1
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
2
|
Starshin A, Abramov P, Lobanova Y, Sharko F, Filonova G, Kaluzhny D, Kaplun D, Deyev I, Mazur A, Prokchortchouk E, Zhenilo S. Dissecting the Kaiso binding profile in clear renal cancer cells. Epigenetics Chromatin 2024; 17:38. [PMID: 39702290 DOI: 10.1186/s13072-024-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND There has been a notable increase in interest in the transcriptional regulator Kaiso, which has been linked to the regulation of clonal hematopoiesis, myelodysplastic syndrome, and tumorigenesis. Nevertheless, there are no consistent data on the binding sites of Kaiso in vivo in the genome. Previous ChIP-seq analyses for Kaiso contradicted the accumulated data of Kaiso binding sites obtained in vitro. Here, we studied this discrepancy by characterizing the distribution profile of Kaiso binding sites in Caki-1 cells using Kaiso-deficient cells as a negative control, and compared its pattern on chromatin with that in lymphoblastoid cell lines. RESULTS We employed Caki-1 kidney carcinoma cells and their derivative, which lacks the Kaiso gene, as a model system to identify the genomic targets of Kaiso. The principal binding motifs for Kaiso are CGCG and CTGCNAT, with 60% of all binding sites containing both sequences. The significance of methyl-DNA binding activity was confirmed through examination of the genomic distribution of the E535A mutant variant of Kaiso, which cannot bind methylated DNA in vitro but is able to interact with CTGCNA sequences. Our findings indicate that Kaiso is present at CpG islands with a preference for methylated ones. We identified Kaiso target genes whose methylation and transcription are dependent on its expression. Furthermore, Kaiso binding sites are enriched at CpG islands, with partial methylation at the 5' and/or 3' boundaries. We discovered CpG islands exhibiting wave-like methylation patterns, with Kaiso detected in the majority of these areas. Similar data were obtained in other cell lines. CONCLUSION The present study delineates the genomic distribution of Kaiso in cancer cells, confirming its role as a factor with a complex mode of DNA binding and a strong association with CpG islands, particularly with methylated and eroded CpG islands, revealing a new potential Kaiso target gene-SQSTM1, involved in differentiation of acute myeloid leukemia cells. Furthermore, we discovered the existence of a new class of CpG islands characterized by wave-like DNA methylation.
Collapse
Affiliation(s)
- Alexey Starshin
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Pavel Abramov
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Yaroslava Lobanova
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Fedor Sharko
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Galina Filonova
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Dmitry Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Daria Kaplun
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Igor Deyev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - Alexander Mazur
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Egor Prokchortchouk
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Svetlana Zhenilo
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia.
| |
Collapse
|
3
|
Hu W, Zang L, Feng X, Zhuang S, Chang L, Liu Y, Huang J, Zhang Y. Advances in epigenetic therapies for B-cell non-hodgkin lymphoma. Ann Hematol 2024; 103:5085-5101. [PMID: 39652169 DOI: 10.1007/s00277-024-06131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) constitute a varied group of cancers originating from B lymphocytes. B-NHLs can occur at any stage of normal B-cell development, with most arising from germinal centres (e.g. diffuse large B-cell lymphoma, DLBCL and follicular lymphoma, FL). The standard initial treatment usually involves the chemoimmunotherapy regimen. Although there is a high initial response rate, 30-40% of high-risk patients often face relapsed or refractory lymphoma due to drug resistance. Recent research has uncovered a significant link between the development of B-NHLs and various epigenetic processes, such as DNA methylation, histone modification, regulation by non-coding RNAs, and chromatin remodeling. Therapies targeting these epigenetic changes have demonstrated considerable potential in clinical studies. This article examines the influence of epigenetic regulation on the onset and progression of B-NHLs. It discusses the current therapeutic targets and agents linked to these epigenetic mechanisms, with the goal of offering new perspectives and approaches for targeted therapies and combination chemotherapy in treating B-NHLs.
Collapse
Affiliation(s)
- Weiwen Hu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Lanlan Zang
- Pharmaceutical laboratory, Department of Pharmacy, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Xiaoxi Feng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Shuhui Zhuang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Liudi Chang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Yongjing Liu
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Jinyan Huang
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China.
| |
Collapse
|
4
|
Eftekhari Kenzerki M, Mohajeri Khorasani A, Zare I, Amirmahani F, Ghasemi Y, Hamblin MR, Mousavi P. Deciphering the role of LOC124905135-related non-coding RNA cluster in human cancers: A comprehensive review. Heliyon 2024; 10:e39931. [PMID: 39641053 PMCID: PMC11617737 DOI: 10.1016/j.heliyon.2024.e39931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), are essential regulators of processes, such as the cell cycle and apoptosis. In addition to interacting with intracellular complexes and participating in diverse molecular pathways, ncRNAs can be used as clinical diagnostic biomarkers and therapeutic targets for fighting cancer. Studying ncRNA gene clusters is crucial for understanding their role in cancer and developing new treatments. LOC124905135 is a protein-coding gene encoding a collagen alpha-1(III) chain-like protein, and also acts as a gene for several ncRNAs, including miR-3619, PRR34 antisense RNA 1 (PRR34-AS1), PRR34, long intergenic ncRNA 2939 (LINC02939), LOC112268288, and MIRLET7BHG. It also serves as a host gene for three miRNAs (hsa-let7-A3, hsa-miR-4763, and hsa-let-7b). Notably, the ncRNAs derived from this particular genomic region significantly affect various cell functions, including the cell cycle and apoptosis. This cluster of ncRNAs is dysregulated in several types of cancer, exhibiting mutations, alterations in copy number, and being subject to DNA methylation and histone modification. In summary, the ncRNAs derived from the LOC124905135 cluster could be used as targets for diagnosis, therapy monitoring, and drug discovery in human cancers.
Collapse
Affiliation(s)
- Maryam Eftekhari Kenzerki
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran
| | - Farzane Amirmahani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
5
|
Kim KA, Kim S, Wortzel I, Lee S, Han YD, Kim TM, Kim HS. Genome-wide methylation profiling reveals extracellular vesicle DNA as an ex vivo surrogate of cancer cell-derived DNA. Sci Rep 2024; 14:24110. [PMID: 39406948 PMCID: PMC11480397 DOI: 10.1038/s41598-024-75287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Extracellular vesicle-derived DNA (evDNA) encapsulates the complete genome and mutational status of cells; however, whether cancer cell-derived evDNA mirrors the epigenetic features of parental genomic DNA remains uncertain. This study aimed to assess and compare the DNA methylation patterns of evDNA from cancer cell lines and primary cancer tissues with those of the nuclear genomic DNA. We isolated evDNA secreted by two cancer cell lines (HCT116 and MDA-MB-231) from various subcellular compartments, including the nucleus and cytoplasm. Additionally, we obtained evDNA and nuclear DNA (nDNA) from the primary cancer tissues of colon cancer patients. We conducted a comprehensive genome-wide DNA methylation analysis using the Infinium Methylation EPIC BeadChip, examining > 850,000 CpG sites. Remarkable similarities were observed between evDNA and nDNA methylation patterns in cancer cell lines and patients. This concordance extended to clinical cancer tissue samples, showcasing the potential utility of evDNA methylation patterns in deducing cellular origin within heterogeneous populations through methylation-based deconvolution. The observed concordance underscores the potential of evDNA as a noninvasive surrogate marker for discerning tissue origin, particularly in cancer tissues, offering a promising future for cancer diagnostics. This finding enhances our understanding of cellular origins and would help develop innovative diagnostic and therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Kyung-A Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Sunmin Kim
- Department of Medical Informatics, College of Medicine, Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul, 06591, Republic of Korea
- College of Medicine, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Inbal Wortzel
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Suho Lee
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Dae Han
- Division of Colorectal Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
- College of Medicine, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Han Sang Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemungu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
7
|
Xue Y, Liu L, Zhang Y, He Y, Wang J, Ma Z, Li TJ, Zhang J, Huang Y, Gao YQ. Unraveling the key role of chromatin structure in cancer development through epigenetic landscape characterization of oral cancer. Mol Cancer 2024; 23:190. [PMID: 39243015 PMCID: PMC11378415 DOI: 10.1186/s12943-024-02100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Epigenetic alterations, such as those in chromatin structure and DNA methylation, have been extensively studied in a number of tumor types. But oral cancer, particularly oral adenocarcinoma, has received far less attention. Here, we combined laser-capture microdissection and muti-omics mini-bulk sequencing to systematically characterize the epigenetic landscape of oral cancer, including chromatin architecture, DNA methylation, H3K27me3 modification, and gene expression. In carcinogenesis, tumor cells exhibit reorganized chromatin spatial structures, including compromised compartment structures and altered gene-gene interaction networks. Notably, some structural alterations are observed in phenotypically non-malignant paracancerous but not in normal cells. We developed transformer models to identify the cancer propensity of individual genome loci, thereby determining the carcinogenic status of each sample. Insights into cancer epigenetic landscapes provide evidence that chromatin reorganization is an important hallmark of oral cancer progression, which is also linked with genomic alterations and DNA methylation reprogramming. In particular, regions of frequent copy number alternations in cancer cells are associated with strong spatial insulation in both cancer and normal samples. Aberrant methylation reprogramming in oral squamous cell carcinomas is closely related to chromatin structure and H3K27me3 signals, which are further influenced by intrinsic sequence properties. Our findings indicate that structural changes are both significant and conserved in two distinct types of oral cancer, closely linked to transcriptomic alterations and cancer development. Notably, the structural changes remain markedly evident in oral adenocarcinoma despite the considerably lower incidence of genomic copy number alterations and lesser extent of methylation alterations compared to squamous cell carcinoma. We expect that the comprehensive analysis of epigenetic reprogramming of different types and subtypes of primary oral tumors can provide additional guidance to the design of novel detection and therapy for oral cancer.
