibuprofen are majorly recognized in recent literature and need further consideration. Additionally, several other roles of this anti-inflammatory molecule have been discovered and subjected to experimental assessment in various diseases. However, the major challenge faced by Ibuprofen and other drugs of similar classes is their side effects, and tendency to cause gastrointestinal injury, generate cardiovascular risks, modulate hepatic and acute kidney diseases. Future research should also be conducted to deduce new methods and approaches of suppressing the unwanted toxic changes mediated by these drugs and develop new therapeutic avenues so that these small molecules continue to serve the purposes. This article primarily aims to develop a comprehensive and better understanding of Ibuprofen, its pharmacological features, therapeutic benefits, and possible but less understood medicinal properties apart from major challenges in its future application.KEY POINTSIbuprofen, an NSAID, is a classical anti-inflammatory therapeutic agent.Pro-apoptotic roles of NSAIDs have been explored in detail in the past, holding the key in anti-cancer therapies.Excessive and continuous use of NSAIDs may have several side effects and multiple organ damage.Hyperactivated Inflammation initiates multifold detrimental changes in multiple pathological conditions.Targeting inflammatory pathways hold the key to several therapeutic strategies against many diseases, including cancer, microbial infections, multiple sclerosis, and many other brain diseases.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
24
|
Persistent Inflammatory Stimulation Drives the Conversion of MSCs to Inflammatory CAFs That Promote Pro-Metastatic Characteristics in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13061472. [PMID: 33806906 PMCID: PMC8004890 DOI: 10.3390/cancers13061472] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
The pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β) are expressed simultaneously and have tumor-promoting roles in breast cancer. In parallel, mesenchymal stem cells (MSCs) undergo conversion at the tumor site to cancer-associated fibroblasts (CAFs), which are generally connected to enhanced tumor progression. Here, we determined the impact of consistent inflammatory stimulation on stromal cell plasticity. MSCs that were persistently stimulated by TNFα + IL-1β (generally 14-18 days) gained a CAF-like morphology, accompanied by prominent changes in gene expression, including in stroma/fibroblast-related genes. These CAF-like cells expressed elevated levels of vimentin and fibroblast activation protein (FAP) and demonstrated significantly increased abilities to contract collagen gels. Moreover, they gained the phenotype of inflammatory CAFs, as indicated by the reduced expression of α smooth muscle actin (αSMA), increased proliferation, and elevated expression of inflammatory genes and proteins, primarily inflammatory chemokines. These inflammatory CAFs released factors that enhanced tumor cell dispersion, scattering, and migration; the inflammatory CAF-derived factors elevated cancer cell migration by stimulating the chemokine receptors CCR2, CCR5, and CXCR1/2 and Ras-activating receptors, expressed by the cancer cells. Together, these novel findings demonstrate that chronic inflammation can induce MSC-to-CAF conversion, leading to the generation of tumor-promoting inflammatory CAFs.
Collapse
|
25
|
Miller B, Chalfant H, Thomas A, Wellberg E, Henson C, McNally MW, Grizzle WE, Jain A, McNally LR. Diabetes, Obesity, and Inflammation: Impact on Clinical and Radiographic Features of Breast Cancer. Int J Mol Sci 2021; 22:2757. [PMID: 33803201 PMCID: PMC7963150 DOI: 10.3390/ijms22052757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity, diabetes, and inflammation increase the risk of breast cancer, the most common malignancy in women. One of the mainstays of breast cancer treatment and improving outcomes is early detection through imaging-based screening. There may be a role for individualized imaging strategies for patients with certain co-morbidities. Herein, we review the literature regarding the accuracy of conventional imaging modalities in obese and diabetic women, the potential role of anti-inflammatory agents to improve detection, and the novel molecular imaging techniques that may have a role for breast cancer screening in these patients. We demonstrate that with conventional imaging modalities, increased sensitivity often comes with a loss of specificity, resulting in unnecessary biopsies and overtreatment. Obese women have body size limitations that impair image quality, and diabetes increases the risk for dense breast tis-sue. Increased density is known to obscure the diagnosis of cancer on routine screening mammography. Novel molecu-lar imaging agents with targets such as estrogen receptor, human epidermal growth factor receptor 2 (HER2), pyrimi-dine analogues, and ligand-targeted receptor probes, among others, have potential to reduce false positive results. They can also improve detection rates with increased resolution and inform therapeutic decision making. These emerg-ing imaging techniques promise to improve breast cancer diagnosis in obese patients with diabetes who have dense breasts, but more work is needed to validate their clinical application.
