1
|
Oh JH, Pareja F, Elkin R, Xu K, Norton L, Deasy JO. Biological correlates associated with high-risk breast cancer patients identified using a computational method. NPJ Breast Cancer 2025; 11:8. [PMID: 39875417 PMCID: PMC11775240 DOI: 10.1038/s41523-025-00725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025] Open
Abstract
Using a novel unsupervised method to integrate multi-omic data, we previously identified a breast cancer group with a poor prognosis. In the current study, we characterize the biological features of this subgroup, defined as the high-risk group, using various data sources. Assessment of three published hypoxia signatures showed that the high-risk group exhibited higher hypoxia scores (p < 0.0001 in all three signatures), compared to the low-risk group. Our analysis of the immune cell composition using CIBERSORT and leukocyte fraction showed significant differences between the high and low-risk groups across the entire cohort, as well as within PAM50 subtypes. Within the basal subtype, the low-risk group had a statistically significantly higher spatial fraction of tumor-infiltrating lymphocytes (TILs) compared to the high-risk group (p = 0.0362). Our findings indicate that this subgroup with poor prognosis is driven by a distinct biological signature with high activation of hypoxia-related genes as well as a low number of TILs.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rena Elkin
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaiming Xu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Malhotra L, Singh A, Kaur P, Ethayathulla AS. Phenotypical mapping of TP53 unique missense mutations spectrum in human cancers. J Biomol Struct Dyn 2024:1-14. [PMID: 39639563 DOI: 10.1080/07391102.2024.2435060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 12/07/2024]
Abstract
The p53 tumor suppressor is one of the most mutated genes responsible for tumorigenesis in most human cancers. Out of 29,891 genomic mutations reported in the TP53 Database (https://tp53.isb-cgc.org/), 1,297 are identified as unique missense somatic mutations excluding frameshift, intronic, deletion, nonsense, silent, splice, and other unknown mutations. We have comprehensively analyzed all these 1,297 unique missense mutations and created a phenotypical map based on the distribution of mutations in each domain, the functional state of the protein, and their occurrence in different types of tissues and organs. Our mutation map shows that almost 118 unique missense mutations are reported in the transactivation and proline-rich domains, 1,065 in the central DNA-binding domains, and 113 in the oligomerization and regulatory domains. Based on the phenotype, these mutations are subdivided into 46 super trans, 491 functional, 315 partially functional, and 415 non-functional mutations. The prevalence of these mutations was checked in 71 different types of tissues and found that the mutant R248Q is reported in 51 types of tissues followed by R175H and R273H in 46 types. We correlated the potential impact of mutation in target gene transcription and regulation with nucleosomal DNA and RNA-Pol II complexes. We have discussed the impact of mutation at post-translational modification sites in the structure and function of p53 highlighting the potential therapeutic drug targets with tremendous clinical applications.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Alankrita Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Tjader NP, Beer AJ, Ramroop J, Tai MC, Ping J, Gandhi T, Dauch C, Neuhausen SL, Ziv E, Sotelo N, Ghanekar S, Meadows O, Paredes M, Gillespie JL, Aeilts AM, Hampel H, Zheng W, Jia G, Hu Q, Wei L, Liu S, Ambrosone CB, Palmer JR, Carpten JD, Yao S, Stevens P, Ho WK, Pan JW, Fadda P, Huo D, Teo SH, McElroy JP, Toland AE. Association of ESR1 Germline Variants with TP53 Somatic Variants in Breast Tumors in a Genome-wide Study. CANCER RESEARCH COMMUNICATIONS 2024; 4:1597-1608. [PMID: 38836758 PMCID: PMC11210444 DOI: 10.1158/2767-9764.crc-24-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. A genome-wide association study was conducted in 2,850 women of European ancestry with breast cancer using TP53 and PIK3CA mutation status (positive or negative) as well as specific functional categories [e.g., TP53 gain-of-function (GOF) and loss-of-function, PIK3CA activating] as phenotypes. Germline variants showing evidence of association were selected for validation analyses and tested in multiple independent datasets. Discovery association analyses found five variants associated with TP53 mutation status with P values <1 × 10-6 and 33 variants with P values <1 × 10-5. Forty-four variants were associated with PIK3CA mutation status with P values <1 × 10-5. In validation analyses, only variants at the ESR1 locus were associated with TP53 mutation status after multiple comparisons corrections. Combined analyses in European and Malaysian populations found ESR1 locus variants rs9383938 and rs9479090 associated with the presence of TP53 mutations overall (P values 2 × 10-11 and 4.6 × 10-10, respectively). rs9383938 also showed association with TP53 GOF mutations (P value 6.1 × 10-7). rs9479090 showed suggestive evidence (P value 0.02) for association with TP53 mutation status in African ancestry populations. No other variants were significantly associated with TP53 or PIK3CA mutation status. Larger studies are needed to confirm these findings and determine if additional variants contribute to ancestry-specific differences in mutation frequency. SIGNIFICANCE Emerging data show ancestry-specific differences in TP53 and PIK3CA mutation frequency in breast tumors suggesting that germline variants may influence somatic mutational processes. This study identified variants near ESR1 associated with TP53 mutation status and identified additional loci with suggestive association which may provide biological insight into observed differences.