Collapse
Affiliation(s)
- Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lu Liu
- Changping Laboratory, Beijing, 102206, China
| | - Ye Zhang
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Oral Pathology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Yueying He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jingyao Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zicheng Ma
- Changping Laboratory, Beijing, 102206, China
| | - Tie-Jun Li
- Department of Oral Pathology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Jianyun Zhang
- Department of Oral Pathology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China.
| | - Yanyi Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, 528107, China.
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Changping Laboratory, Beijing, 102206, China.
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
| |
Collapse
|
8
|
Zhuang Z, Lin J, Wan Z, Weng J, Yuan Z, Xie Y, Liu Z, Xie P, Mao S, Wang Z, Wang X, Huang M, Luo Y, Yu H. Radiogenomic profiling of global DNA methylation associated with molecular phenotypes and immune features in glioma. BMC Med 2024; 22:352. [PMID: 39218882 PMCID: PMC11367996 DOI: 10.1186/s12916-024-03573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The radiogenomic analysis has provided valuable imaging biomarkers with biological insights for gliomas. The radiogenomic markers for molecular profile such as DNA methylation remain to be uncovered to assist the molecular diagnosis and tumor treatment. METHODS We apply the machine learning approaches to identify the magnetic resonance imaging (MRI) features that are associated with molecular profiles in 146 patients with gliomas, and the fitting models for each molecular feature (MoRad) are developed and validated. To provide radiological annotations for the molecular profiles, we devise two novel approaches called radiomic oncology (RO) and radiomic set enrichment analysis (RSEA). RESULTS The generated MoRad models perform well for profiling each molecular feature with radiomic features, including mutational, methylation, transcriptional, and protein profiles. Among them, the MoRad models have a remarkable performance in quantitatively mapping global DNA methylation. With RO and RSEA approaches, we find that global DNA methylation could be reflected by the heterogeneity in volumetric and textural features of enhanced regions in T2-weighted MRI. Finally, we demonstrate the associations of global DNA methylation with clinicopathological, molecular, and immunological features, including histological grade, mutations of IDH and ATRX, MGMT methylation, multiple methylation-high subtypes, tumor-infiltrating lymphocytes, and long-term survival outcomes. CONCLUSIONS Global DNA methylation is highly associated with radiological profiles in glioma. Radiogenomic global methylation is an imaging-based quantitative molecular biomarker that is associated with specific consensus molecular subtypes and immune features.
Collapse
Affiliation(s)
- Zhuokai Zhuang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Jinxin Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Zixiao Wan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Jingrong Weng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Ze Yuan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Yumo Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Zongchao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Institute, Beijing, 100142, China
| | - Peiyi Xie
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Siyue Mao
- Image and Minimally Invasive Intervention Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zongming Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Meijin Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
da Silva Duarte AJ, Sanabani SS. Deciphering epigenetic regulations in the inflammatory pathways of atopic dermatitis. Life Sci 2024; 348:122713. [PMID: 38735367 DOI: 10.1016/j.lfs.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Atopic dermatitis, commonly referred to as atopic eczema, is a persistent inflammatory skin disorder that predominantly manifests in children but may endure into adulthood. Its clinical management poses challenges due to the absence of a definitive cure, and its prevalence varies across ethnicities, genders, and geographic locations. The epigenetic landscape of AD includes changes in DNA methylation, changes in histone acetylation and methylation, and regulation by non-coding RNAs. These changes affect inflammatory and immune mechanisms, and research has identified AD-specific variations in DNA methylation, particularly in the affected epidermis. Histone modifications, including acetylation, have been associated with the disruption of skin barrier function in AD, suggesting the potential therapeutic benefit of histone deacetylase inhibitors such as belinostat. Furthermore, non-coding RNAs, particularly microRNAs and long non-coding RNAs (lncRNAs), have been implicated in modulating various cellular processes central to AD pathogenesis. Therapeutic implications in AD include the potential use of DNA methylation inhibitors and histone deacetylase inhibitors to correct aberrant methylation patterns and modulate gene expression related to immune responses and skin barrier functions. Additionally, the emerging role of lncRNAs suggests the possibility of using small interfering RNAs or antisense oligonucleotides to inhibit lncRNAs and adjust their regulatory impact on gene expression. In conclusion, the importance of epigenetic elements in AD is becoming increasingly clear as studies highlight the contribution of DNA methylation, histone modifications and, control by non-coding RNAs to the onset and progression of the disease. Understanding these epigenetic changes provides valuable insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil; Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil.
| |
Collapse
|
10
|
Shu J, Jelinek J, Chen H, Zhang Y, Qin T, Li M, Liu L, Issa JPJ. Genome-wide screening and functional validation of methylation barriers near promoters. Nucleic Acids Res 2024; 52:4857-4871. [PMID: 38647050 PMCID: PMC11109949 DOI: 10.1093/nar/gkae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
CpG islands near promoters are normally unmethylated despite being surrounded by densely methylated regions. Aberrant hypermethylation of these CpG islands has been associated with the development of various human diseases. Although local genetic elements have been speculated to play a role in protecting promoters from methylation, only a limited number of methylation barriers have been identified. In this study, we conducted an integrated computational and experimental investigation of colorectal cancer methylomes. Our study revealed 610 genes with disrupted methylation barriers. Genomic sequences of these barriers shared a common 41-bp sequence motif (MB-41) that displayed homology to the chicken HS4 methylation barrier. Using the CDKN2A (P16) tumor suppressor gene promoter, we validated the protective function of MB-41 and showed that loss of such protection led to aberrant hypermethylation. Our findings highlight a novel sequence signature of cis-acting methylation barriers in the human genome that safeguard promoters from silencing.
Collapse
Affiliation(s)
- Jingmin Shu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Cooper Medical School at Rowan University, Camden, NJ 08103, USA
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | - Hai Chen
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Yan Zhang
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Taichun Qin
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ming Li
- Phoenix VA Health Care System, Phoenix, AZ 85012, USA
- University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Cooper Medical School at Rowan University, Camden, NJ 08103, USA
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| |
Collapse
|
11
|
Kaur H, Jha P, Ochatt SJ, Kumar V. Single-cell transcriptomics is revolutionizing the improvement of plant biotechnology research: recent advances and future opportunities. Crit Rev Biotechnol 2024; 44:202-217. [PMID: 36775666 DOI: 10.1080/07388551.2023.2165900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 02/14/2023]
Abstract
Single-cell approaches are a promising way to obtain high-resolution transcriptomics data and have the potential to revolutionize the study of plant growth and development. Recent years have seen the advent of unprecedented technological advances in the field of plant biology to study the transcriptional information of individual cells by single-cell RNA sequencing (scRNA-seq). This review focuses on the modern advancements of single-cell transcriptomics in plants over the past few years. In addition, it also offers a new insight of how these emerging methods will expedite advance research in plant biotechnology in the near future. Lastly, the various technological hurdles and inherent limitations of single-cell technology that need to be conquered to develop such outstanding possible knowledge gain is critically analyzed and discussed.
Collapse
Affiliation(s)
- Harmeet Kaur
- Division of Research and Development, Plant Biotechnology Lab, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Priyanka Jha
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
- Department of Research Facilitation, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Sergio J Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Vijay Kumar
- Division of Research and Development, Plant Biotechnology Lab, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
12
|
Noguera-Castells A, García-Prieto CA, Álvarez-Errico D, Esteller M. Validation of the new EPIC DNA methylation microarray (900K EPIC v2) for high-throughput profiling of the human DNA methylome. Epigenetics 2023; 18:2185742. [PMID: 36871255 PMCID: PMC9988339 DOI: 10.1080/15592294.2023.2185742] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
DNA methylation, one of the best characterized epigenetic marks in the human genome, plays a pivotal role in gene transcription regulation and other biological processes in humans. On top of that, the DNA methylome undergoes profound changes in cancer and other disorders. However, large-scale and population-based studies are limited by high costs and the need for considerable expertise in data analysis for whole-genome bisulphite-sequencing methodologies. Following the success of the EPIC DNA methylation microarray, the newly developed Infinium HumanMethylationEPIC version 2.0 (900K EPIC v2) is now available. This new array contains more than 900,000 CpG probes covering the human genome and excluding masked probes from the previous version. The 900K EPIC v2 microarray adds more than 200,000 probes covering extra DNA cis-regulatory regions such as enhancers, super-enhancers and CTCF binding regions. Herein, we have technically and biologically validated the new methylation array to show its high reproducibility and consistency among technical replicates and with DNA extracted from FFPE tissue. In addition, we have hybridized primary normal and tumoural tissues and cancer cell lines from different sources and tested the robustness of the 900K EPIC v2 microarray when analysing the different DNA methylation profiles. The validation highlights the improvements offered by the new array and demonstrates the versatility of this updated tool for characterizing the DNA methylome in human health and disease.