Collapse
Affiliation(s)
- Braden Miller
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.M.); (H.C.)
| | - Hunter Chalfant
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.M.); (H.C.)
| | - Alexandra Thomas
- Department of Internal Medicine, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC 27157, USA;
| | - Elizabeth Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73105, USA;
| | - Christina Henson
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73105, USA;
| | | | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.M.); (H.C.)
- Stephenson Cancer Center, Oklahoma City, OK 73104, USA;
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.M.); (H.C.)
- Stephenson Cancer Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
26
|
Tian J, Wang V, Wang N, Khadang B, Boudreault J, Bakdounes K, Ali S, Lebrun JJ. Identification of MFGE8 and KLK5/7 as mediators of breast tumorigenesis and resistance to COX-2 inhibition. Breast Cancer Res 2021; 23:23. [PMID: 33588911 PMCID: PMC7885389 DOI: 10.1186/s13058-021-01401-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/31/2021] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Cyclooxygenase 2 (COX-2) promotes stemness in triple negative breast cancer (TNBC), highlighting COX-2 as a promising therapeutic target in these tumors. However, to date, clinical trials using COX-2 inhibitors in breast cancer only showed variable patient responses with no clear significant clinical benefits, suggesting underlying molecular mechanisms contributing to resistance to COX-2 inhibitors. METHODS By combining in silico analysis of human breast cancer RNA-seq data with interrogation of public patient databases and their associated transcriptomic, genomic, and clinical profiles, we identified COX-2 associated genes whose expression correlate with aggressive TNBC features and resistance to COX-2 inhibitors. We then assessed their individual contributions to TNBC metastasis and resistance to COX-2 inhibitors, using CRISPR gene knockout approaches in both in vitro and in vivo preclinical models of TNBC. RESULTS We identified multiple COX-2 associated genes (TPM4, RGS2, LAMC2, SERPINB5, KLK7, MFGE8, KLK5, ID4, RBP1, SLC2A1) that regulate tumor lung colonization in TNBC. Furthermore, we found that silencing MFGE8 and KLK5/7 gene expression in TNBC cells markedly restored sensitivity to COX-2 selective inhibitor both in vitro and in vivo. CONCLUSIONS Together, our study supports the establishment and use of novel COX-2 inhibitor-based combination therapies as future strategies for TNBC treatment.
Collapse
Affiliation(s)
- Jun Tian
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Vivian Wang
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Ni Wang
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Baharak Khadang
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Julien Boudreault
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Khldoun Bakdounes
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Suhad Ali
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Jean-Jacques Lebrun
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
27
|
Inflammation, HIV, and Immune Quiescence: Leveraging on Immunomodulatory Products to Reduce HIV Susceptibility. AIDS Res Treat 2020; 2020:8672850. [PMID: 33178456 PMCID: PMC7609152 DOI: 10.1155/2020/8672850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The relationship between inflammation and HIV has been a focus of research over the last decade. In HIV-infected individuals, increased HIV-associated immune activation significantly correlated to disease progression. While genital inflammation (GI) has been shown to significantly increase the risk of HIV acquisition and transmission, immune correlates for reduced risk remain limited. In certain HIV-exposed seronegative individuals, an immune quiescent phenotype characterized reduced risk. Immune quiescence is defined by specific, targeted, highly regulated immune responses that hinder overt inflammation or immune activation. Targeted management of inflammation, therefore, is a plausible strategy to mitigate HIV risk and slow disease progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as hydroxychloroquine and aspirin have shown encouraging preliminary results in low-risk women by reducing systemic and genital immune activation. A topical NSAID, containing ibuprofen, is effective in treating vulvovaginal inflammation. Additionally, the glucocorticoids (GCs), prednisolone, and dexamethasone are used to treat HIV-associated immune activation. Collectively, these data inform on immune-modulating drugs to reduce HIV risk. However, the prolonged use of these pharmaceutical drugs is associated with adverse effects, both systemically and to a lesser extent topically. Natural products with their reduced side effects coupled with anti-inflammatory properties render them viable options. Lactic acid (LA) has immunomodulatory properties. LA regulates the genital microbiome by facilitating the growth of Lactobacillus species, while simultaneously limiting bacterial species that cause microbial dysbiosis and GI. Glycerol monolaurate, besides being anti-inflammatory, also inhibited SIV infections in rhesus macaques. The proposed pharmaceutical and natural products could be used in combination with either antiretrovirals for treatment or preexposure prophylaxis for HIV prevention. This review provides a summary on the associations between inflammation, HIV risk, and disease progression. Furthermore, we use the knowledge from immune quiescence to exploit the use of pharmaceutical and natural products as strategic interventions to manage inflammation, toward mitigating HIV infections.
