1
|
Amir N, Taube R. Role of long noncoding RNA in regulating HIV infection-a comprehensive review. mBio 2024; 15:e0192523. [PMID: 38179937 PMCID: PMC10865847 DOI: 10.1128/mbio.01925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
A complete cure against human immunodeficiency virus (HIV) infection remains out of reach, as the virus persists in stable cell reservoirs that are resistant to antiretroviral therapy. The key to eliminating these reservoirs lies in deciphering the processes that govern viral gene expression and latency. However, while we comprehensively understand how host proteins influence HIV gene expression and viral latency, the emerging role of long noncoding RNAs (lncRNAs) in the context of T cell activation, HIV gene expression, and viral latency remain unexplored. This review dives into the evolving significance of lncRNAs and their impact on HIV gene expression and viral latency. We provide an overview of the current knowledge regarding how lncRNAs regulate HIV gene expression, categorizing them as either activators or inhibitors of viral gene expression and infectivity. Furthermore, we offer insights into the potential therapeutic applications of lncRNAs in combatting HIV. A deeper understanding of how lncRNAs modulate HIV gene transcription holds promise for developing novel RNA-based therapies to complement existing treatment strategies to eradicate HIV reservoirs.
Collapse
Affiliation(s)
- Noa Amir
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| |
Collapse
|
2
|
de Oliveira Filho RS, de Oliveira DA, Nisimoto MM, Marti LC. A Review of Advanced Cutaneous Melanoma Therapies and Their Mechanisms, from Immunotherapies to Lysine Histone Methyl Transferase Inhibitors. Cancers (Basel) 2023; 15:5751. [PMID: 38136297 PMCID: PMC10741407 DOI: 10.3390/cancers15245751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced cutaneous melanoma is considered to be the most aggressive type of skin cancer and has variable rates of treatment response. Currently, there are some classes of immunotherapy and target therapies for its treatment. Immunotherapy can inhibit tumor growth and its recurrence by triggering the host's immune system, whereas targeted therapy inhibits specific molecules or signaling pathways. However, melanoma responses to these treatments are highly heterogeneous, and patients can develop resistance. Epigenomics (DNA/histone modifications) contribute to cancer initiation and progression. Epigenetic alterations are divided into four levels of gene expression regulation: DNA methylation, histone modification, chromatin remodeling, and non-coding RNA regulation. Deregulation of lysine methyltransferase enzymes is associated with tumor initiation, invasion, development of metastases, changes in the immune microenvironment, and drug resistance. The study of lysine histone methyltransferase (KMT) and nicotinamide N-methyltransferase (NNMT) inhibitors is important for understanding cancer epigenetic mechanisms and biological processes. In addition to immunotherapy and target therapy, the research and development of KMT and NNMT inhibitors is ongoing. Many studies are exploring the therapeutic implications and possible side effects of these compounds, in addition to their adjuvant potential to the approved current therapies. Importantly, as with any drug development, safety, efficacy, and specificity are crucial considerations when developing methyltransferase inhibitors for clinical applications. Thus, this review article presents the recently available therapies and those in development for advanced cutaneous melanoma therapy.
Collapse
Affiliation(s)
- Renato Santos de Oliveira Filho
- Department of Plastic Surgery, Escola Paulista de Medicina–Universidade Federal de São Paulo–EPM-UNIFESP, São Paulo 04023-062, SP, Brazil
| | - Daniel Arcuschin de Oliveira
- Department of Plastic Surgery, Universidade Federal de São Paulo–UNIFESP-Skin Cancer and Melanoma Fellow, São Paulo 04023-900, SP, Brazil;
| | | | - Luciana Cavalheiro Marti
- Experimental Research Department, Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| |
Collapse
|
3
|
Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:412. [PMID: 37884527 PMCID: PMC10603151 DOI: 10.1038/s41392-023-01638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.
Collapse
Affiliation(s)
- Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Ding T, Zhang J, Xu H, Zhang X, Yang F, Shi Y, Bai Y, Yang J, Chen C, Zhang H. In-depth understanding of higher-order genome architecture in orphan cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188948. [PMID: 37394019 DOI: 10.1016/j.bbcan.2023.188948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The human genome is intertwined, folded, condensed, and gradually constitutes the 3D architecture, thereby affecting transcription and widely involving in tumorigenesis. Incidence and mortality rates for orphan cancers increase due to poor early diagnosis and lack of effective medical treatments, which are now getting attention. In-depth understanding in tumorigenesis has fast-tracked over the last decade, however, the further role and mechanism of 3D genome organization in variant orphan tumorigenesis remains to be fully understood. We summarize for the first time that higher-order genome organization can provide novel insights into the occurrence mechanisms of orphan cancers, and discuss probable future research directions for drug development and anti-tumor therapies.
Collapse
Affiliation(s)
- Tianyi Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Jixing Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Haowen Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Xiaoyu Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Fan Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Yibing Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Yiran Bai
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Jiaqi Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Chaoqun Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China.
| |
Collapse
|
5
|
Liao Q, Yang J, Ge S, Chai P, Fan J, Jia R. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs. J Pharm Anal 2023; 13:127-141. [PMID: 36908859 PMCID: PMC9999304 DOI: 10.1016/j.jpha.2022.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases (KMTs) is essential for epigenome homeostasis. The dysregulation of KMTs is associated with tumor initiation, metastasis, chemoresistance, invasiveness, and the immune microenvironment. Therapeutically, their promising effects are being evaluated in diversified preclinical and clinical trials, demonstrating encouraging outcomes in multiple malignancies. In this review, we have updated recent understandings of KMTs' functions and the development of their targeted inhibitors. First, we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis, tumor suppression, and immune regulation. In addition, we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors. In summary, we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Qili Liao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| |
Collapse
|
6
|
Huang H, Yao H, Wei Y, Chen M, Sun J. Cellular senescence-related long noncoding ribonucleic acids: Predicting prognosis in hepatocellular carcinoma. Cancer Rep (Hoboken) 2023; 6:e1791. [PMID: 36726348 PMCID: PMC10075286 DOI: 10.1002/cnr2.1791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Due to their inherent role in cell function, long non-coding ribonucleic acids (lncRNAs) mediate changes in the microenvironment, and thereby participate in the development of cellular senescence. AIMS This study aimed to identify cellular senescence-related lncRNAs that could predict the prognosis of liver cancer. METHODS AND RESULTS Gene expression and clinical data were downloaded from the UCSC Xena platform, ICGC, and TCGA databases. Cox regression and LASSO regression were used to establish a cellular senescence-related lncRNA model. ROC curves and Kaplan-Meier survival curves were then constructed to predict patient prognosis. Cox regression analysis and clinical characteristics were used to evaluate the capability of the model. Tumor mutational burden and tumor-infiltrating immune cell analyses were subsequently performed in the risk subgroups and the samples in the entire cohort were reclustered. Finally, potential small molecule immune-targeted drugs were identified based on the model. The cellular senescence-related prognostic model that was constructed based on AGAP11 and FAM182B. Along with the results of Cox regression and Lasso regression, the risk score was found to be an independent factor for predicting overall survival in cohorts. In the subgroup analysis, the prognosis of the low-risk group in each cohort was significantly higher than that of the high-risk group; the area under temporal ROC curves and clinical ROC curves were all greater than 0.65, respectively. C-index shows that the risk scores are greater than 0.6, showing the stability of the model. The high-risk group demonstrated lower tumor microenvironment and higher tumor mutational burden scores, further verifying the reliability of the model grouping results. Analysis of tumor-infiltrating immune cells indicated that CD8+ and γδ T cells were more abundant among patients in the low-risk group; cluster reorganization indicated that the two groups had different prognoses and proportions of immune cells. The p value of potential drugs predicted based on the expression of model lncRNAs were all less than .05, demonstrating the potential of model lncRNAs as therapeutic targets to some extent. CONCLUSION A prognostic model based on cellular senescence-associated lncRNAs was established and this may be used as a potential biomarker for the prognosis assessment of liver cancer patients.
Collapse
Affiliation(s)
- Hao Huang
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hao Yao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yaqing Wei
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ming Chen
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jinjin Sun
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Peña-Flores JA, Enríquez-Espinoza D, Muela-Campos D, Álvarez-Ramírez A, Sáenz A, Barraza-Gómez AA, Bravo K, Estrada-Macías ME, González-Alvarado K. Functional Relevance of the Long Intergenic Non-Coding RNA Regulator of Reprogramming (Linc-ROR) in Cancer Proliferation, Metastasis, and Drug Resistance. Noncoding RNA 2023; 9:ncrna9010012. [PMID: 36827545 PMCID: PMC9965135 DOI: 10.3390/ncrna9010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Cancer is responsible for more than 10 million deaths every year. Metastasis and drug resistance lead to a poor survival rate and are a major therapeutic challenge. Substantial evidence demonstrates that an increasing number of long non-coding RNAs are dysregulated in cancer, including the long intergenic non-coding RNA, regulator of reprogramming (linc-ROR), which mostly exerts its role as an onco-lncRNA acting as a competing endogenous RNA that sequesters micro RNAs. Although the properties of linc-ROR in relation to some cancers have been reviewed in the past, active research appends evidence constantly to a better comprehension of the role of linc-ROR in different stages of cancer. Moreover, the molecular details and some recent papers have been omitted or partially reported, thus the importance of this review aimed to contribute to the up-to-date understanding of linc-ROR and its implication in cancer tumorigenesis, progression, metastasis, and chemoresistance. As the involvement of linc-ROR in cancer is elucidated, an improvement in diagnostic and prognostic tools could promote and advance in targeted and specific therapies in precision oncology.