Collapse
Affiliation(s)
- Aleix Noguera-Castells
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Carlos A García-Prieto
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Damiana Álvarez-Errico
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
13
|
Tigu AB, Bancos A. The Role of Epigenetic Modifier Mutations in Peripheral T-Cell Lymphomas. Curr Issues Mol Biol 2023; 45:8974-8988. [PMID: 37998740 PMCID: PMC10670124 DOI: 10.3390/cimb45110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a group of diseases with a low incidence, high degree of heterogeneity, and a dismal prognosis in most cases. Because of the low incidence of these diseases, there have been few therapeutic novelties developed over time. Nevertheless, this fact is changing presently as epigenetic modifiers have been shown to be recurrently mutated in some types of PTCLs, especially in the cases of PTCLs not otherwise specified (PTCL-NOS), T follicular helper (TFH), and angioimmunoblastic T-cell lymphoma (AITL). These have brought about more insight into PTCL biology, especially in the case of PTCLs arising from TFH lymphocytes. From a biological perspective, it has been observed that ten-eleven translocators (TET2) mutated T lymphocytes tend to polarize to TFH, while Tregs lose their inhibitory properties. IDH2 R172 was shown to have inhibitory effects on TET2, mimicking the effects of TET2 mutations, as well as having effects on histone methylation. DNA methyltransferase 3A (DNMT3A) loss-of-function, although it was shown to have opposite effects to TET2 from an inflammatory perspective, was also shown to increase the number of T lymphocyte progenitors. Aside from bringing about more knowledge of PTCL biology, these mutations were shown to increase the sensitivity of PTCLs to certain epigenetic therapies, like hypomethylating agents (HMAs) and histone deacetylase inhibitors (HDACis). Thus, to answer the question from the title of this review: We found the Achilles heel, but only for one of the Achilles.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Anamaria Bancos
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Kim JY, Lee HY, Lee SY, Kim SY, Park JL, Lee SD. DNA methylome profiling of blood to identify individuals in a pair of monozygotic twins. Genes Genomics 2023; 45:1273-1279. [PMID: 37198375 PMCID: PMC10504115 DOI: 10.1007/s13258-023-01396-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Short tandem repeat (STR) markers cannot be used to distinguish between genetically identical monozygotic (MZ) twins, causing problems in a case with an MZ twin as a suspect. Many studies have shown that in older MZ twins, there are significant differences in overall content and genomic distribution of methylation. OBJECTIVE In this study, we analyzed the DNA methylome profile of blood to identify recurrent differentially methylated CpG sites (DMCs) to discriminate between MZ twins. METHODS Blood samples were collected from 47 paired MZ twins. We performed the DNA methylation profiling using the HumanMethylation EPIC BeadChip platform and identified recurrent DMCs between MZ twins. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and motif enrichment analyses were performed to reveal the biological functions of recurrent DMCs. We collected DNA methylome data from the Gene Expression Omnibus (GEO) public database to verify the recurrent DMCs between MZ twins. RESULTS We identified recurrent DMCs between MZ twin samples and observed that they were enriched in immune-related genes. In addition, we verified our DMCs in a public dataset. CONCLUSION Our results suggest that the methylation level at recurrent DMCs between MZ twins may serve as a valuable biomarker for identification of individuals in a pair of MZ twins.
Collapse
Affiliation(s)
- Jae-Yoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - So-Yeon Lee
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea
| | - Jong-Lyul Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea.
- Aging Convergence Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea.
| | - Soong Deok Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
15
|
Tang ZC, Qu Q, Teng XQ, Zhuang HH, Xu WX, Qu J. Bibliometric analysis of evolutionary trends and hotspots of super-enhancers in cancer. Front Pharmacol 2023; 14:1192855. [PMID: 37576806 PMCID: PMC10415222 DOI: 10.3389/fphar.2023.1192855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: In the past decade, super-enhancer (SE) has become a research hotspot with increasing attention on cancer occurrence, development, and prognosis. To illustrate the hotspots of SE in cancer research and its evolutionary tendency, bibliometric analysis was carried out for this topic. Methods: Literature published before Dec 31, 2022, in WOSCC, was systematically classified, and Citespace, bibliometric.com/app, and GraphPad Prism analyzed the data. Results: After screening out inappropriate documents and duplicate data, 911 publications were selected for further bibliometric analysis. The top five research areas were Oncology (257, 28.211%), Cell Biology (210, 23.052%), Biochemistry Molecular Biology (209, 22.942%), Science Technology Other Topics (138, 15.148%), and Genetics Heredity (132, 14.490%). The United States of America (United States) has the highest number of documents (462, 50.71%), followed by China (303, 33.26%). Among the most productive institutions, four of which are from the United States and one from Singapore, the National University of Singapore. Harvard Medical School (7.68%) has the highest percentage of articles. Young, Richard A, with 32 publications, ranks first in the number of articles. The top three authors came from Whitehead Institute for Biomedical Research as a research team. More than two-thirds of the research are supported by the National Institutes of Health of the United States (337, 37.654%) and the United States Department of Health Human Services (337, 37.654%). And "super enhancer" (525), "cell identity" (258), "expression" (223), "cancer" (205), and "transcription factor" (193) account for the top 5 occurrence keywords. Discussion: Since 2013, SE and cancer related publications have shown a rapid growth trend. The United States continues to play a leading role in this field, as the top literature numbers, affiliations, funding agencies, and authors were all from the United States, followed by China and European countries. A high degree of active cooperation is evident among a multitude of countries. The role of SEs in cell identity, gene transcription, expression, and inhibition, as well as the relationship between SEs and TFs, and the selective inhibition of SEs, have received much attention, suggesting that they are hot issues for research.
Collapse
Affiliation(s)
- Zhen-Chu Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Management, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wei-Xin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
16
|
Ma Q, Zhao M, Long B, Li H. Super-enhancer-associated gene CAPG promotes AML progression. Commun Biol 2023; 6:622. [PMID: 37296281 PMCID: PMC10256737 DOI: 10.1038/s42003-023-04973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukemia is the most common acute leukemia in adults, the barrier of refractory and drug resistance has yet to be conquered in the clinical. Abnormal gene expression and epigenetic changes play an important role in pathogenesis and treatment. A super-enhancer is an epigenetic modifier that promotes pro-tumor genes and drug resistance by activating oncogene transcription. Multi-omics integrative analysis identifies the super-enhancer-associated gene CAPG and its high expression level was correlated with poor prognosis in AML. CAPG is a cytoskeleton protein but has an unclear function in AML. Here we show the molecular function of CAPG in regulating NF-κB signaling pathway by proteomic and epigenomic analysis. Knockdown of Capg in the AML murine model resulted in exhausted AML cells and prolonged survival of AML mice. In conclusion, SEs-associated gene CAPG can contributes to AML progression through NF-κB.
Collapse
Affiliation(s)
- Qian Ma
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Minyi Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China.
| |
Collapse
|
17
|
Di Giorgio E, Benetti R, Kerschbamer E, Xodo L, Brancolini C. Super-enhancer landscape rewiring in cancer: The epigenetic control at distal sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:97-148. [PMID: 37657861 DOI: 10.1016/bs.ircmb.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Super-enhancers evolve as elements at the top of the hierarchical control of gene expression. They are important end-gatherers of signaling pathways that control stemness, differentiation or adaptive responses. Many epigenetic regulations focus on these regions, and not surprisingly, during the process of tumorigenesis, various alterations can account for their dysfunction. Super-enhancers are emerging as key drivers of the aberrant gene expression landscape that sustain the aggressiveness of cancer cells. In this review, we will describe and discuss about the structure of super-enhancers, their epigenetic regulation, and the major changes affecting their functionality in cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Roberta Benetti
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Emanuela Kerschbamer
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Luigi Xodo
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy.
| |
Collapse
|
18
|
Lu D, Chen Y, Ke L, Wu W, Yuan L, Feng S, Huang Z, Lu Y, Wang J. Machine learning-assisted global DNA methylation fingerprint analysis for differentiating early-stage lung cancer from benign lung diseases. Biosens Bioelectron 2023; 235:115235. [PMID: 37178511 DOI: 10.1016/j.bios.2023.115235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
DNA methylation plays a critical role in the development of human tumors. However, routine characterization of DNA methylation can be time-consuming and labor-intensive. We herein describe a sensitive, simple surface-enhanced Raman spectroscopy (SERS) approach for identifying the DNA methylation pattern in early-stage lung cancer (LC) patients. By comparing SERS spectra of methylated DNA bases or sequences with their counterparts, we identified a reliable spectral marker of cytosine methylation. To move toward clinical applications, we applied our SERS strategy to detect the methylation patterns of genomic DNA (gDNA) extracted from cell line models as well as formalin-fixed paraffin-embedded tissues of early-stage LC and benign lung diseases (BLD) patients. In a clinical cohort of 106 individuals, our results showed distinct methylation patterns in gDNA between early-stage LC (n = 65) and BLD patients (n = 41), suggesting cancer-induced DNA methylation alterations. Combined with partial least square discriminant analysis, early-stage LC and BLD patients were differentiated with an area under the curve (AUC) value of 0.85. We believe that the SERS profiling of DNA methylation alterations, together with machine learning could potentially offer a promising new route toward the early detection of LC.
Collapse
|
19
|
Wang P, Liu X, Yu J, Meng Z, Lv Z, Shang C, Geng Q, Wang D, Xue D, Li L. Fucosyltransferases Regulated by Fusobacterium Nucleatum and Act as Novel Biomarkers in Colon Adenocarcinoma. J Inflamm Res 2023; 16:747-768. [PMID: 36852302 PMCID: PMC9960735 DOI: 10.2147/jir.s396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Purpose Colon adenocarcinoma (COAD) is one of the leading causes of cancer-associated mortality worldwide. Fucosyltransferases (FUTs) are associated with numerous cancers. We aimed to investigate the functions of FUTs in COAD. Patients and Methods Transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to analyze the expression and clinical relevance of FUTs in COAD. Real Time Quantitative PCR (RT-qPCR), Western blot, immunohistochemistry and ELISA were used to detect the relative RNA and protein expression levels. Colitis-associated cancer mice treated with Fusobacterium nucleatum were used to illustrate the effects of Fusobacterium nucleatum on FUTs and COAD. Luciferase reporting assay was used to investigate the binding of miRNA to mRNA. Results TCGA and GEO datasets showed abnormal expression of FUTs in COAD at transcript level. RT-qPCR, Western blot and immunohistochemistry showed increased expression of FUT1, POFUT1 and POFUT2 in COAD. COAD patients with a high expression of FUT1, FUT11, FUT13 (POFUT2) had a worse prognosis, while patients with a high expression of FUT2, FUT3, FUT6 had a better prognosis. FUT1 and POFUT2 could independently predict the prognosis of COAD patients. Functional analysis by CancerSEA database showed that FUT3, FUT6, FUT8, FUT12 (POFUT1) and FUT13 are associated with differentiation, apoptosis, invasion, quiescence, and hypoxia. FUTs are associated with the tumor microenvironment of COAD. FUT1 regulated by miR-939-3p inhibit the expression of MUC2. Fusobacterium nucleatum may affect the expression of FUTs by affecting their transcription factors and miRNA levels. Moreover, Fusobacterium nucleatum promotes COAD progression through the miR-939-3p/FUT1/MUC2 axis. Conclusion Fucosyltransferases play an important role and may be the mediator of Fusobacterium nucleatum promoting COAD progression.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xuxu Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jingjing Yu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ziang Meng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zhenyi Lv
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ce Shang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Qi Geng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Dawei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Correspondence: Dawei Wang, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, People’s Republic of China, Tel/Fax +86 451 85555776, Email
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Long Li
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, Shanghai, People’s Republic of China,Long Li, Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, 301 Yanchang Middle Road, Shanghai, 200072, People’s Republic of China, Tel/Fax +86 21 66307011, Email
| |
Collapse
|
20
|
Friedman MJ, Lee H, Lee JY, Oh S. Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages. Immune Netw 2023; 23:e5. [PMID: 36911799 PMCID: PMC9995996 DOI: 10.4110/in.2023.23.e5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and three-dimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.