Collapse
|
28
|
Abstract
BACKGROUND Many epidemiologic studies were performed to clarify the protective effect of regular aspirin use on breast cancer risks, but the results remain inconsistent. Here, we conducted an updated meta-analysis of 38 studies to quantitatively assess the association of regular aspirin use with risk of breast cancer. METHOD We performed a bibliographic database search in PubMed, Embase, Web of Science, Cochrane library, Scopus, and Google Scholar from January 1939 to December 2019. Relative risk (RR) estimates were extracted from eligible case-control and cohort studies and pooled using a random effects model. Subgroup analysis was conducted based on study design, aspirin exposure assessment, hormone receptor status, menopausal status, cancer stage as well as aspirin use duration or frequency. Furthermore, sensitivity and publication bias analyses were performed. RESULTS Thirty eight studies of 1,926,742 participants involving 97,099 breast cancer cases contributed to this meta-analysis. Compared with nonusers, the aspirin users had a reduced risk of breast cancer (RR = 0.91, 95% confidence interval [CI]: 0.87-0.95, P value of significance [Psig] < .001) with heterogeneity (P value of heterogeneity [Phet] < .001, I = 82.6%). Subgroup analysis revealed a reduced risk in case-control studies (RR = 0.83, 95% CI: 0.78-0.89, Psig < .001), in hormone receptor positive tumors (RR = 0.91, 95% CI: 0.88-0.94, Psig < .001), in situ breast tumors (RR = 0.79, 95% CI: 0.71-0.88, Psig < .001), and in postmenopausal women (RR = 0.89, 95% CI: 0.83-0.96, Psig = .002). Furthermore, participants who use aspirin for >4 times/wk (RR = 0.88, 95% CI: 0.82-0.96, Psig = .003) or for >10 years (RR = 0.94, 95% CI: 0.89-0.99, Psig = .025) appeared to benefit more from the reduction in breast cancer caused by aspirin. CONCLUSIONS Our study suggested that aspirin use might be associated with a reduced risk of breast cancer, particularly for reducing the risk of hormone receptor positive tumors or in situ breast tumors, and the risk of breast cancer in postmenopausal women.
Collapse
|
29
|
Abstract
Despite decades of laboratory, epidemiological and clinical research, breast cancer incidence continues to rise. Breast cancer remains the leading cancer-related cause of disease burden for women, affecting one in 20 globally and as many as one in eight in high-income countries. Reducing breast cancer incidence will likely require both a population-based approach of reducing exposure to modifiable risk factors and a precision-prevention approach of identifying women at increased risk and targeting them for specific interventions, such as risk-reducing medication. We already have the capacity to estimate an individual woman's breast cancer risk using validated risk assessment models, and the accuracy of these models is likely to continue to improve over time, particularly with inclusion of newer risk factors, such as polygenic risk and mammographic density. Evidence-based risk-reducing medications are cheap, widely available and recommended by professional health bodies; however, widespread implementation of these has proven challenging. The barriers to uptake of, and adherence to, current medications will need to be considered as we deepen our understanding of breast cancer initiation and begin developing and testing novel preventives.