Collapse
Affiliation(s)
- Nijole P. Tjader
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Abigail J. Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Johnny Ramroop
- The City College of New York, City University of New York, New York, New York
| | - Mei-Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Jie Ping
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Tanish Gandhi
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, Ohio
- The Ohio State University Medical School, Columbus, Ohio
| | - Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
- The Ohio State University Wexner Medical Center, Clinical Trials Office, Columbus, Ohio
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Nereida Sotelo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Shreya Ghanekar
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Owen Meadows
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, Ohio
| | - Monica Paredes
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, Ohio
| | | | - Amber M. Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, Ohio
| | - Heather Hampel
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Guochong Jia
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Christine B. Ambrosone
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - John D. Carpten
- City of Hope Comprehensive Cancer Center, Duarte, California
- Department of Integrative Translational Sciences, City of Hope, Duarte, California
| | - Song Yao
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Patrick Stevens
- Bioinformatics Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Jia Wern Pan
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Paolo Fadda
- Genomics Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur, Malaysia
| | - Joseph Paul McElroy
- Department of Biomedical Informatics, The Ohio State University Center for Biostatistics, Columbus, Ohio
| | - Amanda E. Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Lopez-Gonzalez L, Sanchez Cendra A, Sanchez Cendra C, Roberts Cervantes ED, Espinosa JC, Pekarek T, Fraile-Martinez O, García-Montero C, Rodriguez-Slocker AM, Jiménez-Álvarez L, Guijarro LG, Aguado-Henche S, Monserrat J, Alvarez-Mon M, Pekarek L, Ortega MA, Diaz-Pedrero R. Exploring Biomarkers in Breast Cancer: Hallmarks of Diagnosis, Treatment, and Follow-Up in Clinical Practice. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:168. [PMID: 38256428 PMCID: PMC10819101 DOI: 10.3390/medicina60010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Breast cancer is a prevalent malignancy in the present day, particularly affecting women as one of the most common forms of cancer. A significant portion of patients initially present with localized disease, for which curative treatments are pursued. Conversely, another substantial segment is diagnosed with metastatic disease, which has a worse prognosis. Recent years have witnessed a profound transformation in the prognosis for this latter group, primarily due to the discovery of various biomarkers and the emergence of targeted therapies. These biomarkers, encompassing serological, histological, and genetic indicators, have demonstrated their value across multiple aspects of breast cancer management. They play crucial roles in initial diagnosis, aiding in the detection of relapses during follow-up, guiding the application of targeted treatments, and offering valuable insights for prognostic stratification, especially for highly aggressive tumor types. Molecular markers have now become the keystone of metastatic breast cancer diagnosis, given the diverse array of chemotherapy options and treatment modalities available. These markers signify a transformative shift in the arsenal of therapeutic options against breast cancer. Their diagnostic precision enables the categorization of tumors with elevated risks of recurrence, increased aggressiveness, and heightened mortality. Furthermore, the existence of therapies tailored to target specific molecular anomalies triggers a cascade of changes in tumor behavior. Therefore, the primary objective of this article is to offer a comprehensive review of the clinical, diagnostic, prognostic, and therapeutic utility of the principal biomarkers currently in use, as well as of their clinical impact on metastatic breast cancer. In doing so, our goal is to contribute to a more profound comprehension of this complex disease and, ultimately, to enhance patient outcomes through more precise and effective treatment strategies.
Collapse
Affiliation(s)
- Laura Lopez-Gonzalez
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.L.-G.); (A.M.R.-S.); (S.A.-H.); (R.D.-P.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
| | - Alicia Sanchez Cendra
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain; (A.S.C.); (C.S.C.); (E.D.R.C.); (J.C.E.)
| | - Cristina Sanchez Cendra
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain; (A.S.C.); (C.S.C.); (E.D.R.C.); (J.C.E.)
| | | | - Javier Cassinello Espinosa
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain; (A.S.C.); (C.S.C.); (E.D.R.C.); (J.C.E.)