Collapse
|
8
|
Lin Y, Tan H, Yu G, Zhan M, Xu B. Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24021305. [PMID: 36674820 PMCID: PMC9860629 DOI: 10.3390/ijms24021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Although several therapeutic options have been shown to improve survival of most patients with prostate cancer, progression to castration-refractory state continues to present challenges in clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them, noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs, especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and lncRNAs, discuss their potential functional mechanisms and highlight their clinical application prospects in CRPC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| |
Collapse
|
9
|
Pan H, Wang H, Zhang X, Yang F, Fan X, Zhang H. Chromosomal instability-associated MAT1 lncRNA insulates MLL1-guided histone methylation and accelerates tumorigenesis. Cell Rep 2022; 41:111829. [PMID: 36516779 DOI: 10.1016/j.celrep.2022.111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Acquired chromosomal instability, especially copy number variations (CNVs), has been considered an important determinant of cancer progression and clinical survival. However, the functional role of aberrant CNV-induced lncRNAs in tumorigenesis remains unexplored. Here, we identify a CNV-induced MSC-antisense-transcript 1 (MAT1) lncRNA that plays an oncogenic role in promoting tumorigenesis of uveal melanoma in orthotopic and metastatic xenografts. In addition, our data suggest that MAT1 interrupts the interaction between the MLL1 complex and the PCDH20 promoter by forming an RNA-DNA triplex structure, subsequently abolishing H3K4 trimethylation and inactivating transcription of tumor suppressor PCDH20 to accelerate tumorigenesis. Our data show an intriguing insulation pattern of H3K4 histone modification in tumorigenesis mediated by a lncRNA, thereby providing an alternative mechanism for noncoding blockers in gene regulation.
Collapse
Affiliation(s)
- Hui Pan
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai 200092, China; Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Huixue Wang
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai 200092, China; Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiaoyu Zhang
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai 200092, China; Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Fan Yang
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai 200092, China; Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.
| | - He Zhang
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
10
|
Ding T, Zhang H. Novel biological insights revealed from the investigation of multiscale genome architecture. Comput Struct Biotechnol J 2022; 21:312-325. [PMID: 36582436 PMCID: PMC9791078 DOI: 10.1016/j.csbj.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gene expression and cell fate determination require precise and coordinated epigenetic regulation. The complex three-dimensional (3D) genome organization plays a critical role in transcription in myriad biological processes. A wide range of architectural features of the 3D genome, including chromatin loops, topologically associated domains (TADs), chromatin compartments, and phase separation, together regulate the chromatin state and transcriptional activity at multiple levels. With the help of 3D genome informatics, recent biochemistry and imaging approaches based on different strategies have revealed functional interactions among biomacromolecules, even at the single-cell level. Here, we review the occurrence, mechanistic basis, and functional implications of dynamic genome organization, and outline recent experimental and computational approaches for profiling multiscale genome architecture to provide robust tools for studying the 3D genome.
Collapse
Affiliation(s)
- Tianyi Ding
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - He Zhang
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China
| |
Collapse
|
11
|
Xu J, Ou R, Nie G, Wen J, Ling L, Mo L, Xu R, Lv M, Zhao L, Lai W, Xu Y. LINC01063 functions as an oncogene in melanoma through regulation of miR-5194-mediated SOX12 expression. Melanoma Res 2022; 32:218-230. [PMID: 35256570 DOI: 10.1097/cmr.0000000000000803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melanoma is one of the most aggressive skin cancers and a major cause of cancer-linked deaths worldwide. As the morbidity and mortality of melanoma are increasing, it is necessary to elucidate the potential mechanism influencing melanoma progression. Tumor tissues and adjacent normal tissues (5 cm away from tumors) from 22 melanoma patients at the I-II stage and 39 patients at the III-VI stage were acquired. The expression of LINC01063 in melanoma was estimated by quantitative PCR. Functional assays were employed to investigate the function of LINC01063 in melanoma. Mechanism assays were adopted to explore the mechanism of LINC01063. LINC01063 knockdown impeded melanoma cell proliferation, migration, invasion, and epithelial-mesenchymal transition as well as melanoma tumor growth. Mechanistically, LINC01063 acted as an miR-5194 sponge to upregulate SOX12 expression. Finally, LINC01063 was tested to facilitate the malignant behaviors of melanoma cells via targeting miR-5194/SOX12. LINC01063 was significantly upregulated in melanoma. Specifically, LINC01063 displayed a higher level in patients at an advanced stage or with metastasis than those at an early stage or without metastasis. Our study revealed the oncogenic effects of LINC01063 on melanoma cell/tumor growth and its molecular mechanism involving miR-5194/SOX12, which might support LINC01063 to be the potential prognostic or therapeutic biomarker against melanoma.
Collapse
Affiliation(s)
- Jiangmei Xu
- Department of Dermatovenereology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen
- Department of Dermatovenereology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Rongying Ou
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Gang Nie
- Department of Dermatovenereology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Juan Wen
- Department of Dermatovenereology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Li Ling
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen
| | - Laiming Mo
- Clinical Laboratory, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen
| | - Rui Xu
- Department of Dermatovenereology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Mingfen Lv
- Department of Dermatovenereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Lai
- Department of Dermatovenereology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen
| | - Yunsheng Xu
- Department of Dermatovenereology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou
| |
Collapse
|
12
|
De Salis SKF, Li L, Chen Z, Lam KW, Skarratt KK, Balle T, Fuller SJ. Alternatively Spliced Isoforms of the P2X7 Receptor: Structure, Function and Disease Associations. Int J Mol Sci 2022; 23:ijms23158174. [PMID: 35897750 PMCID: PMC9329894 DOI: 10.3390/ijms23158174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated membrane ion channel that is expressed by multiple cell types. Following activation by extracellular ATP, the P2X7R mediates a broad range of cellular responses including cytokine and chemokine release, cell survival and differentiation, the activation of transcription factors, and apoptosis. The P2X7R is made up of three P2X7 subunits that contain specific domains essential for the receptor’s varied functions. Alternative splicing produces P2X7 isoforms that exclude one or more of these domains and assemble in combinations that alter P2X7R function. The modification of the structure and function of the P2X7R may adversely affect cellular responses to carcinogens and pathogens, and alternatively spliced (AS) P2X7 isoforms have been associated with several cancers. This review summarizes recent advances in understanding the structure and function of AS P2X7 isoforms and their associations with cancer and potential role in modulating the inflammatory response.
Collapse
Affiliation(s)
- Sophie K. F. De Salis
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
| | - Lanxin Li
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Zheng Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
| | - Kam Wa Lam
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Kristen K. Skarratt
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Stephen J. Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
- Correspondence: ; Tel.: +61-2-4734-3732
| |
Collapse
|
13
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Zhang M, Zheng S, Liang JQ. Transcriptional and reverse transcriptional regulation of host genes by human endogenous retroviruses in cancers. Front Microbiol 2022; 13:946296. [PMID: 35928153 PMCID: PMC9343867 DOI: 10.3389/fmicb.2022.946296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) originated from ancient retroviral infections of germline cells millions of years ago and have evolved as part of the host genome. HERVs not only retain the capacity as retroelements but also regulate host genes. The expansion of HERVs involves transcription by RNA polymerase II, reverse transcription, and re-integration into the host genome. Fast progress in deep sequencing and functional analysis has revealed the importance of domesticated copies of HERVs, including their regulatory sequences, transcripts, and proteins in normal cells. However, evidence also suggests the involvement of HERVs in the development and progression of many types of cancer. Here we summarize the current state of knowledge about the expression of HERVs, transcriptional regulation of host genes by HERVs, and the functions of HERVs in reverse transcription and gene editing with their reverse transcriptase.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shu Zheng,
| | - Jessie Qiaoyi Liang
- Department of Medicine and Therapeutics, Faculty of Medicine, Center for Gut Microbiota Research, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Jessie Qiaoyi Liang,
| |
Collapse
|
15
|
Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. Pharmacol Ther 2022; 234:108123. [PMID: 35121000 DOI: 10.1016/j.pharmthera.2022.108123] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
The present review aimed to outline different types of RNAs in cancer diagnostics and treatment, and to provide novel insights into their clinical applications. RNAs, including mRNA, long non-coding (lnc)RNA, circular (circ)RNA and micro (mi)RNA, are now increasingly utilized in the diagnosis and treatment of various cancers. Each aforementioned type of RNA possess their own unique characteristics and could be aberrantly expressed as diagnostic markers or therapeutic targets in different cancers. In addition to mRNAs, which have become a promising alternative in cancer diagnostics and therapy, the uses of lncRNA, circRNA and miRNA in predictive tumor diagnostics and therapy has rapidly increased in recent years. In the present review, the mechanisms of mRNA, lncRNA, circRNA and miRNA in regulating and participating in the development of different cancers were determined, and their potential capacity in cancer diagnostics and therapy were investigated. In addition, the present review analyzed the assoaciations between different RNAs and their subsequent potential in cancer prediction and treatment.