Collapse
Affiliation(s)
- Kara L Britt
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| | - Jack Cuzick
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Kelly-Anne Phillips
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Kehm RD, McDonald JA, Fenton SE, Kavanaugh-Lynch M, Leung KA, McKenzie KE, Mandelblatt JS, Terry MB. Inflammatory Biomarkers and Breast Cancer Risk: A Systematic Review of the Evidence and Future Potential for Intervention Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155445. [PMID: 32731638 PMCID: PMC7432395 DOI: 10.3390/ijerph17155445] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Measuring systemic chronic inflammatory markers in the blood may be one way of understanding the role of inflammation in breast cancer risk, and might provide an intermediate outcome marker in prevention studies. Here, we present the results of a systematic review of prospective epidemiologic studies that examined associations between systemic inflammatory biomarkers measured in blood and breast cancer risk. From 1 January 2014 to 20 April 2020, we identified 18 unique studies (from 16 publications) that examined the association of systemic inflammatory biomarkers measured in blood with breast cancer risk using prospectively collected epidemiologic data. Only one marker, C-reactive protein, was studied extensively (measured in 13 of the 16 publications), and had some evidence of a positive association with breast cancer risk. Evidence associating other inflammatory biomarkers and more comprehensive panels of markers with the development of breast cancer is limited. Future prospective evidence from expanded panels of systemic blood inflammatory biomarkers is needed to establish strong and independent links with breast cancer risk, along with mechanistic studies to understand inflammatory pathways and demonstrate how breast tissue responds to chronic inflammation. This knowledge could ultimately support the development and evaluation of mechanistically driven interventions to reduce inflammation and prevent breast cancer.
Collapse
Affiliation(s)
- Rebecca D. Kehm
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, USA; (R.D.K.); (J.A.M.)
| | - Jasmine A. McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, USA; (R.D.K.); (J.A.M.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY 10032, USA
| | - Suzanne E. Fenton
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 111 TW Alexander Drive, Durham, NC 27709, USA;
| | - Marion Kavanaugh-Lynch
- California Breast Cancer Research Program, University of California, 300 Lakeside Drive, Oakland, CA 94612, USA; (M.K.-L.); (K.E.M.)
| | | | - Katherine E. McKenzie
- California Breast Cancer Research Program, University of California, 300 Lakeside Drive, Oakland, CA 94612, USA; (M.K.-L.); (K.E.M.)
| | - Jeanne S. Mandelblatt
- Department of Oncology, Cancer Prevention and Control Program, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Rd. NW, Washington, DC 20057, USA
- Correspondence: (J.S.M.); (M.B.T.)
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, USA; (R.D.K.); (J.A.M.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY 10032, USA
- Correspondence: (J.S.M.); (M.B.T.)
| |
Collapse
|
31
|
Chen YC, Chan CH, Lim YB, Yang SF, Yeh LT, Wang YH, Chou MC, Yeh CB. Risk of Breast Cancer in Women with Mastitis: A Retrospective Population-Based Cohort Study. ACTA ACUST UNITED AC 2020; 56:medicina56080372. [PMID: 32722165 PMCID: PMC7466309 DOI: 10.3390/medicina56080372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
Background and objectives: Breast cancer is a common cancer in women and has been the fourth leading cause of death in Taiwanese women. Risk factors for breast cancer include family history of breast cancer, genetic factors, and not breastfeeding. Several studies have reported an association between repeated inflammation at a young age, especially among lactating women, and cancer; however, the number of studies about the association of mastitis and breast cancer in nonlactating women is still limited. Therefore, the aim of this study was to determine the relationship between mastitis in women aged ≥40 years and breast cancer. Materials and Methods: This was a retrospective cohort study design. The data source was the Longitudinal Health Insurance Database 2010 (LHID 2010), comprising data collected by Taiwan’s National Health Insurance program. Cases of newly diagnosed mastitis in women aged ≥40 years (ICD-9-CM code = 611.0) were selected from the years 2010 to 2012. Women not diagnosed with mastitis were selected as the control group, and their data for the years 2009 to 2013 were obtained through the database. In addition, the non-mastitis group was matched 1:10 by age. Results: A total of 8634 participants were selected from the LHID 2010, which included 734 cases with mastitis and 7900 cases without mastitis. After adjustment for age, hypertension, hyperlipidemia, diabetes, hypothyroidism, and autoimmune diseases, the Cox proportional hazard model showed that patients with mastitis had a higher risk of breast cancer (aHR = 3.71, 95% CI = 1.9–7.02) compared with the non-mastitis group. The Kaplan–Meier curve also showed that women with mastitis had a higher risk of developing breast cancer. Conclusions: This study confirmed that women with mastitis have a higher risk of developing breast cancer. Therefore, women aged ≥40 years could reduce breast cancer risk by taking precautions to prevent mammary gland infection and mastitis.