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Oscar Fraile-Martinez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Cielo García-Montero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Ana María Rodriguez-Slocker
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.L.-G.); (A.M.R.-S.); (S.A.-H.); (R.D.-P.)
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Soledad Aguado-Henche
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.L.-G.); (A.M.R.-S.); (S.A.-H.); (R.D.-P.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
| | - Jorge Monserrat
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Melchor Alvarez-Mon
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Leonel Pekarek
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain; (A.S.C.); (C.S.C.); (E.D.R.C.); (J.C.E.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Miguel A. Ortega
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.L.-G.); (A.M.R.-S.); (S.A.-H.); (R.D.-P.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| |
Collapse
|
5
|
Tjader NP, Beer AJ, Ramroop J, Tai MC, Ping J, Gandhi T, Dauch C, Neuhausen SL, Ziv E, Sotelo N, Ghanekar S, Meadows O, Paredes M, Gillespie J, Aeilts A, Hampel H, Zheng W, Jia G, Hu Q, Wei L, Liu S, Ambrosone CB, Palmer JR, Carpten JD, Yao S, Stevens P, Ho WK, Pan JW, Fadda P, Huo D, Teo SH, McElroy JP, Toland AE. Association of ESR1 germline variants with TP53 somatic variants in breast tumors in a genome-wide study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299442. [PMID: 38106140 PMCID: PMC10723566 DOI: 10.1101/2023.12.06.23299442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. HER2 positive and triple negative breast cancers (TNBC) have a higher frequency of TP53 somatic mutations than other subtypes. PIK3CA mutations are more frequently observed in hormone receptor positive tumors. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. Methods A genome-wide association study was conducted using breast cancer mutation status of TP53 and PIK3CA and functional mutation categories including TP53 gain of function (GOF) and loss of function mutations and PIK3CA activating/hotspot mutations. The discovery analysis consisted of 2850 European ancestry women from three datasets. Germline variants showing evidence of association with somatic mutations were selected for validation analyses based on predicted function, allele frequency, and proximity to known cancer genes or risk loci. Candidate variants were assessed for association with mutation status in a multi-ancestry validation study, a Malaysian study, and a study of African American/Black women with TNBC. Results The discovery Germline x Mutation (GxM) association study found five variants associated with one or more TP53 phenotypes with P values <1×10-6, 33 variants associated with one or more TP53 phenotypes with P values <1×10-5, and 44 variants associated with one or more PIK3CA phenotypes with P values <1×10-5. In the multi-ancestry and Malaysian validation studies, germline ESR1 locus variant, rs9383938, was associated with the presence of TP53 mutations overall (P values 6.8×10-5 and 9.8×10-8, respectively) and TP53 GOF mutations (P value 8.4×10-6). Multiple variants showed suggestive evidence of association with PIK3CA mutation status in the validation studies, but none were significant after correction for multiple comparisons. Conclusions We found evidence that germline variants were associated with TP53 and PIK3CA mutation status in breast cancers. Variants near the estrogen receptor alpha gene, ESR1, were significantly associated with overall TP53 mutations and GOF mutations. Larger multi-ancestry studies are needed to confirm these findings and determine if these variants contribute to ancestry-specific differences in mutation frequency.
Collapse
Affiliation(s)
- Nijole P. Tjader
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abigail J. Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Johnny Ramroop
- The City College of New York, City University of New York, New York, NY, USA
| | - Mei-Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Jie Ping
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Tanish Gandhi
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Medical School, Columbus, OH, 43210, USA
| | - Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Wexner Medical Center, Clinical Trials Office, Columbus, OH 43210, USA
| | - Susan L. Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Elad Ziv
- University of California, Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA
- University of California, Department of Medicine, San Francisco, San Francisco, CA, USA
- University of California San Francisco, Institute for Human Genetics, San Francisco, CA, USA
| | - Nereida Sotelo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shreya Ghanekar
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Owen Meadows
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Monica Paredes
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jessica Gillespie
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Amber Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Guochong Jia
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B. Ambrosone
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - John D. Carpten
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Integrative Translational Sciences, City of Hope, Duarte, CA
| | - Song Yao
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Patrick Stevens
- The Ohio State University Comprehensive Cancer Center, Bioinformatics Shared Resource, Columbus, OH, USA
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Jia Wern Pan
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Paolo Fadda
- The Ohio State University Comprehensive Cancer Center, Genomics Shared Resource, Columbus, OH, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Joseph Paul McElroy
- The Ohio State University Center for Biostatistics, Department of Biomedical Informatics, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|