Collapse
Affiliation(s)
- Meyer J. Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haram Lee
- College of Pharmacy Korea University, Sejong 30019, Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soohwan Oh
- College of Pharmacy Korea University, Sejong 30019, Korea
| |
Collapse
|
21
|
Li XP, Qu J, Teng XQ, Zhuang HH, Dai YH, Yang Z, Qu Q. The Emerging Role of Super-enhancers as Therapeutic Targets in The Digestive System Tumors. Int J Biol Sci 2023; 19:1036-1048. [PMID: 36923930 PMCID: PMC10008685 DOI: 10.7150/ijbs.78535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/09/2022] [Indexed: 02/05/2023] Open
Abstract
Digestive system tumors include malignancies of the stomach, pancreas, colon, rectum, and the esophagus, and are associated with high morbidity and mortality. Aberrant epigenetic modifications play a vital role in the progression of digestive system tumors. The aberrant transcription of key oncogenes is driven by super-enhancers (SEs), which are characterized by large clusters of enhancers with significantly high density of transcription factors, cofactors, and epigenetic modulatory proteins. The SEs consist of critical epigenetic regulatory elements, which modulate the biological characteristics of digestive system tumors including tumor cell identity and differentiation, tumorigenesis, environmental response, immune response, and chemotherapeutic resistance. The core transcription regulatory loop of the digestive system tumors is complex and a high density of transcription regulatory complexes in the SEs and the crosstalk between SEs and the noncoding RNAs. In this review, we summarized the known characteristics and functions of the SEs in the digestive system tumors. Furthermore, we discuss the oncogenic roles and regulatory mechanisms of SEs in the digestive system tumors. We highlight the role of SE-driven genes, enhancer RNAs (eRNAs), lncRNAs, and miRNAs in the digestive system tumor growth and progression. Finally, we discuss clinical significance of the CRISPR-Cas9 gene editing system and inhibitors of SE-related proteins such as BET and CDK7 as potential cancer therapeutics.
Collapse
Affiliation(s)
- Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410007, PR China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410007, PR China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, PR China.,Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, PR China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, PR China
| | - Hai-Hui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, PR China
| | - Ying-Huan Dai
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Zhi Yang
- Department of Colorectal and Anal Surgery, Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410007, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410007, PR China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410007, PR China.,Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, PR China
| |
Collapse
|
22
|
Yang X, Zheng W, Li M, Zhang S. Somatic Super-Enhancer Epigenetic Signature for Overall Survival Prediction in Patients with Breast Invasive Carcinoma. Bioinform Biol Insights 2023; 17:11779322231162767. [PMID: 37020500 PMCID: PMC10068971 DOI: 10.1177/11779322231162767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/18/2023] [Indexed: 04/03/2023] Open
Abstract
To analyze genome-wide super-enhancers (SEs) methylation signature of breast invasive carcinoma (BRCA) and its clinical value. Differential methylation sites (DMS) between BRCA and adjacent tissues from The Cancer Genome Atlas (TCGA) database were identified by using ChAMP package in R software. Super-enhancers were identified sing ROSE software. Overlap analysis was used to assess the potential DMS in SEs region. Feature selection was performed by Cox regression and least absolute shrinkage and selection operator (LASSO) algorithm based on TCGA training cohort. Prognosis model validation was performed in TCGA training cohort, TCGA validation cohort, and gene expression omnibus (GEO) test cohort. The gene ontology and KEGG analysis revealed that SEs target genes were significantly enriched in cell-migration-associated processes and pathways. A total of 83 654 DMS were identified between BRCA and adjacent tissues. Around 2397 DMS in SEs region were identified by overlap study and used to feature selection. By using Cox regression and LASSO algorithm, 42 features were selected to develop a clinical prediction model (CPM). Both training (TCGA) and validation cohorts (TCGA and GEO) show that the CPM has ideal discrimination and calibration. The CPM based on DMS at SE regions has ideal discrimination and calibration, which combined with tumor node metastasis (TNM) stage could improve prognostication, and thus contribute to individualized medicine.
Collapse
Affiliation(s)
- Xu Yang
- Department of Urology, Fujian Medical
University Union Hospital, Fuzhou, P.R. China
| | - Wenzhong Zheng
- Department of Urology, Fujian Medical
University Union Hospital, Fuzhou, P.R. China
| | - Mengqiang Li
- Department of Urology, Fujian Medical
University Union Hospital, Fuzhou, P.R. China
| | - Shiqiang Zhang
- Department of Urology, Kidney and
Urology Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen,
P.R. China
- Shiqiang Zhang, Department of Urology,
Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-Sen
University, No.628, Zhenyuan Rd, Guangming (New) Dist., Shenzhen 518107, P.R.
China.
| |
Collapse
|
23
|
Bizet M, Defrance M, Calonne E, Bontempi G, Sotiriou C, Fuks F, Jeschke J. Improving Infinium MethylationEPIC data processing: re-annotation of enhancers and long noncoding RNA genes and benchmarking of normalization methods. Epigenetics 2022; 17:2434-2454. [DOI: 10.1080/15592294.2022.2135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gianluca Bontempi
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institut Jules Bordet, ULB, Brussels, Belgium
| | - Jana Jeschke
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institut Jules Bordet, ULB, Brussels, Belgium
| |
Collapse
|
24
|
Zheng X, Zhao X. A hypothetical model of skewed DNA methylation balance in the enhancer regions containing differentially methylated cytosines associated with non-malignant complex diseases. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Ni P, Wilson D, Su Z. A map of cis-regulatory modules and constituent transcription factor binding sites in 80% of the mouse genome. BMC Genomics 2022; 23:714. [PMID: 36261804 PMCID: PMC9583556 DOI: 10.1186/s12864-022-08933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mouse is probably the most important model organism to study mammal biology and human diseases. A better understanding of the mouse genome will help understand the human genome, biology and diseases. However, despite the recent progress, the characterization of the regulatory sequences in the mouse genome is still far from complete, limiting its use to understand the regulatory sequences in the human genome. RESULTS Here, by integrating binding peaks in ~ 9,000 transcription factor (TF) ChIP-seq datasets that cover 79.9% of the mouse mappable genome using an efficient pipeline, we were able to partition these binding peak-covered genome regions into a cis-regulatory module (CRM) candidate (CRMC) set and a non-CRMC set. The CRMCs contain 912,197 putative CRMs and 38,554,729 TF binding sites (TFBSs) islands, covering 55.5% and 24.4% of the mappable genome, respectively. The CRMCs tend to be under strong evolutionary constraints, indicating that they are likely cis-regulatory; while the non-CRMCs are largely selectively neutral, indicating that they are unlikely cis-regulatory. Based on evolutionary profiles of the genome positions, we further estimated that 63.8% and 27.4% of the mouse genome might code for CRMs and TFBSs, respectively. CONCLUSIONS Validation using experimental data suggests that at least most of the CRMCs are authentic. Thus, this unprecedentedly comprehensive map of CRMs and TFBSs can be a good resource to guide experimental studies of regulatory genomes in mice and humans.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - David Wilson
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
26
|
Giacoman-Lozano M, Meléndez-Ramírez C, Martinez-Ledesma E, Cuevas-Diaz Duran R, Velasco I. Epigenetics of neural differentiation: Spotlight on enhancers. Front Cell Dev Biol 2022; 10:1001701. [PMID: 36313573 PMCID: PMC9606577 DOI: 10.3389/fcell.2022.1001701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Neural induction, both in vivo and in vitro, includes cellular and molecular changes that result in phenotypic specialization related to specific transcriptional patterns. These changes are achieved through the implementation of complex gene regulatory networks. Furthermore, these regulatory networks are influenced by epigenetic mechanisms that drive cell heterogeneity and cell-type specificity, in a controlled and complex manner. Epigenetic marks, such as DNA methylation and histone residue modifications, are highly dynamic and stage-specific during neurogenesis. Genome-wide assessment of these modifications has allowed the identification of distinct non-coding regulatory regions involved in neural cell differentiation, maturation, and plasticity. Enhancers are short DNA regulatory regions that bind transcription factors (TFs) and interact with gene promoters to increase transcriptional activity. They are of special interest in neuroscience because they are enriched in neurons and underlie the cell-type-specificity and dynamic gene expression profiles. Classification of the full epigenomic landscape of neural subtypes is important to better understand gene regulation in brain health and during diseases. Advances in novel next-generation high-throughput sequencing technologies, genome editing, Genome-wide association studies (GWAS), stem cell differentiation, and brain organoids are allowing researchers to study brain development and neurodegenerative diseases with an unprecedented resolution. Herein, we describe important epigenetic mechanisms related to neurogenesis in mammals. We focus on the potential roles of neural enhancers in neurogenesis, cell-fate commitment, and neuronal plasticity. We review recent findings on epigenetic regulatory mechanisms involved in neurogenesis and discuss how sequence variations within enhancers may be associated with genetic risk for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Mayela Giacoman-Lozano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
| | - César Meléndez-Ramírez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Emmanuel Martinez-Ledesma
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, NL, Mexico
| | - Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
- *Correspondence: Raquel Cuevas-Diaz Duran, ; Iván Velasco,
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
- *Correspondence: Raquel Cuevas-Diaz Duran, ; Iván Velasco,
| |
Collapse
|
27
|
Cheruba E, Viswanathan R, Wong PM, Womersley HJ, Han S, Tay B, Lau Y, Gan A, Poon PSY, Skanderup A, Ng SB, Chok AY, Chong DQ, Tan IB, Cheow LF. Heat selection enables highly scalable methylome profiling in cell-free DNA for noninvasive monitoring of cancer patients. SCIENCE ADVANCES 2022; 8:eabn4030. [PMID: 36083902 PMCID: PMC9462700 DOI: 10.1126/sciadv.abn4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/22/2022] [Indexed: 06/01/2023]
Abstract
Genome-wide analysis of cell-free DNA methylation profile is a promising approach for sensitive and specific detection of many cancers. However, scaling such assays for clinical translation is impractical because of the high cost of whole-genome bisulfite sequencing. We show that the small fraction of GC-rich genome is highly enriched in CpG sites and disproportionately harbors most of the cancer-specific methylation signature. Here, we report on the simple and effective heat enrichment of CpG-rich regions for bisulfite sequencing (Heatrich-BS) platform that allows for focused methylation profiling in these highly informative regions. Our novel method and bioinformatics algorithm enable accurate tumor burden estimation and quantitative tracking of colorectal cancer patient's response to treatment at much reduced sequencing cost suitable for frequent monitoring. We also show tumor epigenetic subtyping using Heatrich-BS, which could enable patient stratification. Heatrich-BS holds great potential for highly scalable screening and monitoring of cancer using liquid biopsy.