Collapse
|
16
|
Zou X, Zhou Q, Nie Y, Gou J, Yang J, Zhu J, Li Z, Gong Y. Tescalcin promotes highly invasive papillary thyroid microcarcinoma by regulating FOS/ERK signaling pathway. BMC Cancer 2022; 22:595. [PMID: 35641944 PMCID: PMC9158259 DOI: 10.1186/s12885-022-09643-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/05/2022] [Indexed: 02/08/2023] Open
Abstract
Background Part of papillary thyroid microcarcinoma (PTMC) has a high risk of tumor invasion and metastasis, which may occur in the regional lymph node metastasis or distant metastasis, severely threatening the life of patients. Invasion and metastasis are tightly involved in the proliferation, migration and invasion in cancer. This study aimed to investigate the role of tescalcin (TESC) in the proliferation, migration and invasion of PTMC. Methods The expressions of TESC in PTMC tissues and cells were detected by immunohistochemistry or qRT-PCR. Then, TPC-1 and BHT101 cells transfected with TESC-RNAi were used for the transcriptome sequencing. The proliferation, apoptosis, migration and invasion of TPC-1 and BHT101 cells were detected by CCK-8, colony formation, flow cytometric assay, transwell migration and scratch test. Moreover, TESC-RNAi transfected TPC-1 and BHT101 cells were subcutaneously injected into mice. Tumor volume and weight were calculated, and the positive rate of Ki-67 was determined by immunohistochemistry. Finally, the levels of c-Fos, ERK1/2 and p-ERK1/2 were determined by western blot. Results The expressions of TESC in PTMC tissues and cell lines were prominently enhanced. Transcriptome sequencing results showed that c-Fos was decreased in TPC-1 and BHT101 cells transfected with TESC-RNAi, which was associated with multiple different signaling pathways including the MAPK signaling pathway. Furthermore, TESC promoted the progress of PTMC by regulating the expression of c-Fos, which might be associated with the ERK signaling pathway. Conclusions TESC promoted the growth and metastasis of PTMC through regulating c-Fos/ERK1/2.
Collapse
Affiliation(s)
- Xiuhe Zou
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Qian Zhou
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yan Nie
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Junhe Gou
- Department of pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Jingqiang Zhu
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yanping Gong
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
17
|
Eteleeb AM, Thunuguntla PK, Gelev KZ, Tang CY, Rozycki EB, Miller A, Lei JT, Jayasinghe RG, Dang HX, White NM, Reis-Filho JS, Mardis ER, Ellis MJ, Ding L, Silva-Fisher JM, Maher CA. LINC00355 regulates p27 KIP expression by binding to MENIN to induce proliferation in late-stage relapse breast cancer. NPJ Breast Cancer 2022; 8:49. [PMID: 35418131 PMCID: PMC9007952 DOI: 10.1038/s41523-022-00412-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Late-stage relapse (LSR) in patients with breast cancer (BC) occurs more than five years and up to 10 years after initial treatment and has less than 30% 5-year relative survival rate. Long non-coding RNAs (lncRNAs) play important roles in BC yet have not been studied in LSR BC. Here, we identify 1127 lncRNAs differentially expressed in LSR BC via transcriptome sequencing and analysis of 72 early-stage and 24 LSR BC patient tumors. Decreasing expression of the most up-regulated lncRNA, LINC00355, in BC and MCF7 long-term estrogen deprived cell lines decreases cellular invasion and proliferation. Subsequent mechanistic studies show that LINC00355 binds to MENIN and changes occupancy at the CDKN1B promoter to decrease p27Kip. In summary, this is a key study discovering lncRNAs in LSR BC and LINC00355 association with epigenetic regulation and proliferation in BC.
Collapse
Affiliation(s)
- Abdallah M Eteleeb
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Prasanth K Thunuguntla
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyla Z Gelev
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Emily B Rozycki
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander Miller
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Reyka G Jayasinghe
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The McDonnell Genome Institute, St. Louis, MO, USA
| | - Ha X Dang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The McDonnell Genome Institute, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole M White
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Li Ding
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The McDonnell Genome Institute, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessica M Silva-Fisher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Christopher A Maher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- The McDonnell Genome Institute, St. Louis, MO, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Mangraviti N, De Windt LJ. Long Non-Coding RNAs in Cardiac Hypertrophy. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:836418. [PMID: 39086960 PMCID: PMC11285587 DOI: 10.3389/fmmed.2022.836418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 08/02/2024]
Abstract
Heart disease represents one of the main challenges in modern medicine with insufficient treatment options. Whole genome sequencing allowed for the discovery of several classes of non-coding RNA (ncRNA) and widened our understanding of disease regulatory circuits. The intrinsic ability of long ncRNAs (lncRNAs) and circular RNAs (circRNAs) to regulate gene expression by a plethora of mechanisms make them candidates for conceptually new treatment options. However, important questions remain to be addressed before we can fully exploit the therapeutic potential of these molecules. Increasing our knowledge of their mechanisms of action and refining the approaches for modulating lncRNAs expression are just a few of the challenges we face. The accurate identification of novel lncRNAs is hampered by their relatively poor cross-species sequence conservation and their low and context-dependent expression pattern. Nevertheless, progress has been made in their annotation in recent years, while a few experimental studies have confirmed the value of lncRNAs as new mechanisms in the development of cardiac hypertrophy and other cardiovascular diseases. Here, we explore cardiac lncRNA biology and the evidence that this class of molecules has therapeutic benefit to treat cardiac hypertrophy.
Collapse
Affiliation(s)
| | - Leon J. De Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
19
|
Fontanini M, Cabiati M, Giacomarra M, Federico G, Del Ry S. Long non-Coding RNAs and Obesity: New Potential Pathogenic Biomarkers. Curr Pharm Des 2022; 28:1592-1605. [DOI: 10.2174/1381612828666220211153304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
Background:
A portion of the human genome is characterized by long non-coding RNAs (lncRNAs), a class of non-coding RNA longer than 200 nucleotides. Recently, the development of new biomolecular methods, made it possible to delineate the involvement of lncRNAs in the regulation of different biological processes, both physiological and pathological, by acting within the cell with different regulatory mechanisms based on their specific target. To date, obesity is one of the most important health problems spread all over the world, including the child population: the search for new potential early biomarkers could open the doors to novel therapeutic strategies useful to fight the disease early in life and to reduce the risk of obesity-related co-morbidities.
Objective:
This review highlights the lncRNAs involved in obesity, in adipogenesis, and lipid metabolism, particularly in lipogenesis.
Conclusion:
LncRNAs involved in adipogenesis and lipogenesis, being at the cross-road of obesity, should be deeply analysed in this contest, allowing to understand possible causative actions in starting obesity and whether they might be helpful to treat obesity.
Collapse
Affiliation(s)
- Martina Fontanini
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| | - Manuela Cabiati
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| | - Manuel Giacomarra
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Via Roma n. 67 56126 Pisa, Italy
| | - Silvia Del Ry
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| |
Collapse
|
20
|
Long non-coding ROR promotes the progression of papillary thyroid carcinoma through regulation of the TESC/ALDH1A1/TUBB3/PTEN axis. Cell Death Dis 2022; 13:157. [PMID: 35173149 PMCID: PMC8850450 DOI: 10.1038/s41419-021-04210-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Papillary thyroidal carcinoma (PTC) is a common endocrine cancer that plagues people across the world. The potential roles of long non-coding RNAs (lncRNAs) in PTC have gained increasing attention. In this study, we aimed to explore whether lncRNA ROR affects the progression of PTC, with the involvement of tescalcin (TESC)/aldehyde dehydrogenase isoform 1A1 (ALDH1A1)/βIII-tubulin (TUBB3)/tensin homolog (PTEN) axis. PTC tumor and adjacent tissues were obtained, followed by measurement of lncRNA ROR and TESC, ALDH1A1, and TUBB3 expression. Interactions among lncRNA ROR, TESC, ALDH1A1, TUBB3, and PTEN were evaluated by ChIP assay, RT-qPCR, or western blot analysis. After ectopic expression and depletion experiments in PTC cells, MTT and colony formation assay, Transwell assay, and flow cytometry were performed to detect cell viability and colony formation, cell migration and invasion, and apoptosis, respectively. In addition, xenograft in nude mice was performed to test the effects of lncRNA ROR and PTEN on tumor growth in PTC in vivo. LncRNA ROR, TESC, ALDH1A1, and TUBB3 were highly expressed in PTC tissues and cells. Overexpression of lncRNA ROR activated TESC by inhibiting the G9a recruitment on the promoter of TESC and histone H3-lysine 9me methylation. Moreover, TESC upregulated ALDH1A1 expression to increase TUBB3 expression, which then reduced PTEN expression. Overexpression of lncRNA ROR, TESC, ALDH1A1 or TUBB3 and silencing of PTEN promoted PTC cell viability, colony formation, migration, and invasion while suppressing apoptosis. Moreover, overexpression of lncRNA ROR increased tumor growth by inhibiting PTEN in vivo. Taken together, the current study demonstrated that lncRNA ROR mediated TESC/ALDH1A1/TUBB3/PTEN axis, thereby facilitating the development of PTC.
Collapse
|
21
|
Chai P, Jia R, Li Y, Zhou C, Gu X, Yang L, Shi H, Tian H, Lin H, Yu J, Zhuang A, Ge S, Jia R, Fan X. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Prog Retin Eye Res 2021; 89:101030. [PMID: 34861419 DOI: 10.1016/j.preteyeres.2021.101030] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) and retinoblastoma (RB), which cause blindness and even death, are the most frequently observed primary intraocular malignancies in adults and children, respectively. Epigenetic studies have shown that changes in the epigenome contribute to the rapid progression of both UM and RB following classic genetic changes. The loss of epigenetic homeostasis plays an important role in oncogenesis by disrupting the normal patterns of gene expression. The targetable nature of epigenetic modifications provides a unique opportunity to optimize treatment paradigms and establish new therapeutic options for both UM and RB with these aberrant epigenetic modifications. We aimed to review the research findings regarding relevant epigenetic changes in UM and RB. Herein, we 1) summarize the literature, with an emphasis on epigenetic alterations, including DNA methylation, histone modifications, RNA modifications, noncoding RNAs and an abnormal chromosomal architecture; 2) elaborate on the regulatory role of epigenetic modifications in biological processes during tumorigenesis; and 3) propose promising therapeutic candidates for epigenetic targets and update the list of epigenetic drugs for the treatment of UM and RB. In summary, we endeavour to depict the epigenetic landscape of primary intraocular malignancy tumorigenesis and provide potential epigenetic targets in the treatment of these tumours.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| |
Collapse
|
22
|
German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13:1446-1479. [PMID: 34786153 PMCID: PMC8567457 DOI: 10.4252/wjsc.v13.i10.1446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal degeneration is a major contributor to visual dysfunction worldwide. Although it comprises several eye diseases, loss of retinal pigment epithelial (RPE) and photoreceptor cells are the major contributors to their pathogenesis. Early therapies included diverse treatments, such as provision of anti-vascular endothelial growth factor and many survival and trophic factors that, in some cases, slow down the progression of the degeneration, but do not effectively prevent it. The finding of stem cells (SC) in the eye has led to the proposal of cell replacement strategies for retina degeneration. Therapies using different types of SC, such as retinal progenitor cells (RPCs), embryonic SC, pluripotent SCs (PSCs), induced PSCs (iPSCs), and mesenchymal stromal cells, capable of self-renewal and of differentiating into multiple cell types, have gained ample support. Numerous preclinical studies have assessed transplantation of SC in animal models, with encouraging results. The aim of this work is to revise the different preclinical and clinical approaches, analyzing the SC type used, their efficacy, safety, cell attachment and integration, absence of tumor formation and immunorejection, in order to establish which were the most relevant and successful. In addition, we examine the questions and concerns still open in the field. The data demonstrate the existence of two main approaches, aimed at replacing either RPE cells or photoreceptors. Emerging evidence suggests that RPCs and iPSC are the best candidates, presenting no ethical concerns and a low risk of immunorejection. Clinical trials have already supported the safety and efficacy of SC treatments. Serious concerns are pending, such as the risk of tumor formation, lack of attachment or integration of transplanted cells into host retinas, immunorejection, cell death, and also ethical. However, the amazing progress in the field in the last few years makes it possible to envisage safe and effective treatments to restore vision loss in a near future.