Collapse
Affiliation(s)
- Ying-Cheng Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-B.L.); (S.-F.Y.); (L.-T.Y.)
- Department of Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chi-Ho Chan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Yu-Bing Lim
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-B.L.); (S.-F.Y.); (L.-T.Y.)
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-B.L.); (S.-F.Y.); (L.-T.Y.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Liang-Tsai Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-B.L.); (S.-F.Y.); (L.-T.Y.)
- Department of Anesthesiology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-B.L.); (S.-F.Y.); (L.-T.Y.)
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (M.-C.C.); (C.-B.Y.)
| | - Chao-Bin Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-B.L.); (S.-F.Y.); (L.-T.Y.)
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (M.-C.C.); (C.-B.Y.)
| |
Collapse
|
32
|
Ma J, Fan Z, Tang Q, Xia H, Zhang T, Bi F. Aspirin attenuates YAP and β-catenin expression by promoting β-TrCP to overcome docetaxel and vinorelbine resistance in triple-negative breast cancer. Cell Death Dis 2020; 11:530. [PMID: 32661222 PMCID: PMC7359325 DOI: 10.1038/s41419-020-2719-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/05/2023]
Abstract
The use of aspirin has been associated with reduced breast cancer risk, but it is litter known if aspirin overcomes chemoresistance in triple-negative breast cancer (TNBC). Herein, we demonstrated that changes in the expression of Yes-associated protein (YAP) and β-catenin might be a promising predictive biomarker for neoadjuvant chemotherapy sensitivity in TNBC patients. Inhibition of YAP or β-catenin enhanced the cytotoxicity of the anti-microtubule agents docetaxel and vinorelbine against drug-resistant TNBC cells as well as the sensitivity of these cells to the agents in vitro and in vivo. Interestingly, aspirin not only significantly inhibited the growth of TNBC cells, but also attenuated YAP and β-catenin expression by upregulating the E3 ubiquitin ligase β-TrCP to abolished docetaxel and vinorelbine resistance. The combination of aspirin and docetaxel or vinorelbine remarkably inhibited the growth of drug-resistant TNBC cells in vitro and in vivo. Moreover, TNBC patients with high YAP and/or β-catenin expression had a higher risk of relapse or mortality than patients with low YAP and/or β-catenin expression. Collectively, our study discovered a novel role of aspirin based on its anticancer effect, and put forward some possible mechanisms of chemoresistance in TNBC. The combined use of aspirin and anti-microtubule drugs presented several promising therapeutic approaches for TNBC treatment.
Collapse
Affiliation(s)
- Ji Ma
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Zhenhai Fan
- Key Laboratory of Cell Engineering of Guizhou, The Affiliated Hospital of Zunyi Medical College, No. 149, Dalian Road, 573003, Zunyi, Guizhou, China
| | - Qiulin Tang
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Hongwei Xia
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, 610041, Chengdu, Sichuan, China.
| | - Tao Zhang
- Department of Oncology, The General Hospital of Western Theater Command, No. 270, Tianhui Road, 610041, Chengdu, Sichuan Province, PR China.
| | - Feng Bi
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37, Guoxue Lane, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
33
|
Rogovskii V. Modulation of Inflammation-Induced Tolerance in Cancer. Front Immunol 2020; 11:1180. [PMID: 32676076 PMCID: PMC7333343 DOI: 10.3389/fimmu.2020.01180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Vladimir Rogovskii
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
34
|
Ibuprofen mediates histone modification to diminish cancer cell stemness properties via a COX2-dependent manner. Br J Cancer 2020; 123:730-741. [PMID: 32528119 PMCID: PMC7463005 DOI: 10.1038/s41416-020-0906-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background The anticancer potential of ibuprofen has created a broad interest to explore the clinical benefits of ibuprofen in cancer therapy. However, the current understanding of the molecular mechanisms involved in the anticancer potential of ibuprofen remains limited. Methods Cancer stemness assays to validate ibuprofen function in vitro and in vivo. Histone modification assays to check the effect of ibuprofen on histone acetylation/methylation, as well as the activity of HDAC and KDM6A/B. Inhibitors’ in vivo assays to evaluate therapeutic effects of various inhibitors’ combination manners. Results In our in vitro studies, we report that ibuprofen diminishes cancer cell stemness properties that include reducing the ALDH + subpopulation, side population and sphere formation in three cancer types. In our in vivo studies, we report that ibuprofen decreases tumour growth, metastasis and prolongs survival. In addition, our results showed that ibuprofen inhibits inflammation-related stemness gene expression (especially ICAM3) identified by a high-throughput siRNA platform. In regard to the underlying molecular mechanism of action, we report that ibuprofen reduces HDACs and histone demethylase (KDM6A/B) expression that mediates histone acetylation and methylation, and suppresses gene expression via a COX2-dependent way. In regard to therapeutic strategies, we report that ibuprofen combined HDAC/HDM inhibitors prevents cancer progression in vivo. Conclusions The aforementioned findings suggest a molecular model that explains how ibuprofen diminishes cancer cell stemness properties. These may provide novel targets for therapeutic strategies involving ibuprofen in the prevention of cancer progression.