Collapse
Affiliation(s)
- Elsie Cheruba
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Ramya Viswanathan
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Pui-Mun Wong
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
| | - Howard John Womersley
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Brenda Tay
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Yiting Lau
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
| | - Anna Gan
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
| | - Polly S. Y. Poon
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
| | - Anders Skanderup
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Sarah B. Ng
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
| | - Aik Yong Chok
- Department of Colorectal Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Dawn Qingqing Chong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Iain Beehuat Tan
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
28
|
Esteller M. A timely, user-friendly analysis of the mouse DNA methylome. CELL GENOMICS 2022; 2:100153. [PMID: 36776781 PMCID: PMC9903646 DOI: 10.1016/j.xgen.2022.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mouse models are widely used in biomedical sciences and in epigenetic studies, yet a simple way to interrogate the mouse DNA methylation was lacking. In this issue of Cell Genomics, Zhou et al.1 describe a mouse DNA methylation microarray to simplify epigenomic analysis.
Collapse
Affiliation(s)
- Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain,Corresponding author
| |
Collapse
|
29
|
Wei Q, Jin C, Wang Y, Guo S, Guo X, Liu X, An J, Xing J, Li B. A computational framework to unify orthogonal information in DNA methylation and copy number aberrations in cell-free DNA for early cancer detection. Brief Bioinform 2022; 23:6596991. [PMID: 35649341 DOI: 10.1093/bib/bbac200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 11/14/2022] Open
Abstract
Cell-free DNA (cfDNA) provides a convenient diagnosis avenue for noninvasive cancer detection. The current methods are focused on identifying circulating tumor DNA (ctDNA)s genomic aberrations, e.g. mutations, copy number aberrations (CNAs) or methylation changes. In this study, we report a new computational method that unifies two orthogonal pieces of information, namely methylation and CNAs, derived from whole-genome bisulfite sequencing (WGBS) data to quantify low tumor content in cfDNA. It implements a Bayes model to enrich ctDNA from WGBS data based on hypomethylation haplotypes, and subsequently, models CNAs for cancer detection. We generated WGBS data in a total of 262 samples, including high-depth (>20×, deduped high mapping quality reads) data in 76 samples with matched triplets (tumor, adjacent normal and cfDNA) and low-depth (~2.5×, deduped high mapping quality reads) data in 186 samples. We identified a total of 54 Mb regions of hypomethylation haplotypes for model building, a vast majority of which are not covered in the HumanMethylation450 arrays. We showed that our model is able to substantially enrich ctDNA reads (tens of folds), with clearly elevated CNAs that faithfully match the CNAs in the paired tumor samples. In the 19 hepatocellular carcinoma cfDNA samples, the estimated enrichment is as high as 16 fold, and in the simulation data, it can achieve over 30-fold enrichment for a ctDNA level of 0.5% with a sequencing depth of 600×. We also found that these hypomethylation regions are also shared among many cancer types, thus demonstrating the potential of our framework for pancancer early detection.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37232, U.S.A
| | - Chao Jin
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Shanshan Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaonan Liu
- Ambulatory Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jiaze An
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37232, U.S.A
| |
Collapse
|
30
|
Silva TC, Young JI, Martin ER, Chen XS, Wang L. MethReg: estimating the regulatory potential of DNA methylation in gene transcription. Nucleic Acids Res 2022; 50:e51. [PMID: 35100398 PMCID: PMC9122535 DOI: 10.1093/nar/gkac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 01/02/2023] Open
Abstract
Epigenome-wide association studies often detect many differentially methylated sites, and many are located in distal regulatory regions. To further prioritize these significant sites, there is a critical need to better understand the functional impact of CpG methylation. Recent studies demonstrated that CpG methylation-dependent transcriptional regulation is a widespread phenomenon. Here, we present MethReg, an R/Bioconductor package that analyzes matched DNA methylation and gene expression data, along with external transcription factor (TF) binding information, to evaluate, prioritize and annotate CpG sites with high regulatory potential. At these CpG sites, TF-target gene associations are often only present in a subset of samples with high (or low) methylation levels, so they can be missed by analyses that use all samples. Using colorectal cancer and Alzheimer's disease datasets, we show MethReg significantly enhances our understanding of the regulatory roles of DNA methylation in complex diseases.
Collapse
Affiliation(s)
- Tiago C Silva
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I Young
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R Martin
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - X Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
31
|
Detilleux D, Spill YG, Balaramane D, Weber M, Bardet AF. Pan-cancer predictions of transcription factors mediating aberrant DNA methylation. Epigenetics Chromatin 2022; 15:10. [PMID: 35331302 PMCID: PMC8944071 DOI: 10.1186/s13072-022-00443-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/04/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aberrant DNA methylation is a hallmark of cancer cells. However, the mechanisms underlying changes in DNA methylation remain elusive. Transcription factors initially thought to be repressed from binding by DNA methylation, have recently emerged as being able to shape DNA methylation patterns. RESULTS Here, we integrated the massive amount of data available from The Cancer Genome Atlas to predict transcription factors driving aberrant DNA methylation in 13 cancer types. We identified differentially methylated regions between cancer and matching healthy samples, searched for transcription factor motifs enriched in those regions and selected transcription factors with corresponding changes in gene expression. We predict transcription factors known to be involved in cancer as well as novel candidates to drive hypo-methylated regions such as FOXA1 and GATA3 in breast cancer, FOXA1 and TWIST1 in prostate cancer and NFE2L2 in lung cancer. We also predict transcription factors that lead to hyper-methylated regions upon transcription factor loss such as EGR1 in several cancer types. Finally, we validate that FOXA1 and GATA3 mediate hypo-methylated regions in breast cancer cells. CONCLUSION Our work highlights the importance of some transcription factors as upstream regulators shaping DNA methylation patterns in cancer.
Collapse
Affiliation(s)
- Dylane Detilleux
- UMR7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, 67412, Illkirch, France
| | - Yannick G Spill
- UMR7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, 67412, Illkirch, France
| | - Delphine Balaramane
- UMR7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, 67412, Illkirch, France
| | - Michaël Weber
- UMR7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, 67412, Illkirch, France.
| | - Anaïs Flore Bardet
- UMR7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, 67412, Illkirch, France.
| |
Collapse
|
32
|
Super enhancers as master gene regulators in the pathogenesis of hematologic malignancies. Biochim Biophys Acta Rev Cancer 2022; 1877:188697. [PMID: 35150791 DOI: 10.1016/j.bbcan.2022.188697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Transcriptional deregulation of multiple oncogenes, tumor suppressors and survival pathways is a cancer cell hallmark. Super enhancers (SE) are long stretches of active enhancers in close linear proximity that ensure extraordinarily high expression levels of key genes associated with cell lineage, function and survival. SE landscape is intrinsically prone to changes and reorganization during the course of normal cell differentiation. This functional plasticity is typically utilized by cancer cells, which remodel their SE landscapes to ensure oncogenic transcriptional reprogramming. Multiple recent studies highlighted structural genetic mechanisms in non-coding regions that create new SE or hijack already existing ones. In addition, alterations in abundance/activity of certain SE-associated proteins or certain viral infections can elicit new super enhancers and trigger SE-driven transcriptional changes. For these reasons, SE profiling emerged as a powerful tool for discovering the core transcriptional regulatory circuits in tumor cells. This, in turn, provides new insights into cancer cell biology, and identifies main nodes of key cellular pathways to be potentially targeted. Since SEs are susceptible to inhibition, their disruption results in exponentially amassing 'butterfly' effect on gene expression and cell function. Moreover, many of SE elements are druggable, opening new therapeutic opportunities. Indeed, SE targeting drugs have been studied preclinically in various hematologic malignancies with promising effects. Herein, we review the unique features of SEs, present different cis- and trans-acting mechanisms through which hematologic tumor cells acquire SEs, and finally, discuss the potential of SE targeting in the therapy of hematologic malignancies.