Collapse
Affiliation(s)
- Olga L German
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Harmonie Vallese-Maurizi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Tamara B Soto
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Nora P Rotstein
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Luis Enrique Politi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
23
|
Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:613-637. [PMID: 34589282 PMCID: PMC8463317 DOI: 10.1016/j.omtn.2021.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Huan Jin
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
24
|
Ma X, Zhang H, Li Q, Schiferle E, Qin Y, Xiao S, Li T. FOXM1 Promotes Head and Neck Squamous Cell Carcinoma via Activation of the Linc-ROR/LMO4/AKT/PI3K Axis. Front Oncol 2021; 11:658712. [PMID: 34447693 PMCID: PMC8383294 DOI: 10.3389/fonc.2021.658712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Background/Aim Previous literature has implicated the sustained expression of FOXM1 in numerous human cancers, including head and neck squamous cell carcinoma (HNSCC). The current study aimed to elucidate the function and regulatory mechanism of FOXM1 in HNSCC. Methods Western blot and RT-qPCR methods were performed to evaluate the expression of Linc-ROR, FOXM1, and LMO4 in HNSCC tissue samples and cells. The binding between FOXM1 and Linc-ROR was analyzed using a ChIP assay. Various cellular processes including proliferation and invasion abilities were assessed following alteration of FOXM1, Linc-ROR and LMO4 expression in HNSCC cells. Xenograft mouse models were established to validate the in vitro findings. Results Linc-ROR and FOXM1 were highly expressed in HNSCC tissues and cells. FOXM1 operated as a potential transcription factor to bind to the promoter region of Linc-ROR. Linc-ROR and FOXM1 exhibited high expression levels in both the clinical tissue samples as well as the HNSCC cells, which could facilitate the proliferation and invasion of HNSCC cells. Linc-ROR upregulated the expression of LMO4 and promoted activation of the AKT/PI3K signaling pathway, thus stimulating the proliferation and invasion of HNSCC cells. Silencing of Linc-ROR brought about a contrasting effect relative to that seen when FOXM1 was overexpressed in HNSCC in vivo. Conclusions Overall, FOXM1 promoted the expression of Linc-ROR and induced the activation of the LMO4-dependent AKT/PI3K signaling pathway, thus facilitating the occurrence and development of HNSCC.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Head and Neck Surgery, Perking University Cancer Hospital and Institute, Beijing, China
| | - Hong Zhang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Qian Li
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Erik Schiferle
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yao Qin
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Suifang Xiao
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Tiancheng Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
25
|
Wang F, Kong L, Pu Y, Chao F, Zang C, Qin W, Zhao F, Cai S. Long Noncoding RNA DICER1-AS1 Functions in Methylation Regulation on the Multi-Drugresistance of Osteosarcoma Cells via miR-34a-5p and GADD45A. Front Oncol 2021; 11:685881. [PMID: 34307152 PMCID: PMC8299526 DOI: 10.3389/fonc.2021.685881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that commonly occurs in children and adolescents. Long noncoding RNAs (lncRNAs) are recognized as a novel class of regulators of gene expression associated with tumorigenesis. However, the effect and mechanism of lncRNAs in OS tumorigenesis and drug resistance have not been characterized. The purpose of the study is to screen potential biomarker and therapeutic target against OS. We compared the lncRNA expression profiles between OS cell lines with different drug resistance levels using RNA-seq analysis and found that lncRNA DICER1-AS1 was significantly differentially expressed in multi-drugresistant OS cells SJSA-1 versus multi-drugsensitive OS cells G-292. Bisulfite Sequencing PCR (BSP) assay was performed to analyze the differential methylation status of the promoter region of DICER1-AS1 in four OS cells. Subsequently, in vitro gain- and loss-of-function experiments demonstrated the roles of DICER1-AS1 and miR-34a-5p in the multi-drugresistance of OS cells. The main findings is that DICER1-AS1 directly binds to miR-34a-5p, and their expression has a negative correlation with each other. The hypermethylation of the promoter region of DICER1-AS1 silenced its expression in the drugresistant cells SJSA-1 and MNNG/HOS. Moreover, we found that growth arrest and DNA damage-inducible alpha (GADD45A) participates in the DICER1-AS1/miR-34a-5p-regulated drug resistance of OS cells, probably via the cell cycle/pRb-E2F pathway. Our results revealed DICER1-AS1/miR-34a-5p-regulated drug resistance of OS cells, a new lncRNA-regulated network in OS tumorigenesis, suggested that DICER1-AS1 can be considered as a potential biomarker and therapeutic target against OS cells.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingsuo Kong
- Department of Anesthesiology, West district of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Youguang Pu
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chunbao Zang
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Qin
- Department of Science and Education Section, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fangfang Zhao
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shanbao Cai
- Department of Orthopedic Surgery, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
26
|
Walters HA, Temesvari LA. Target acquired: transcriptional regulators as drug targets for protozoan parasites. Int J Parasitol 2021; 51:599-611. [PMID: 33722681 PMCID: PMC8169582 DOI: 10.1016/j.ijpara.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 11/22/2022]
Abstract
Protozoan parasites are single-celled eukaryotic organisms that cause significant human disease and pose a substantial health and socioeconomic burden worldwide. They are responsible for at least 1 million deaths annually. The treatment of such diseases is hindered by the ability of parasites to form latent cysts, develop drug resistance, or be transmitted by insect vectors. Additionally, these pathogens have developed complex mechanisms to alter host gene expression. The prevalence of these diseases is predicted to increase as climate change leads to the augmentation of ambient temperatures, insect ranges, and warm water reservoirs. Therefore, the discovery of novel treatments is necessary. Transcription factors lie at the junction of multiple signalling pathways in eukaryotes and aberrant transcription factor function contributes to the progression of numerous human diseases including cancer, diabetes, inflammatory disorders and cardiovascular disease. Transcription factors were previously thought to be undruggable. However, due to recent advances, transcription factors now represent appealing drug targets. It is conceivable that transcription factors, and the pathways they regulate, may also serve as targets for anti-parasitic drug design. Here, we review transcription factors and transcriptional modulators of protozoan parasites, and discuss how they may be useful in drug discovery. We also provide information on transcription factors that play a role in stage conversion of parasites, TATA box-binding proteins, and transcription factors and cofactors that participate with RNA polymerases I, II and III. We also highlight a significant gap in knowledge in that the transcription factors of some of parasites have been under-investigated. Understanding parasite transcriptional pathways and how parasites alter host gene expression will be essential in discovering innovative drug targets.
Collapse
Affiliation(s)
- H A Walters
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, United States; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, United States
| | - L A Temesvari
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, United States; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
27
|
Zhang J, Ding T, Zhang H. Insight Into Chromatin-Enriched RNA: A Key Chromatin Regulator in Tumors. Front Cell Dev Biol 2021; 9:649605. [PMID: 33937246 PMCID: PMC8079759 DOI: 10.3389/fcell.2021.649605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022] Open
Abstract
Chromatin-enriched RNAs (cheRNAs) constitute a special class of long noncoding RNAs (lncRNAs) that are enriched around chromatin and function to activate neighboring or distal gene transcription. Recent studies have shown that cheRNAs affect chromatin structure and gene expression by recruiting chromatin modifiers or acting as bridges between distal enhancers and promoters. The abnormal transcription of cheRNAs plays an important role in the occurrence of many diseases, particularly tumors. The critical effect of cancer stem cells (CSCs) on the formation and development of tumors is well known, but the function of cheRNAs in tumorigenesis, especially in CSC proliferation and stemness maintenance, is not yet fully understood. This review focuses on the mechanisms of cheRNAs in epigenetic regulation and chromatin conformation and discusses the way cheRNAs function in CSCs to deepen the understanding of tumorigenesis and provide novel insight to advance tumor-targeting therapy.