Collapse
|
35
|
Translate but validate: necessary steps in improving the use and utility of cancer risk models. Cancer Causes Control 2020; 31:537-540. [DOI: 10.1007/s10552-020-01293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Terry MB. Commentary: No multiplicative GXE interactions for breast cancer risk: Have we reached a verdict or is the jury still out? Int J Epidemiol 2020; 49:231-232. [PMID: 31891385 PMCID: PMC7426023 DOI: 10.1093/ije/dyz258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2019] [Indexed: 01/14/2023] Open
Affiliation(s)
- Mary Beth Terry
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 W 168th St Room 1607, New York, NY 10032, USA
| |
Collapse
|
37
|
Zeinomar N, Knight JA, Genkinger JM, Phillips KA, Daly MB, Milne RL, Dite GS, Kehm RD, Liao Y, Southey MC, Chung WK, Giles GG, McLachlan SA, Friedlander ML, Weideman PC, Glendon G, Nesci S, Andrulis IL, Buys SS, John EM, MacInnis RJ, Hopper JL, Terry MB. Alcohol consumption, cigarette smoking, and familial breast cancer risk: findings from the Prospective Family Study Cohort (ProF-SC). Breast Cancer Res 2019; 21:128. [PMID: 31779655 PMCID: PMC6883541 DOI: 10.1186/s13058-019-1213-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Background Alcohol consumption and cigarette smoking are associated with an increased risk of breast cancer (BC), but it is unclear whether these associations vary by a woman’s familial BC risk. Methods Using the Prospective Family Study Cohort, we evaluated associations between alcohol consumption, cigarette smoking, and BC risk. We used multivariable Cox proportional hazard models to estimate hazard ratios (HR) and 95% confidence intervals (CI). We examined whether associations were modified by familial risk profile (FRP), defined as the 1-year incidence of BC predicted by Breast Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA), a pedigree-based algorithm. Results We observed 1009 incident BC cases in 17,435 women during a median follow-up of 10.4 years. We found no overall association of smoking or alcohol consumption with BC risk (current smokers compared with never smokers HR 1.02, 95% CI 0.85–1.23; consuming ≥ 7 drinks/week compared with non-regular drinkers HR 1.10, 95% CI 0.92–1.32), but we did observe differences in associations based on FRP and by estrogen receptor (ER) status. Women with lower FRP had an increased risk of ER-positive BC associated with consuming ≥ 7 drinks/week (compared to non-regular drinkers), whereas there was no association for women with higher FRP. For example, women at the 10th percentile of FRP (5-year BOADICEA = 0.15%) had an estimated HR of 1.46 (95% CI 1.07–1.99), whereas there was no association for women at the 90th percentile (5-year BOADICEA = 4.2%) (HR 1.07, 95% CI 0.80–1.44). While the associations with smoking were not modified by FRP, we observed a positive multiplicative interaction by FRP (pinteraction = 0.01) for smoking status in women who also consumed alcohol, but not in women who were non-regular drinkers. Conclusions Moderate alcohol intake was associated with increased BC risk, particularly for women with ER-positive BC, but only for those at lower predicted familial BC risk (5-year BOADICEA < 1.25). For women with a high FRP (5-year BOADICEA ≥ 6.5%) who also consumed alcohol, being a current smoker was associated with increased BC risk.