Collapse
|
33
|
Xue Y, Yang Y, Tian H, Quan H, Liu S, Zhang L, Yang L, Zhu H, Wu H, Gao YQ. Computational characterization of domain-segregated 3D chromatin structure and segmented DNA methylation status in carcinogenesis. Mol Oncol 2022; 16:699-716. [PMID: 34708506 PMCID: PMC8807360 DOI: 10.1002/1878-0261.13127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
The high-order chromatin structure, together with DNA methylation and other epigenetic marks, plays a vital role in gene regulation and displays abnormal status in cancer cells. Theoretical analyses are expected to provide a more unified understanding of the multi-omics data on the large variety of samples, and hopefully a common picture of carcinogenesis. In particular, we are interested in the question of whether an underlying origin DNA sequence exists for these epigenetic alterations. The human genome consists of two types of megabase-sized domain based on the distribution of CpG islands (CGIs) that show distinct structural, epigenetic, and transcriptional properties: CGI-rich and CGI-poor domains. Through an integrated analysis of chromatin structure, DNA methylation, and RNA sequencing data, we found that, in carcinogenesis, the two different types of domain display different structural changes and have an increased number of DNA methylation differences and transcriptional-level differences, compared with in noncancer cells. We also compared the structural features among carcinogenesis, senescence, and mitosis, showing the possible connection between chromatin structure and cell state, which could affect vital cancer-related properties. In summary, chromatin structure, DNA methylation, and gene expression, as well as their changes observed in several types of cancers, show a dependence on multiscale DNA sequence heterogeneity.
Collapse
Affiliation(s)
- Yue Xue
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Ying Yang
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Hao Tian
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Hui Quan
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Sirui Liu
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Ling Zhang
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Lu Yang
- The MOE Key Laboratory of Cell Proliferation and DifferentiationSchool of Life SciencesPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Haichuan Zhu
- The MOE Key Laboratory of Cell Proliferation and DifferentiationSchool of Life SciencesPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and DifferentiationSchool of Life SciencesPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseasePeking University People’s HospitalBeijingChina
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijingChina
- Beijing Advanced Innovation Center for Genomics (ICG)Peking UniversityBeijingChina
| |
Collapse
|
34
|
Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov 2022; 12:31-46. [PMID: 35022204 DOI: 10.1158/2159-8290.cd-21-1059] [Citation(s) in RCA: 4118] [Impact Index Per Article: 1372.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023]
Abstract
The hallmarks of cancer conceptualization is a heuristic tool for distilling the vast complexity of cancer phenotypes and genotypes into a provisional set of underlying principles. As knowledge of cancer mechanisms has progressed, other facets of the disease have emerged as potential refinements. Herein, the prospect is raised that phenotypic plasticity and disrupted differentiation is a discrete hallmark capability, and that nonmutational epigenetic reprogramming and polymorphic microbiomes both constitute distinctive enabling characteristics that facilitate the acquisition of hallmark capabilities. Additionally, senescent cells, of varying origins, may be added to the roster of functionally important cell types in the tumor microenvironment. SIGNIFICANCE: Cancer is daunting in the breadth and scope of its diversity, spanning genetics, cell and tissue biology, pathology, and response to therapy. Ever more powerful experimental and computational tools and technologies are providing an avalanche of "big data" about the myriad manifestations of the diseases that cancer encompasses. The integrative concept embodied in the hallmarks of cancer is helping to distill this complexity into an increasingly logical science, and the provisional new dimensions presented in this perspective may add value to that endeavor, to more fully understand mechanisms of cancer development and malignant progression, and apply that knowledge to cancer medicine.
Collapse
Affiliation(s)
- Douglas Hanahan
- Ludwig Institute for Cancer Research - Lausanne Branch, Lausanne, Switzerland. The Swiss Institute for Experimental Cancer Research (ISREC) within the School of Life Sciences at the Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland. The Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
35
|
Liu P. Pan-Cancer DNA Methylation Analysis and Tumor Origin Identification of Carcinoma of Unknown Primary Site Based on Multi-Omics. Front Genet 2022; 12:798748. [PMID: 35069697 PMCID: PMC8770539 DOI: 10.3389/fgene.2021.798748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
The metastatic cancer of unknown primary (CUP) sites remains a leading cause of cancer death with few therapeutic options. The aberrant DNA methylation (DNAm) is the most important risk factor for cancer, which has certain tissue specificity. However, how DNAm alterations in tumors differ among the regulatory network of multi-omics remains largely unexplored. Therefore, there is room for improvement in our accuracy in the prediction of tumor origin sites and a need for better understanding of the underlying mechanisms. In our study, an integrative analysis based on multi-omics data and molecular regulatory network uncovered genome-wide methylation mechanism and identified 23 epi-driver genes. Apart from the promoter region, we also found that the aberrant methylation within the gene body or intergenic region was significantly associated with gene expression. Significant enrichment analysis of the epi-driver genes indicated that these genes were highly related to cellular mechanisms of tumorigenesis, including T-cell differentiation, cell proliferation, and signal transduction. Based on the ensemble algorithm, six CpG sites located in five epi-driver genes were selected to construct a tissue-specific classifier with a better accuracy (>95%) using TCGA datasets. In the independent datasets and the metastatic cancer datasets from GEO, the accuracy of distinguishing tumor subtypes or original sites was more than 90%, showing better robustness and stability. In summary, the integration analysis of large-scale omics data revealed complex regulation of DNAm across various cancer types and identified the epi-driver genes participating in tumorigenesis. Based on the aberrant methylation status located in epi-driver genes, a classifier that provided the highest accuracy in tracing back to the primary sites of metastatic cancer was established. Our study provides a comprehensive and multi-omics view of DNAm-associated changes across cancer types and has potential for clinical application.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center For Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Cho JW, Shim HS, Lee CY, Park SY, Hong MH, Lee I, Kim HR. The importance of enhancer methylation for epigenetic regulation of tumorigenesis in squamous lung cancer. Exp Mol Med 2022; 54:12-22. [PMID: 34987166 PMCID: PMC8813945 DOI: 10.1038/s12276-021-00718-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell lung cancer (NSCLC). LUSC occurs at the bronchi, shows a squamous appearance, and often occurs in smokers. To determine the epigenetic regulatory mechanisms of tumorigenesis, we performed a genome-wide analysis of DNA methylation in tumor and adjacent normal tissues from LUSC patients. With the Infinium Methylation EPIC Array, > 850,000 CpG sites, including ~350,000 CpG sites for enhancer regions, were profiled, and the differentially methylated regions (DMRs) overlapping promoters (pDMRs) and enhancers (eDMRs) between tumor and normal tissues were identified. Dimension reduction based on DMR profiles revealed that eDMRs alone and not pDMRs alone can differentiate tumors from normal tissues with the equivalent performance of total DMRs. We observed a stronger negative correlation of LUSC-specific gene expression with methylation for enhancers than promoters. Target genes of eDMRs rather than pDMRs were found to be enriched for tumor-associated genes and pathways. Furthermore, DMR methylation associated with immune infiltration was more frequently observed among enhancers than promoters. Our results suggest that methylation of enhancer regions rather than promoters play more important roles in epigenetic regulation of tumorigenesis and immune infiltration in LUSC.
Collapse
Affiliation(s)
- Jae-Won Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo Sup Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang Young Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
37
|
The Role of DNA Methylation and DNA Methyltransferases in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:317-348. [DOI: 10.1007/978-3-031-11454-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
McGuire MH, Dasari SK, Yao H, Wen Y, Mangala LS, Bayraktar E, Ma W, Ivan C, Shoshan E, Wu SY, Jonasch E, Bar-Eli M, Wang J, Baggerly KA, Sood AK. Gene Body Methylation of the Lymphocyte-Specific Gene CARD11 Results in Its Overexpression and Regulates Cancer mTOR Signaling. Mol Cancer Res 2021; 19:1917-1928. [PMID: 34348992 PMCID: PMC8568653 DOI: 10.1158/1541-7786.mcr-20-0753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/16/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Investigations into the function of nonpromoter DNA methylation have yielded new insights into epigenetic regulation of gene expression. Previous studies have highlighted the importance of distinguishing between DNA methylation in discrete functional regions; however, integrated nonpromoter DNA methylation and gene expression analyses across a wide number of tumor types and corresponding normal tissues have not been performed. Through integrated analysis of gene expression and DNA methylation profiles, we examined 32 tumor types and identified 57 tumor suppressors and oncogenes out of 260 genes exhibiting a correlation of > 0.5 between gene body methylation and gene expression in at least one tumor type. The lymphocyte-specific gene CARD11 exhibits robust association between gene body methylation and expression across 19 of 32 tumor types examined. It is significantly overexpressed in kidney renal cell carcinoma (KIRC) and lung adenocarcinoma (LUAD) tumor tissues in comparison with respective control samples; and is significantly associated with lower overall survival in KIRC. Contrary to its canonical function in lymphocyte NFκB activation, CARD11 activates the mTOR pathway in KIRC and LUAD, resulting in suppressed autophagy. Furthermore, demethylation of a CpG island within the gene body of CARD11 decreases gene expression. Collectively, our study highlights how DNA methylation outside the promoter region can impact tumor progression. IMPLICATIONS: Our study describes a novel regulatory role of gene body DNA methylation-dependent CARD11 expression on mTOR signaling and its impact on tumor progression.