Collapse
Affiliation(s)
- Jixing Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Research Center for Stem Cells, Tongji University, Shanghai, China
| | - Tianyi Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Research Center for Stem Cells, Tongji University, Shanghai, China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Research Center for Stem Cells, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Histone lactylation drives oncogenesis by facilitating m 6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol 2021; 22:85. [PMID: 33726814 PMCID: PMC7962360 DOI: 10.1186/s13059-021-02308-z] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Histone lactylation, a metabolic stress-related histone modification, plays an important role in the regulation of gene expression during M1 macrophage polarization. However, the role of histone lactylation in tumorigenesis remains unclear. Results Here, we show histone lactylation is elevated in tumors and is associated with poor prognosis of ocular melanoma. Target correction of aberrant histone lactylation triggers therapeutic efficacy both in vitro and in vivo. Mechanistically, histone lactylation contributes to tumorigenesis by facilitating YTHDF2 expression. Moreover, YTHDF2 recognizes the m6A modified PER1 and TP53 mRNAs and promotes their degradation, which accelerates tumorigenesis of ocular melanoma. Conclusion We reveal the oncogenic role of histone lactylation, thereby providing novel therapeutic targets for ocular melanoma therapy. We also bridge histone modifications with RNA modifications, which provides novel understanding of epigenetic regulation in tumorigenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02308-z.
Collapse
|
29
|
Hu A, Hong F, Li D, Jin Y, Kon L, Xu Z, He H, Xie Q. Long non-coding RNA ROR recruits histone transmethylase MLL1 to up-regulate TIMP3 expression and promote breast cancer progression. J Transl Med 2021; 19:95. [PMID: 33653378 PMCID: PMC7927245 DOI: 10.1186/s12967-020-02682-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/15/2020] [Indexed: 01/11/2023] Open
Abstract
Background As a significant cause of cancer deaths worldwide, breast cancer continues to be a troublesome malignancy. Long non-coding RNAs (lncRNAs) have been implicated in the development of breast cancer. Abnormal methylation has been associated with unfavorable breast cancer prognosis. Herein, the current study aimed to elucidate the role of lncRNA ROR in breast cancer. Methods RT-qPCR was performed to determine whether lncRNA ROR was highly expressed in breast cancer tissues, while lncRNA ROR expression was detected in both the nuclear and cytoplasm of breast cancer cells. MCF-7 cells were subsequently introduced with oe-lncRNA ROR, sh-lncRNA ROR to explore the effects of lncRNA ROR on cell proliferation, invasion and apoptosis. Results RIP, RNA pull-down and ChIP assays provided evidence suggesting that lncRNA ROR recruited transmethylase MLL1 to promote H3K4 trimethylation that enhanced TIMP3 transcription. The rescue experiments demonstrated that lncRNA ROR knockdown could inhibit the progression of breast cancer via the downregulation of TIMP3. Finally, the in vivo experiment findings consistently highlighted the suppressive effects of lncRNA ROR silencing on tumor growth. Conclusion Taken together, our study demonstrates that silencing of lncRNA ROR inhibits breast cancer progression via repression of transmethylase MLL1 and TIMP3, emphasizing the potential of lncRNA ROR as a novel target against breast cancer.
Collapse
Affiliation(s)
- Aixia Hu
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China. .,Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China.
| | - Fan Hong
- Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Daohong Li
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yuwei Jin
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Lingfei Kon
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China.,Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Ziguang Xu
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Hui He
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Qi Xie
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China
| |
Collapse
|
30
|
He F, Yu J, Yang J, Wang S, Zhuang A, Shi H, Gu X, Xu X, Chai P, Jia R. m 6A RNA hypermethylation-induced BACE2 boosts intracellular calcium release and accelerates tumorigenesis of ocular melanoma. Mol Ther 2021; 29:2121-2133. [PMID: 33601055 DOI: 10.1016/j.ymthe.2021.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Ocular melanoma, including uveal melanoma (UM) and conjunctival melanoma (CM), is the most common and deadly eye cancer in adults. Both UM and CM originate from melanocytes and exhibit an aggressive growth pattern with high rates of metastasis and mortality. The integral membrane glycoprotein beta-secretase 2 (BACE2), an enzyme that cleaves amyloid precursor protein into amyloid beta peptide, has been reported to play a vital role in vertebrate pigmentation and metastatic melanoma. However, the role of BACE2 in ocular melanoma remains unclear. In this study, we showed that BACE2 was significantly upregulated in ocular melanoma, and inhibition of BACE2 significantly impaired tumor progression both in vitro and in vivo. Notably, we identified that transmembrane protein 38B (TMEM38B), whose expression was highly dependent on BACE2, modulated calcium release from endoplasmic reticulum (ER). Inhibition of the BACE2/TMEM38B axis could trigger exhaustion of intracellular calcium release and inhibit tumor progression. We further demonstrated that BACE2 presented an increased level of N6-methyladenosine (m6A) RNA methylation, which led to the upregulation of BACE2 mRNA. To our knowledge, this study provides a novel pattern of BACE2-mediated intracellular calcium release in ocular melanoma progression, and our findings suggest that m6A/BACE2/TMEM38b could be a potential therapeutic axis for ocular melanoma.
Collapse
Affiliation(s)
- Fanglin He
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Jie Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Shaoyun Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Hanhan Shi
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Xiang Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Xiaofang Xu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China.
| |
Collapse
|
31
|
Zhou C, Zhu J, Qian N, Guo J, Yan C. Bacillus subtilis SL18r Induces Tomato Resistance Against Botrytis cinerea, Involving Activation of Long Non-coding RNA, MSTRG18363, to Decoy miR1918. FRONTIERS IN PLANT SCIENCE 2021; 11:634819. [PMID: 33613592 PMCID: PMC7887324 DOI: 10.3389/fpls.2020.634819] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Mounting evidence has indicated that beneficial rhizobacteria can suppress foliar pathogen invasion via elicitation of induced systemic resistance (ISR). However, it remains elusive whether long non-coding RNAs (lncRNAs) are involved in the mediation of the rhizobacteria-primed ISR processes in plants. Herein, we demonstrated the ability of the rhizobacterial strain Bacillus subtilis SL18r to trigger ISR in tomato plants against the foliar pathogen Botrytis cinerea. Comparative transcriptome analysis was conducted to screen differentially expressed lncRNAs (DELs) between the non-inoculated and SL18r-inoculated plants. Among these DELs, four variants of MSTRG18363 possessed conserved binding sites for miR1918, which negatively regulates immune systems in tomato plants. The expression of MSTRG18363 in tomato leaves was significantly induced by SL18r inoculation. The transcription of MSTRG18363 was negatively correlated with the expression of miR1918, but displayed a positive correlation with the transcription of the RING-H2 finger gene SlATL20 (a target gene of miR1918). Moreover, MSTRG18363-overexpressing plants exhibited the enhanced disease resistance, reduction of miR1918 transcripts, and marked increases of SlATL20 expression. However, the SL18r-induced disease resistance was largely impaired in the MSTRG18363-silenced plants. VIGS-mediated SlATL20 silencing also greatly weakened the SL18r-induced disease resistance. Collectively, our results suggested that induction of MSTRG18363 expression in tomato plants by SL18r was conducive to promoting the decoy of miR1918 and regulating the expression of SlATL20, thereby provoking the ISR responses against foliar pathogen infection.
Collapse
Affiliation(s)
- Cheng Zhou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Jingjing Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Nana Qian
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Jiansheng Guo
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Congsheng Yan
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
32
|
Chai P, Yu J, Jia R, Wen X, Ding T, Zhang X, Ni H, Jia R, Ge S, Zhang H, Fan X. Generation of onco-enhancer enhances chromosomal remodeling and accelerates tumorigenesis. Nucleic Acids Res 2020; 48:12135-12150. [PMID: 33196849 PMCID: PMC7708045 DOI: 10.1093/nar/gkaa1051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 01/09/2023] Open
Abstract
Chromatin remodeling impacts the structural neighborhoods and regulates gene expression. However, the role of enhancer-guided chromatin remodeling in the gene regulation remains unclear. Here, using RNA-seq and ChIP-seq, we identified for the first time that neurotensin (NTS) serves as a key oncogene in uveal melanoma and that CTCF interacts with the upstream enhancer of NTS and orchestrates an 800 kb chromosomal loop between the promoter and enhancer. Intriguingly, this novel CTCF-guided chromatin loop was ubiquitous in a cohort of tumor patients. In addition, a disruption in this chromosomal interaction prevented the histone acetyltransferase EP300 from embedding in the promoter of NTS and resulted in NTS silencing. Most importantly, in vitro and in vivo experiments showed that the ability of tumor formation was significantly suppressed via deletion of the enhancer by CRISPR-Cas9. These studies delineate a novel onco-enhancer guided epigenetic mechanism and provide a promising therapeutic concept for disease therapy.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Ruobing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Xuyang Wen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Tianyi Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, P. R. China.,Frontier Science Research Center for Stem Cells, Tongji University, Shanghai, 200092, P. R. China
| | - Xiaoyu Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, P. R. China.,Frontier Science Research Center for Stem Cells, Tongji University, Shanghai, 200092, P. R. China
| | - Hongyan Ni
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, P. R. China.,Frontier Science Research Center for Stem Cells, Tongji University, Shanghai, 200092, P. R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
33
|
Jan S, Dar MI, Wani R, Sandey J, Mushtaq I, Lateef S, Syed SH. Targeting EHMT2/ G9a for cancer therapy: Progress and perspective. Eur J Pharmacol 2020; 893:173827. [PMID: 33347828 DOI: 10.1016/j.ejphar.2020.173827] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Euchromatic histone lysine methyltransferase-2, also known as G9a, is a ubiquitously expressed SET domain-containing histone lysine methyltransferase linked with both facultative and constitutive heterochromatin formation and transcriptional repression. It is an essential developmental gene and reported to play role in embryonic development, establishment of proviral silencing in ES cells, tumor cell growth, metastasis, T-cell immune response, cocaine induced neural plasticity and cognition and adaptive behavior. It is mainly responsible for carrying out mono, di and tri methylation of histone H3K9 in euchromatin. G9a levels are elevated in many cancers and its selective inhibition is known to reduce the cell growth and induce autophagy, apoptosis and senescence. We carried out a thorough search of online literature databases including Pubmed, Scopus, Journal websites, Clinical trials etc to gather the maximum possible information related to the G9a. The main messages from the cited papers are presented in a systematic manner. Chemical structures were drawn by Chemdraw software. In this review, we shed light on current understanding of structure and biological activity of G9a, the molecular events directing its targeting to genomic regions and its post-translational modification. Finally, we discuss the current strategies to target G9a in different cancers and evaluate the available compounds and agents used to inhibit G9a functions. The review provides the present status and future directions of research in targeting G9a and provides the basis to persuade the development of novel strategies to target G9a -related effects in cancer cells.