Collapse
Affiliation(s)
- Nur Zeinomar
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168th Street, Room 1611, New York, NY, 10032, USA
| | - Julia A Knight
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jeanine M Genkinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168th Street, Room 1611, New York, NY, 10032, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Kelly-Anne Phillips
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Gillian S Dite
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca D Kehm
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168th Street, Room 1611, New York, NY, 10032, USA
| | - Yuyan Liao
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168th Street, Room 1611, New York, NY, 10032, USA
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Wendy K Chung
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.,Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Sue-Anne McLachlan
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Department of Medical Oncology, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Michael L Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,Department of Medical Oncology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Prue C Weideman
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Stephanie Nesci
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Departments of Molecular Genetics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Saundra S Buys
- Department of Medicine and Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Esther M John
- Department of Medicine and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert J MacInnis
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168th Street, Room 1611, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
38
|
Hybiak J, Broniarek I, Kiryczyński G, Los LD, Rosik J, Machaj F, Sławiński H, Jankowska K, Urasińska E. Aspirin and its pleiotropic application. Eur J Pharmacol 2019; 866:172762. [PMID: 31669590 DOI: 10.1016/j.ejphar.2019.172762] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
Aspirin (acetylsalicylic acid), the oldest synthetic drug, was originally used as an anti-inflammatory medication. Being an irreversible inhibitor of COX (prostaglandin-endoperoxide synthase) enzymes that produce precursors for prostaglandins and thromboxanes, it has gradually found several other applications. Sometimes these applications are unrelated to its original purpose for example its use as an anticoagulant. Applications such as these have opened opportunities for new treatments. In this case, it has been tested in patients with cardiovascular disease to reduce the risk of myocardial infarct. Its function as an anticoagulant has also been explored in the prophylaxis and treatment of pre-eclampsia, where due to its anti-inflammatory properties, aspirin intake may be used to reduce the risk of colorectal cancer. It is important to always consider both the risks and benefits of aspirin's application. This is especially important for proposed use in the prevention and treatment of neurologic ailments like Alzheimer's disease, or in the prophylaxis of myocardial infarct. In such cases, the decision if aspirin should be applied, and at what dose may be guided by specific molecular markers. In this revived paper, the pleiotropic application of aspirin is summarized.
Collapse
Affiliation(s)
- Jolanta Hybiak
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland.
| | - Izabela Broniarek
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, Poland
| | - Gerard Kiryczyński
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Laura D Los
- Faculty of Science, University of Manitoba, Winnipeg, Canada
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Hubert Sławiński
- Wellcome Centre for Human Genetics, University of Oxford, United Kingdom
| | - Kornelia Jankowska
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Elżbieta Urasińska
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
39
|
Antiplatelet Agents for Cancer Prevention: Current Evidences and Continuing Controversies. Cancers (Basel) 2019; 11:cancers11111639. [PMID: 31653027 PMCID: PMC6895806 DOI: 10.3390/cancers11111639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Over the past two decades, aspirin has emerged as a promising chemoprotective agent to prevent colorectal cancer (CRC). In 2016, the mounting evidence supporting its chemoprotective effect, from both basic science and clinical research, led the US Preventive Services Task Force to recommend regular use of low-dose aspirin in some subgroups of patients for whom the benefits are deemed to outweigh the risks. In contrast, data on the chemoprotective effect of aspirin against other cancers are less clear and remain controversial. Most data come from secondary analyses of cardiovascular prevention trials, with only a limited number reporting cancer outcomes as a prespecified endpoint, and overall unclear findings. Moreover, the potential chemoprotective effect of aspirin against other cancers has been recently questioned with the publication of 3 long-awaited trials of aspirin in the primary prevention of cardiovascular diseases reporting no benefit of aspirin on overall cancer incidence and cancer-related mortality. Data on the chemoprotective effects of other antiplatelet agents remain scarce and inconclusive, and further research to examine their benefit are warranted. In this narrative review, we summarize current clinical evidence and continuing controversies on the potential chemoprotective properties of antiplatelet agents against cancer.
Collapse
|
40
|
Dell'Omo G, Ciana P. Nicotinamide in the prevention of breast cancer recurrences? Oncotarget 2019; 10:5495-5496. [PMID: 31565183 PMCID: PMC6756865 DOI: 10.18632/oncotarget.27173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Giulia Dell'Omo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20133, Italy
| | - Paolo Ciana
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20133, Italy
| |
Collapse
|