Collapse
Affiliation(s)
- Michael H McGuire
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Santosh K Dasari
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wencai Ma
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Einav Shoshan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Menashe Bar-Eli
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith A Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
39
|
Maurya SS. Role of Enhancers in Development and Diseases. EPIGENOMES 2021; 5:epigenomes5040021. [PMID: 34968246 PMCID: PMC8715447 DOI: 10.3390/epigenomes5040021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Enhancers are cis-regulatory elements containing short DNA sequences that serve as binding sites for pioneer/regulatory transcription factors, thus orchestrating the regulation of genes critical for lineage determination. The activity of enhancer elements is believed to be determined by transcription factor binding, thus determining the cell state identity during development. Precise spatio-temporal control of the transcriptome during lineage specification requires the coordinated binding of lineage-specific transcription factors to enhancers. Thus, enhancers are the primary determinants of cell identity. Numerous studies have explored the role and mechanism of enhancers during development and disease, and various basic questions related to the functions and mechanisms of enhancers have not yet been fully answered. In this review, we discuss the recently published literature regarding the roles of enhancers, which are critical for various biological processes governing development. Furthermore, we also highlight that altered enhancer landscapes provide an essential context to understand the etiologies and mechanisms behind numerous complex human diseases, providing new avenues for effective enhancer-based therapeutic interventions.
Collapse
Affiliation(s)
- Shailendra S Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Department of Developmental Biology, School of Medicine, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
40
|
DNA 5-hydroxymethylcytosine in pediatric central nervous system tumors may impact tumor classification and is a positive prognostic marker. Clin Epigenetics 2021; 13:176. [PMID: 34538273 PMCID: PMC8451154 DOI: 10.1186/s13148-021-01156-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023] Open
Abstract
Background Nucleotide-specific 5-hydroxymethylcytosine (5hmC) remains understudied in pediatric central nervous system (CNS) tumors. 5hmC is abundant in the brain, and alterations to 5hmC in adult CNS tumors have been reported. However, traditional approaches to measure DNA methylation do not distinguish between 5-methylcytosine (5mC) and its oxidized counterpart 5hmC, including those used to build CNS tumor DNA methylation classification systems. We measured 5hmC and 5mC epigenome-wide at nucleotide resolution in glioma, ependymoma, and embryonal tumors from children, as well as control pediatric brain tissues using tandem bisulfite and oxidative bisulfite treatments followed by hybridization to the Illumina Methylation EPIC Array that interrogates over 860,000 CpG loci.
Results Linear mixed effects models adjusted for age and sex tested the CpG-specific differences in 5hmC between tumor and non-tumor samples, as well as between tumor subtypes. Results from model-based clustering of tumors was used to test the relation of cluster membership with patient survival through multivariable Cox proportional hazards regression. We also assessed the robustness of multiple epigenetic CNS tumor classification methods to 5mC-specific data in both pediatric and adult CNS tumors. Compared to non-tumor samples, tumors were hypohydroxymethylated across the epigenome and tumor 5hmC localized to regulatory elements crucial to cell identity, including transcription factor binding sites and super-enhancers. Differentially hydroxymethylated loci among tumor subtypes tended to be hypermethylated and disproportionally found in CTCF binding sites and genes related to posttranscriptional RNA regulation, such as DICER1. Model-based clustering results indicated that patients with low 5hmC patterns have poorer overall survival and increased risk of recurrence. Our results suggest 5mC-specific data from OxBS-treated samples impacts methylation-based tumor classification systems giving new opportunities for further refinement of classifiers for both pediatric and adult tumors. Conclusions We identified that 5hmC localizes to super-enhancers, and genes commonly implicated in pediatric CNS tumors were differentially hypohydroxymethylated. We demonstrated that distinguishing methylation and hydroxymethylation is critical in identifying tumor-related epigenetic changes. These results have implications for patient prognostication, considerations of epigenetic therapy in CNS tumors, and for emerging molecular neuropathology classification approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01156-9.
Collapse
|
41
|
Zhao X, Ji J, Wang S, Wang R, Yu Q, Li D. The regulatory pattern of target gene expression by aberrant enhancer methylation in glioblastoma. BMC Bioinformatics 2021; 22:420. [PMID: 34482818 PMCID: PMC8420065 DOI: 10.1186/s12859-021-04345-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant brain tumor with grim prognosis. Aberrant DNA methylation is an epigenetic mechanism that promotes GBM carcinogenesis, while the function of DNA methylation at enhancer regions in GBM remains poorly described. Results We integrated multi-omics data to identify differential methylation enhancer region (DMER)-genes and revealed global enhancer hypomethylation in GBM. In addition, a DMER-mediated target genes regulatory network and functional enrichment analysis of target genes that might be regulated by hypomethylation enhancer regions showed that aberrant enhancer regions could contribute to tumorigenesis and progression in GBM. Further, we identified 22 modules in which lncRNAs and mRNAs synergistically competed with each other. Finally, through the construction of drug-target association networks, our study identified potential small-molecule drugs for GBM treatment. Conclusions Our study provides novel insights for understanding the regulation of aberrant enhancer region methylation and developing methylation-based biomarkers for the diagnosis and treatment of GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04345-8.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jianghuai Ji
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China.,Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310022, People's Republic of China
| | - Shijia Wang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rendong Wang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Qiuhong Yu
- Department of Hyperbaric Oxygen, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan Xi Lu, Fengtai District, Beijing, 100070, People's Republic of China.
| | - Dongguo Li
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing, 100069, People's Republic of China. .,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
42
|
Touzart A, Mayakonda A, Smith C, Hey J, Toth R, Cieslak A, Andrieu GP, Tran Quang C, Latiri M, Ghysdael J, Spicuglia S, Dombret H, Ifrah N, Macintyre E, Lutsik P, Boissel N, Plass C, Asnafi V. Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Sci Transl Med 2021; 13:13/595/eabc4834. [PMID: 34039737 DOI: 10.1126/scitranslmed.abc4834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/10/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Adult "T cell" acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that is associated with poor outcomes, requiring additional therapeutic options. The DNA methylation landscapes of adult T-ALL remain undercharacterized. Here, we systematically analyzed the DNA methylation profiles of normal thymic-sorted T cell subpopulations and 143 primary adult T-ALLs as part of the French GRAALL 2003-2005 trial. Our results indicated that T-ALL is epigenetically heterogeneous consisting of five subtypes (C1-C5), which were either associated with co-occurring DNA methyltransferase 3 alpha (DNMT3A)/isocitrate dehydrogenase [NADP(+)] 2 (IDH2) mutations (C1), TAL bHLH transcription factor 1, erythroid differentiation factor (TAL1) deregulation (C2), T cell leukemia homeobox 3 (TLX3) (C3), TLX1/in cis-homeobox A9 (HOXA9) (C4), or in trans-HOXA9 overexpression (C5). Integrative analysis of DNA methylation and gene expression identified potential cluster-specific oncogenes and tumor suppressor genes. In addition to an aggressive hypomethylated subgroup (C1), our data identified an unexpected subset of hypermethylated T-ALL (C5) associated with poor outcome and primary therapeutic response. Using mouse xenografts, we demonstrated that hypermethylated T-ALL samples exhibited therapeutic responses to the DNA hypomethylating agent 5-azacytidine, which significantly (survival probability; P = 0.001 for C3, 0.01 for C4, and 0.0253 for C5) delayed tumor progression. These findings suggest that epigenetic-based therapies may provide an alternative treatment option in hypermethylated T-ALL.
Collapse
Affiliation(s)
- Aurore Touzart
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Anand Mayakonda
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Charlotte Smith
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Joschka Hey
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.,Germany-Israeli Helmholtz Research School in Cancer Biology, 69120 Heidelberg, Germany
| | - Reka Toth
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Guillaume P Andrieu
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Christine Tran Quang
- Institut Curie, Orsay, France.,CNRS UMR3348, Institut Curie, Orsay, France.,INSERM 1278, Centre Universitaire, Orsay, France.,PSL Research University, Paris, France.,Paris-Saclay, 91400 Orsay, France
| | - Mehdi Latiri
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Jacques Ghysdael
- Institut Curie, Orsay, France.,CNRS UMR3348, Institut Curie, Orsay, France.,INSERM 1278, Centre Universitaire, Orsay, France.,PSL Research University, Paris, France.,Paris-Saclay, 91400 Orsay, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), Equipe labellisée Ligue, UMR1090, 13288 Marseille, France
| | - Hervé Dombret
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010 Paris, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers service des Maladies du Sang et INSERM U 892, 49933 Angers, France
| | - Elizabeth Macintyre
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Pavlo Lutsik
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,German Cancer Research Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nicolas Boissel
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010 Paris, France
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. .,German Cancer Research Consortium (DKTK), 69120 Heidelberg, Germany
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France.
| |
Collapse
|
43
|
Si W, Huang Z, Li X, Zhao L, Ji Y, Li H, Liu X, Ye S, Chen D, Liu H, Kuang W, Zhu M. Super-enhancer-driven Sorting Nexin 5 expression promotes dopaminergic neuronal ferroptosis in Parkinson's disease models. Biochem Biophys Res Commun 2021; 567:35-41. [PMID: 34134000 DOI: 10.1016/j.bbrc.2021.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 02/09/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide. Recent studies revealed that the ferroptosis pathway is involved in the death process of dopaminergic neurons in PD. The aberrant endosomal sorting pathway, which results in aberrant iron level in eukaryotic cells, may serve a role in the ferroptosis pathway in PD condition. However, its specific molecular mechanisms remained unclear. In the present study, we performed chromatin immunoprecipitation (ChIP) assay, the rank ordering of super-enhancers (ROSE) algorithm, and RNA interference (RNAi) to explore the regulatory mechanism of PD-specific super-enhancer (SE) in the endosomal sorting pathway and ferroptosis pathway of 6-OHDA-lesioned rats and cells. The ChIP assay and ROSE algorithm results showed that there are specific SEs expression in 6-OHDA-lesioned SNc of PD rats, and the most significant expression gene is Sorting Nexin 5 (SNX5). SNX5 silencing by RNAi experiments significantly decreased the level of ferroptosis in 6-OHDA-lesioned PC12 cells, suggesting the correlation between the SNX5, ferroptosis, and PD. In conclusion, this study investigated the mechanism by which PD-specific SE driven SNX5 promoted the ferroptosis level in PD models. This study further improved the understanding of the mechanism of ferroptosis during PD injury and provided potential therapeutic targets and clinical diagnostic markers in PD condition.