Collapse
Affiliation(s)
- Suraya Jan
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Ishaq Dar
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rubiada Wani
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagjeet Sandey
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Iqra Mushtaq
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sammar Lateef
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sajad Hussain Syed
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
34
|
Aprile M, Katopodi V, Leucci E, Costa V. LncRNAs in Cancer: From garbage to Junk. Cancers (Basel) 2020; 12:E3220. [PMID: 33142861 PMCID: PMC7692075 DOI: 10.3390/cancers12113220] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing-based transcriptomics has significantly redefined the concept of genome complexity, leading to the identification of thousands of lncRNA genes identification of thousands of lncRNA genes whose products possess transcriptional and/or post-transcriptional regulatory functions that help to shape cell functionality and fate. Indeed, it is well-established now that lncRNAs play a key role in the regulation of gene expression through epigenetic and posttranscriptional mechanims. The rapid increase of studies reporting lncRNAs alteration in cancers has also highlighted their relevance for tumorigenesis. Herein we describe the most prominent examples of well-established lncRNAs having oncogenic and/or tumor suppressive activity. We also discuss how technical advances have provided new therapeutic strategies based on their targeting, and also report the challenges towards their use in the clinical settings.
Collapse
Affiliation(s)
- Marianna Aprile
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| | - Vicky Katopodi
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Valerio Costa
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| |
Collapse
|
35
|
Wen X, Wang H, Chai P, Fan J, Zhang X, Ding T, Jia R, Ge S, Zhang H, Fan X. An Artificial CTCF Peptide Triggers Efficient Therapeutic Efficacy in Ocular Melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:317-325. [PMID: 32775616 PMCID: PMC7394857 DOI: 10.1016/j.omto.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Although CCCTC binding factor (CTCF) has been demonstrated to play a variety of often contradictory roles in tumorigenesis, little is known about its function in the tumorigenesis of ocular melanoma. Here, we generated two artificial CTCF peptides (Decoy-CTCFs) combining the zinc finger domain of wild-type CTCF and artificial marker region. This Decoy-CTCF retained the DNA binding region but lost the functional regions of wild-type CTCF. Transferring artificial CTCF into ocular melanoma cells suppressed proliferation and migration in the tumor cells, while no effect was observed in normal cells. Intriguingly, we first showed that decoy-CTCF inhibited tumorigenesis by preventing the histone acetyltransferase EP300 from binding to the promoter of SELL. Thus SELL was a novel oncogene in the tumorigenesis of ocular melanoma. These studies provide efficient decoy CTCF-based therapeutic concept in malignant ocular melanoma and reveal the potential mechanism underlying decoy-based tumor therapy.
Collapse
Affiliation(s)
- Xuyang Wen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Huixue Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Jiayan Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiaoyu Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China.,Frontier Science Research Center for Stem Cells, Tongji University, Shanghai 200092, P.R. China
| | - Tianyi Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China.,Frontier Science Research Center for Stem Cells, Tongji University, Shanghai 200092, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China.,Frontier Science Research Center for Stem Cells, Tongji University, Shanghai 200092, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
36
|
The roles of long noncoding RNAs in breast cancer metastasis. Cell Death Dis 2020; 11:749. [PMID: 32929060 PMCID: PMC7490374 DOI: 10.1038/s41419-020-02954-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most significant threat to female health. Breast cancer metastasis is the major cause of mortality in breast cancer patients. To fully unravel the molecular mechanisms that underlie the breast cancer cell metastasis is critical for developing strategies to improve survival and prognosis in breast cancer patients. Recent studies have revealed that the long noncoding RNAs (lncRNAs) are involved in breast cancer metastasis through a variety of molecule mechanisms, though the precise functional details of these lncRNAs are yet to be clarified. In the present review, we focus on the functions of lncRNAs in breast cancer invasion and metastasis, with particular emphasis on the functional properties, the regulatory factors, the therapeutic promise, as well as the future challenges in studying these lncRNA.
Collapse
|
37
|
Cai H, Li M, Jian W, Song C, Huang Y, Lan X, Lei C, Chen H. A novel lncRNA BADLNCR1 inhibits bovine adipogenesis by repressing GLRX5 expression. J Cell Mol Med 2020; 24:7175-7186. [PMID: 32449295 PMCID: PMC7339203 DOI: 10.1111/jcmm.15181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 01/14/2023] Open
Abstract
Adipogenesis is a complex cellular process, which needs a series of molecular events, including long non‐coding RNA (lncRNA). In the present study, a novel lncRNA named BADLNCR1 was identified as a regulator during bovine adipocyte differentiation, which plays an inhibitory role in lipid droplet formation and adipogenic marker gene expression. CHIPR‐seq data demonstrated a potential competitive binding motif between BADLNCR1 and sterol regulatory element‐binding proteins 1 and 2 (SREBP1/2). Dual‐luciferase reporter assay indicated target relationship between KLF2 and BADLNCR1. Moreover, after the induction of KLF2, the expression of adipogenic gene reduced, while the expression of BADLNCR1 increased. Real‐time quantitative PCR (qPCR) showed that BADLNCR1 negatively regulated mRNA expression of GLRX5 gene, a stimulator of genes that promoted formation of lipid droplets and expression of adipogenic genes. GLRX5 could partially reverse the effect of BADLNCR1 in bovine adipocyte differentiation. Dual‐luciferase reporter assay stated that BADLNCR1 significantly reduced the enhancement of C/EBPα on promoter activity of GLRX5 gene. Furthermore, CHIP‐PCR and CHIRP‐PCR confirmed the suppressing effect of BADLNCR1 on binding of C/EBPα to GLRX5 promoter. Collectively, this study revealed the molecular mechanisms underlying the negative regulation of BADLNCR1 in bovine adipogenic differentiation.
Collapse
Affiliation(s)
- Hanfang Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingxun Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wang Jian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengchuang Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
38
|
Mechanisms of Long Non-Coding RNAs in Cancers and Their Dynamic Regulations. Cancers (Basel) 2020; 12:cancers12051245. [PMID: 32429086 PMCID: PMC7281179 DOI: 10.3390/cancers12051245] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNA (lncRNA), which is a kind of noncoding RNA, is generally characterized as being more than 200 nucleotide transcripts in length. LncRNAs exhibit many biological activities, including, but not limited to, cancer development. In this review, a search of the PubMed database was performed to identify relevant studies published in English. The term "lncRNA or long non-coding RNA" was combined with a range of search terms related to the core focus of the review: mechanism, structure, regulation, and cancer. The eligibility of the retrieved studies was mainly based on the abstract. The decision as to whether or not the study was included in this review was made after a careful assessment of its content. The reference lists were also checked to identify any other study that could be relevant to this review. We first summarized the molecular mechanisms of lncRNAs in tumorigenesis, including competing endogenous RNA (ceRNA) mechanisms, epigenetic regulation, decoy and scaffold mechanisms, mRNA and protein stability regulation, transcriptional and translational regulation, miRNA processing regulation, and the architectural role of lncRNAs, which will help a broad audience better understand how lncRNAs work in cancer. Second, we introduced recent studies to elucidate the structure of lncRNAs, as there is a link between lncRNA structure and function and visualizing the architectural domains of lncRNAs is vital to understanding their function. Third, we explored emerging evidence for regulators of lncRNA expression, lncRNA turnover, and lncRNA modifications (including 5-methylcytidine, N6-methyladenosine, and adenosine to inosine editing), highlighting the dynamics of lncRNAs. Finally, we used autophagy in cancer as an example to interpret the diverse mechanisms of lncRNAs and introduced clinical trials of lncRNA-based cancer therapies.
Collapse
|
39
|
Ni H, Chai P, Yu J, Xing Y, Wang S, Fan J, Ge S, Wang Y, Jia R, Fan X. LncRNA CANT1 suppresses retinoblastoma progression by repellinghistone methyltransferase in PI3Kγ promoter. Cell Death Dis 2020; 11:306. [PMID: 32366932 PMCID: PMC7198571 DOI: 10.1038/s41419-020-2524-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Retinoblastoma (RB) is the most common malignant intraocular tumor of childhood. Recent studies have shown that long noncoding RNAs (lncRNAs), which are longer than 200 bp and without protein-coding ability, are key regulators of tumorigenesis. However, the role of lncRNAs in retinoblastoma remains to be elucidated. In this study, we found that the expression of lncRNA CASC15-New-Transcript 1 (CANT1) was significantly downregulated in RB. Notably, overexpression of CANT1 significantly inhibited RB growth both in vitro and in vivo. Furthermore, lncRNA CANT1, which was mainly located in the nucleus, occupied the promoter of phosphoinositide 3-kinase gamma (PI3Kγ) and blocked histone methyltransferase hSET1 from binding to the PI3Kγ promoter, thus abolishing hSET1-mediated histone H3K4 trimethylation of the PI3Kγ promoter and inhibiting PI3Kγ expression. Furthermore, we found that silencing PI3Kγ either by lncRNA CANT1 overexpression or by PI3Kγ siRNA, reduced the activity of PI3K/Akt signaling and suppressed RB tumorigenesis. In summary, lncRNA CANT1 acts as a suppressor of RB progression by blocking gene-specific histone methyltransferase recruitment. These findings outline a new CANT1 modulation mechanism and provide an alternative option for the RB treatment.