Collapse
Affiliation(s)
- Wenwen Si
- Shenzhen Bao'an Traditional Chinese Medicine Hospital (Group), Shenzhen, China
| | - Zifeng Huang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Xinrong Li
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Lijun Zhao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Yichun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital (Group), Shenzhen, China
| | - Hang Li
- Shenzhen Bao'an Traditional Chinese Medicine Hospital (Group), Shenzhen, China
| | - Xuelei Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Shanyu Ye
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfeng Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Helu Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Weihong Kuang
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China.
| | - Meiling Zhu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China.
| |
Collapse
|
44
|
Esteller M. DNA methylation in cancer: From mouse to human and back again. EBioMedicine 2021; 68:103393. [PMID: 34044220 PMCID: PMC8167211 DOI: 10.1016/j.ebiom.2021.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid 28029, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
45
|
Common DNA methylation dynamics in endometriod adenocarcinoma and glioblastoma suggest universal epigenomic alterations in tumorigenesis. Commun Biol 2021; 4:607. [PMID: 34021236 PMCID: PMC8140130 DOI: 10.1038/s42003-021-02094-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/10/2021] [Indexed: 02/04/2023] Open
Abstract
Trends in altered DNA methylation have been defined across human cancers, revealing global loss of methylation (hypomethylation) and focal gain of methylation (hypermethylation) as frequent cancer hallmarks. Although many cancers share these trends, little is known about the specific differences in DNA methylation changes across cancer types, particularly outside of promoters. Here, we present a comprehensive comparison of DNA methylation changes between two distinct cancers, endometrioid adenocarcinoma (EAC) and glioblastoma multiforme (GBM), to elucidate common rules of methylation dysregulation and changes unique to cancers derived from specific cells. Both cancers exhibit significant changes in methylation over regulatory elements. Notably, hypermethylated enhancers within EAC samples contain several transcription factor binding site clusters with enriched disease ontology terms highlighting uterine function, while hypermethylated enhancers in GBM are found to overlap active enhancer marks in adult brain. These findings suggest that loss of original cellular identity may be a shared step in tumorigenesis.
Collapse
|
46
|
Moderate DNA hypomethylation suppresses intestinal tumorigenesis by promoting caspase-3 expression and apoptosis. Oncogenesis 2021; 10:38. [PMID: 33947834 PMCID: PMC8096944 DOI: 10.1038/s41389-021-00328-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/18/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Global DNA hypomethylation is a most common epigenetic alteration in human neoplasia. However, accumulative evidence shows that global DNA hypomethylation impacts tumorigenesis in a tissue-specific manner, promoting tumorigenesis in some but suppressing tumorigenesis in others including colorectal cancer. The underlying mechanisms, especially how DNA hypomethylation suppresses tumorigenesis, remain largely unknown. Here, we investigate how DNA hypomethylation affects intestinal tumorigenesis by using an Uhrf1 tandem tudor domain knockin mutant mouse model (Uhrf1ki/ki) that exhibits a moderate ~10% reduction of global DNA methylation. We found that both chemical-induced colorectal carcinogenesis and Apc loss of heterozygosity (LOH)-induced intestinal tumorigenesis are substantially suppressed in the Uhrf1 mutant mice. Furthermore, unlike Dnmt1 hypomorphic mice in which DNA hypomethylation suppresses the incidence of macroscopic intestinal tumors but promotes the formation of microadenoma in ApcMin/+ background, Uhrf1ki/ki/ApcMin/+ mice have markedly reduced incidence of both microadenoma and macroadenoma. DNA hypomethylation does not appear to affect Apc LOH, activation of the Wnt or Hippo pathway, or tumor cell proliferation, but acts cooperatively with activated Wnt pathway to enhance the caspase-3 gene expression, activation, and apoptosis. Furthermore, increased caspase-3 expression correlates with DNA hypomethylation within the caspase-3 enhancer regions. Taken together, we present a new mouse model for investigating the role of and the molecular mechanisms by which DNA hypomethylation suppresses intestinal tumorigenesis. Our finding that a moderate DNA hypomethylation is sufficient to suppress intestinal tumorigenesis by promoting caspase-3 expression and apoptosis sheds new light on DNA-methylation inhibitor-based colorectal cancer therapeutics.
Collapse
|
47
|
Maden SK, Thompson RF, Hansen KD, Nellore A. Human methylome variation across Infinium 450K data on the Gene Expression Omnibus. NAR Genom Bioinform 2021; 3:lqab025. [PMID: 33937763 PMCID: PMC8061458 DOI: 10.1093/nargab/lqab025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
While DNA methylation (DNAm) is the most-studied epigenetic mark, few recent studies probe the breadth of publicly available DNAm array samples. We collectively analyzed 35 360 Illumina Infinium HumanMethylation450K DNAm array samples published on the Gene Expression Omnibus. We learned a controlled vocabulary of sample labels by applying regular expressions to metadata and used existing models to predict various sample properties including epigenetic age. We found approximately two-thirds of samples were from blood, one-quarter were from brain and one-third were from cancer patients. About 19% of samples failed at least one of Illumina's 17 prescribed quality assessments; signal distributions across samples suggest modifying manufacturer-recommended thresholds for failure would make these assessments more informative. We further analyzed DNAm variances in seven tissues (adipose, nasal, blood, brain, buccal, sperm and liver) and characterized specific probes distinguishing them. Finally, we compiled DNAm array data and metadata, including our learned and predicted sample labels, into database files accessible via the recountmethylation R/Bioconductor companion package. Its vignettes walk the user through some analyses contained in this paper.
Collapse
Affiliation(s)
- Sean K Maden
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Reid F Thompson
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kasper D Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Abhinav Nellore
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
48
|
The regulation mechanisms and the Lamarckian inheritance property of DNA methylation in animals. Mamm Genome 2021; 32:135-152. [PMID: 33860357 DOI: 10.1007/s00335-021-09870-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
DNA methylation is a stable and heritable epigenetic mechanism, of which the main functions are stabilizing the transcription of genes and promoting genetic conservation. In animals, the direct molecular inducers of DNA methylation mainly include histone covalent modification and non-coding RNA, whereas the fundamental regulators of DNA methylation are genetic and environmental factors. As is well known, competition is present everywhere in life systems, and will finally strike a balance that is optimal for the animal's survival and reproduction. The same goes for the regulation of DNA methylation. Genetic and environmental factors, respectively, are responsible for the programmed and plasticity changes of DNA methylation, and keen competition exists between genetically influenced procedural remodeling and environmentally influenced plastic alteration. In this process, genetic and environmental factors collaboratively decide the methylation patterns of corresponding loci. DNA methylation alterations induced by environmental factors can be transgenerationally inherited, and exhibit the characteristic of Lamarckian inheritance. Further research on regulatory mechanisms and the environmental plasticity of DNA methylation will provide strong support for understanding the biological function and evolutionary effects of DNA methylation.
Collapse
|
49
|
iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength. Int J Mol Sci 2021; 22:ijms22073589. [PMID: 33808317 PMCID: PMC8036415 DOI: 10.3390/ijms22073589] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
As critical components of DNA, enhancers can efficiently and specifically manipulate the spatial and temporal regulation of gene transcription. Malfunction or dysregulation of enhancers is implicated in a slew of human pathology. Therefore, identifying enhancers and their strength may provide insights into the molecular mechanisms of gene transcription and facilitate the discovery of candidate drug targets. In this paper, a new enhancer and its strength predictor, iEnhancer-GAN, is proposed based on a deep learning framework in combination with the word embedding and sequence generative adversarial net (Seq-GAN). Considering the relatively small training dataset, the Seq-GAN is designed to generate artificial sequences. Given that each functional element in DNA sequences is analogous to a “word” in linguistics, the word segmentation methods are proposed to divide DNA sequences into “words”, and the skip-gram model is employed to transform the “words” into digital vectors. In view of the powerful ability to extract high-level abstraction features, a convolutional neural network (CNN) architecture is constructed to perform the identification tasks, and the word vectors of DNA sequences are vertically concatenated to form the embedding matrices as the input of the CNN. Experimental results demonstrate the effectiveness of the Seq-GAN to expand the training dataset, the possibility of applying word segmentation methods to extract “words” from DNA sequences, the feasibility of implementing the skip-gram model to encode DNA sequences, and the powerful prediction ability of the CNN. Compared with other state-of-the-art methods on the training dataset and independent test dataset, the proposed method achieves a significantly improved overall performance. It is anticipated that the proposed method has a certain promotion effect on enhancer related fields.
Collapse
|
50
|
Current Advances in DNA Methylation Analysis Methods. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8827516. [PMID: 33824878 PMCID: PMC8007345 DOI: 10.1155/2021/8827516] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
DNA methylation is one of the epigenetic changes, which plays a major role in regulating gene expression and, thus, many biological processes and diseases. There are several methods for determining the methylation of DNA samples. However, selecting the most appropriate method for answering biological questions appears to be a challenging task. The primary methods in DNA methylation focused on identifying the state of methylation of the examined genes and determining the total amount of 5-methyl cytosine. The study of DNA methylation at a large scale of genomic levels became possible following the use of microarray hybridization technology. The new generation of sequencing platforms now allows the preparation of genomic maps of DNA methylation at the single-open level. This review includes the majority of methods available to date, introducing the most widely used methods, the bisulfite treatment, biological identification, and chemical cutting along with their advantages and disadvantages. The techniques are then scrutinized according to their robustness, high throughput capabilities, and cost.
Collapse
|