Collapse
Affiliation(s)
- Hongyan Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China, 200011.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China, 200011
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China, 200011.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China, 200011
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China, 200011.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China, 200011
| | - Yue Xing
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China, 200011.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China, 200011
| | - Shaoyun Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China, 200011.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China, 200011
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China, 200011.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China, 200011
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China, 200011.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China, 200011
| | - Yefei Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China, 200011. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China, 200011.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China, 200011. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China, 200011.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China, 200011. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China, 200011.
| |
Collapse
|
40
|
Hsieh CH, Chu CY, Lin SE, Yang YCS, Chang HS, Yen Y. TESC Promotes TGF-α/EGFR-FOXM1-Mediated Tumor Progression in Cholangiocarcinoma. Cancers (Basel) 2020; 12:cancers12051105. [PMID: 32365487 PMCID: PMC7281536 DOI: 10.3390/cancers12051105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma is a relatively uncommon but highly lethal malignancy. Improving outcomes in patients depends on earlier diagnosis and appropriate treatment; however, no satisfactory diagnostic biomarkers or targeted therapies are currently available. To address this shortcoming, we analyzed the transcriptomic datasets of cholangiocarcinoma from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and found that TESC is highly expressed in cholangiocarcinoma. Elevated cellular levels of TESC are correlated with larger tumor size and predict a poor survival outcome for patients. Knockdown of TESC via RNA interference suppresses tumor growth. RNA-sequencing analysis showed that silencing of TESC decreases the level of FOXM1, leading to cell cycle arrest. Correlation analysis revealed that the cellular level of TESC is correlated with that of FOXM1 in cholangiocarcinoma patients. We further observed that upon TGF-α induction, TESC is upregulated through the EGFR-STAT3 pathway and mediates TGF-α-induced tumor cell proliferation. In vivo experiments revealed that knockdown of TESC significantly attenuates tumor cell growth. Therefore, our data provide novel insight into TESC-mediated oncogenesis and reveal that TESC is a potential biomarker or serves as a therapeutic target for cholangiocarcinoma.
Collapse
Affiliation(s)
- Cheng-Han Hsieh
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Ying Chu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- CRISPR Gene Targeting Core Lab, Taipei Medical University, Taipei 110, Taiwan
| | - Sey-En Lin
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chen S.H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan
| | - Hung-Shu Chang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
- Cancer Center, Taipei Municipal Wanfang Hospital, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 1588); Fax: +886-2-2378-7795
| |
Collapse
|
41
|
Ray RM, Morris KV. Long Non-coding RNAs Mechanisms of Action in HIV-1 Modulation and the Identification of Novel Therapeutic Targets. Noncoding RNA 2020; 6:ncrna6010012. [PMID: 32183241 PMCID: PMC7151623 DOI: 10.3390/ncrna6010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
This review aims to highlight the role of long non-coding RNAs in mediating human immunodeficiency virus (HIV-1) viral replication, latency, disease susceptibility and progression. In particular, we focus on identifying possible lncRNA targets and their purported mechanisms of action for future drug design or gene therapeutics.
Collapse
|
42
|
Stapleton K, Das S, Reddy MA, Leung A, Amaram V, Lanting L, Chen Z, Zhang L, Palanivel R, Deiuliis JA, Natarajan R. Novel Long Noncoding RNA, Macrophage Inflammation-Suppressing Transcript ( MIST), Regulates Macrophage Activation During Obesity. Arterioscler Thromb Vasc Biol 2020; 40:914-928. [PMID: 32078363 PMCID: PMC7098442 DOI: 10.1161/atvbaha.119.313359] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Supplemental Digital Content is available in the text. Objective: Systemic low-grade inflammation associated with obesity and metabolic syndrome is a strong risk factor for the development of diabetes mellitus and associated cardiovascular complications. This inflammatory state is caused by release of proinflammatory cytokines by macrophages, especially in adipose tissue. Long noncoding RNAs regulate macrophage activation and inflammatory gene networks, but their role in macrophage dysfunction during diet-induced obesity has been largely unexplored. Approach and Results: We sequenced total RNA from peritoneal macrophages isolated from mice fed either high-fat diet or standard diet and performed de novo transcriptome assembly to identify novel differentially expressed mRNAs and long noncoding RNAs. A top candidate long noncoding RNA, macrophage inflammation-suppressing transcript (Mist), was downregulated in both peritoneal macrophages and adipose tissue macrophages from high-fat diet–fed mice. GapmeR-mediated Mist knockdown in vitro and in vivo upregulated expression of genes associated with immune response and inflammation and increased modified LDL (low-density lipoprotein) uptake in macrophages. Conversely, Mist overexpression decreased basal and LPS (lipopolysaccharide)-induced expression of inflammatory response genes and decreased modified LDL uptake. RNA-pull down coupled with mass spectrometry showed that Mist interacts with PARP1 (poly [ADP]-ribose polymerase-1). Disruption of this RNA-protein interaction increased PARP1 recruitment and chromatin PARylation at promoters of inflammatory genes, resulting in increased gene expression. Furthermore, human orthologous MIST was also downregulated by proinflammatory stimuli, and its expression in human adipose tissue macrophages inversely correlated with obesity and insulin resistance. Conclusions: Mist is a novel protective long noncoding RNA, and its loss during obesity contributes to metabolic dysfunction and proinflammatory phenotype of macrophages via epigenetic mechanisms.
Collapse
Affiliation(s)
- Kenneth Stapleton
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA.,Irell and Manella Graduate School of Biological Sciences (K.S., V.A., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Sadhan Das
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Marpadga A Reddy
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Amy Leung
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Vishnu Amaram
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA.,Irell and Manella Graduate School of Biological Sciences (K.S., V.A., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Linda Lanting
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Zhuo Chen
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Lingxiao Zhang
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Rengasamy Palanivel
- Cardiovascular Research Institute of the Case Western Reserve University, Cleveland, OH (R.P., J.A.D.)
| | - Jeffrey A Deiuliis
- Cardiovascular Research Institute of the Case Western Reserve University, Cleveland, OH (R.P., J.A.D.)
| | - Rama Natarajan
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA.,Irell and Manella Graduate School of Biological Sciences (K.S., V.A., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
43
|
Rahmani Z, Mojarrad M, Moghbeli M. Long non-coding RNAs as the critical factors during tumor progressions among Iranian population: an overview. Cell Biosci 2020; 10:6. [PMID: 31956395 PMCID: PMC6961246 DOI: 10.1186/s13578-020-0373-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer is associated with various genetic and environmental risk factors. Beside the mutations or aberrant expression of protein-coding genes, the genetic deregulation of non-coding RNAs has also an important role during tumor progression and metastasis. Long non-coding RNAs (lncRNAs) are a class of ncRNAs larger than 200 nucleotides that may function as tumor-suppressor or oncogene. MAIN BODY There is a raising trend of cancer incidence among Iranian population during the last decades. Therefore, it is required to prepare a general population specific panel of genetic markers for the early detection of cancer in this population. The tissue-specific expression characteristics and high stability in body fluids highlight the lncRNAs as efficient diagnostic and prognostic noninvasive biomarkers in cancer. In present review we summarized all of the lncRNAs which have been reported until now in different tumors among Iranian patients. CONCLUSIONS This review paves the way of introducing a population based noninvasive diagnostic panel of lncRNAs for the early detection of tumor cells among Iranian population.
Collapse
Affiliation(s)
- Zahra Rahmani
- Department of Medical Genetics, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Chai P, Yu J, Li Y, Shi Y, Fan X, Jia R. High-throughput transcriptional profiling combined with angiogenesis antibody array analysis in an orbital venous malformation cohort. Exp Eye Res 2020; 191:107916. [PMID: 31926133 DOI: 10.1016/j.exer.2020.107916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022]
Abstract
Orbital venous malformations (OVMs) are the most common benign orbital vascular disorders in adults and are characterized as enlarging encapsulated vascular neoplasms. These painless lesions grow slowly and become symptomatic with proptosis or visual disturbance. However, the pathogenic mechanism and diagnostic markers of OVMs remain poorly understood. To identify potential pathways involved in OVM formation, a cDNA microarray analysis was conducted with OVM samples and normal vascular tissues. These data were deposited in the National Omics Data Encyclopedia (NODE) database (accession number: OER033009). These pathway expression data were further confirmed by reverse transcription qPCR (RT-qPCR) in an OVM cohort. To explore the diagnostic markers in OVM, an angiogenesis antibody array was analyzed. The altered factors were further validated by enzyme-linked immunosorbent assay (ELISA) in the OVM cohort. Transcriptome screening revealed upregulated autophagy and VEGF pathways and downregulated Hippo, Wnt, hedgehog and vascular smooth muscle contraction signaling pathways in OVM samples. Furthermore, plasma EGF (p < 0.001) and Leptin (p < 0.01) levels were significantly elevated in OVM patients. Here, for the first time, we revealed the transcriptional background and plasma diagnostic markers in OVM, providing a novel understanding of OVM pathogenesis and facilitating the early diagnosis of OVM.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Yongyun Li
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Yingyun Shi
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
45
|
Yu J, Loh XJ, Luo Y, Ge S, Fan X, Ruan J. Insights into the epigenetic effects of nanomaterials on cells. Biomater Sci 2019; 8:763-775. [PMID: 31808476 DOI: 10.1039/c9bm01526d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the development of nanotechnology, nanomaterials are increasingly being applied in health fields, such as biomedicine, pharmaceuticals, and cosmetics. Concerns have therefore been raised over their toxicity and numerous studies have been carried out to assess their safety. Most studies on the toxicity and therapeutic mechanisms of nanomaterials have revealed the effects of nanomaterials on cells at the transcriptome and proteome levels. However, epigenetic modifications, for example DNA methylation, histone modification, and noncoding RNA expression induced by nanomaterials, which play an important role in the regulation of gene expression, have not received sufficient attention. In this review, we therefore state the importance of studying epigenetic effects induced by nanomaterials; then we review the progress of nanomaterial epigenetic research in the assessment of toxicity, therapeutic, and other mechanisms. We also clarify the possible study directions for future nanomaterial epigenetic research. Finally, we discuss the future development and challenges of nanomaterial epigenetics that must still be addressed. We hope to understand the potential toxicity of nanomaterials and clearly understand the therapeutic mechanism through a thorough investigation of nanomaterial epigenetics.
Collapse
Affiliation(s)
- Jie Yu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Yifei Luo
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
46
|
Li P, He J, Yang Z, Ge S, Zhang H, Zhong Q, Fan X. ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression. Autophagy 2019; 16:1186-1199. [PMID: 31462126 DOI: 10.1080/15548627.2019.1659614] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are proved to be critical regulators in numerous cellular processes. However, the potential involvement of lncRNAs in macroautophagy/autophagy is largely unknown. Autophagy is a highly regulated cellular degradation system, and its dysregulation is involved in many human diseases, including cancers. Here, we show that the lncRNA ZNNT1 is induced by PP242 and MTORC1 selective inhibitor rapamycin in uveal melanoma (UM) cells. Overexpression of ZNNT1 promotes autophagy by upregulating ATG12 expression, whereas knockdown of ZNNT1 attenuates PP242-induced autophagy. Overexpression of ZNNT1 inhibits tumorigenesis and the migration of UM cells, and knockdown of ATG12 can partially rescue the ZNNT1-induced inhibition of UM tumorigenesis. In summary, our study reveals that ZNNT1 acts as a potential tumor suppressor in UM by inducing autophagy. ABBREVIATIONS ADCD: autophagy dependent cell death; ANXA2R: annexin A2 receptor; ATG12: autophagy- related 12; ATG5: autophagy -related 5; ceRNA: competing endogenous RNAs; CQ: chloroquine; iTRAQ: isobaric tags for relative and absolute quantitation; lncRNA: long noncoding RNA; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR cmplex 2; PP242: Torkinib; RACE: rapid amplification of cDNA ends; SQSTM1/p62: sequestosome 1; UM: uveal melanoma.
Collapse
Affiliation(s)
- Peng Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, China
| | - Jie He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, China
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University , Shanghai, China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, (SJTU-SM) , Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, China
| |
Collapse
|
47
|
Chen W, Wang H, Liu Y, Xu W, Ling C, Li Y, Liu J, Chen M, Zhang Y, Chen B, Gong A, Xu M. Linc-RoR promotes proliferation, migration, and invasion via the Hippo/YAP pathway in pancreatic cancer cells. J Cell Biochem 2019; 121:632-641. [PMID: 31452251 DOI: 10.1002/jcb.29308] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
Large intergenic noncoding RNA regulator of reprogramming (Linc-RoR) was first identified as a regulator to increase the emergence of induced pluripotent stem cells through reprogramming differentiated cells and is abnormal expression in a variety of malignant tumors. However, the function of Linc-RoR in pancreatic cancer progression needs further clarification. The data from this study demonstrated that Linc-RoR knockdown suppressed cell proliferative capacity and colony formation, while Linc-RoR overexpression promoted these behaviors. In particular, Linc-RoR overexpression promoted the level of mesenchymal markers, inhibited the expression of epithelial markers, as well as enhanced pancreatic cancer cells migration and invasion, whereas Linc-RoR knockdown inhibited the expression of mesenchymal markers, promoted the expression of epithelial markers, as well as weakened pancreatic cancer cells migration and invasion. Further study revealed that Linc-RoR knockdown brought about a significant fall in YAP phosphorylation and a rise in total YAP, while Linc-RoR overexpression produced the opposite results. Specifically, Linc-RoR promoted YAP in the cytoplasm into the nucleus. Taken together, we conjectured that Linc-RoR promoted proliferation, migration, and invasion of pancreatic cancer cells by activating the Hippo/YAP pathway. YAP might be an underlying target of Linc-RoR and mediate epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC); thus, Linc-RoR might be a very meaningful biomarker for PC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Wei Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Chen Ling
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yafang Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Junqiang Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Mengjiao Chen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Youli Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Baoding Chen
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
48
|
Fan J, Xu Y, Wen X, Ge S, Jia R, Zhang H, Fan X. A Cohesin-Mediated Intrachromosomal Loop Drives Oncogenic ROR lncRNA to Accelerate Tumorigenesis. Mol Ther 2019; 27:2182-2194. [PMID: 31451355 DOI: 10.1016/j.ymthe.2019.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are an important class of pervasive noncoding RNA involved in a variety of biological functions. Numerous studies have demonstrated their important regulatory role in human disease, especially cancer. However, the mechanism underlying the transcription of lncRNAs is not fully elucidated. Here, a comparison of local chromatin structure of the ROR lncRNA locus revealed a cohesin-complex-mediated intrachromosomal loop that is juxtaposed with an upstream enhancer to the ROR promoter, enabling activation of endogenous ROR lncRNA in tumor cells. This chromosomal interaction was not observed in normal control cells. Knockdown of SMC1 by RNAi or deletion of the enhancer DNA by CRISPR/Cas9 abolished the intrachromosomal interaction, resulting in ROR lncRNA silencing and inhibition of the tumor progression in animals carrying tumor xenografts. Our results reveal a novel mechanism by which the cohesin-orchestrated intrachromosomal looping may serve as a critical epigenetic driver to activate transcription of ROR lncRNA, subsequently inducing tumorigenesis. Our data represent a novel chromosomal folding pattern of lncRNA regulation, thereby providing a novel alternative concept of chromosomal interaction in lncRNA-triggered tumorigenesis.
Collapse
Affiliation(s)
- Jiayan Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yangfan Xu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xuyang Wen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, P.R. China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| |
Collapse
|
49
|
LLCLPLDA: a novel model for predicting lncRNA-disease associations. Mol Genet Genomics 2019; 294:1477-1486. [PMID: 31250107 DOI: 10.1007/s00438-019-01590-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs play a significant role in the occurrence of diseases. Thus, studying the relationship prediction between lncRNAs and disease is becoming more popular. Researchers hope to determine effective treatments by revealing the occurrence and development of diseases at the molecular level. However, the traditional biological experimental way to verify the association between lncRNAs and disease is very time-consuming and expensive. Therefore, we developed a method called LLCLPLDA to predict potential lncRNA-disease associations. First, locality-constrained linear coding (LLC) is leveraged to project the features of lncRNAs and diseases to local-constraint features, and then, a label propagation (LP) strategy is used to mix up the initial association matrix and the obtained features of lncRNAs and diseases. To demonstrate the performance of our method, we compared LLCLPLDA with five methods in the leave-one-out cross-validation and fivefold cross-validation scheme, and the experimental results show that the proposed method outperforms the other five methods. Additionally, we conducted case studies on three diseases: cervical cancer, gliomas, and breast cancer. The top five predicted lncRNAs for cervical cancer and gliomas were verified, and four of the five lncRNAs for breast cancer were also confirmed.
Collapse
|
50
|
Song W, Gu Y, Lu S, Wu H, Cheng Z, Hu J, Qian Y, Zheng Y, Fan H. LncRNA TRERNA1 facilitates hepatocellular carcinoma metastasis by dimethylating H3K9 in the CDH1 promoter region via the recruitment of the EHMT2/SNAI1 complex. Cell Prolif 2019; 52:e12621. [PMID: 31012192 PMCID: PMC6668973 DOI: 10.1111/cpr.12621] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives Long non‐coding RNAs (LncRNAs) play an important role in hepatocellular carcinoma development, however, as a crucial driver of hepatocellular carcinoma (HCC) metastasis, their functions in tumour metastasis remain largely unknown. Materials and methods The lncRNA TRERNA1 expression levels were detected in HCC by quantitative real‐time PCR (qPCR). The function of TRERNA1 was examined by wound‐healing assays, transwell assays and tail vein injection experiments. The potential regulatory mechanisms of TRERNA1 on its target genes were explored by ChIP, RIP, IP and WB assays. Results Elevated TRERNA1 levels promoted HCC cell migration and invasion in vitro and in vivo. TRERNA1 recruited EHMT2 to dimethylate H3K9 in the CDH1 promoter region. Furthermore, EHMT2 bound to SNAI1 to suppress CDH1 expression in HCC cells. After inhibiting TRERNA1, the expression level of CDH1 was restored and was involved in the regulation of the EHMT2/SNAI1 complex. The level of TRERNA1 was positively correlated with tumour metastasis and was negatively correlated with the expression of CDH1 in HCC tissues. Conclusions For the first time, the current study reveals that TRERNA1 promotes cell metastasis and the invasion of HCC via the recruitment of EHMT2 and/or the EHMT2/SNAI1 complex to suppress CDH1. These data identify a novel mechanism that regulates TRERNA1 in metastatic HCC and provides a potential targeted therapy for HCC patients.
Collapse
Affiliation(s)
- Wei Song
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.,School of Life Science, Southeast University, Nanjing, China
| | - Yuejun Gu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.,School of Life Science, Southeast University, Nanjing, China
| | - Sen Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huazhang Wu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.,School of Life Science, Southeast University, Nanjing, China
| | - Zhenxing Cheng
- Department of Pathophysiology, Medical School of Southeast University, Nanjing, China
| | - Jiaojiao Hu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.,School of Life Science, Southeast University, Nanjing, China
| | - Yanyan Qian
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| | - Ying Zheng
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.,School of Life Science, Southeast University, Nanjing, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|