1
|
Guan Y, Gajewska J, Sobieszczuk-Nowicka E, Floryszak-Wieczorek J, Hartman S, Arasimowicz-Jelonek M. The effect of nitrosative stress on histone H3 and H4 acetylation in Phytophthora infestans life cycle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109129. [PMID: 39288571 DOI: 10.1016/j.plaphy.2024.109129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
The oomycete Phytophthora infestans is one of the most destructive phytopathogens globally. It has a proven ability to adapt to changing environments rapidly; however, molecular mechanisms responsible for host invasion and adaptation to new environmental conditions still need to be explored. The study aims to understand the epigenetic mechanisms exploited by P. infestans in response to nitrosative stress conditions created by the (micro)environment and the host plant. To characterize reactive nitrogen species (RNS)-dependent acetylation profiles in avirulent/virulent (avr/vr) P. infestans, a transient gene expression, ChIP and immunoblot analyses, and nitric oxide (NO) emission by chemiluminescence were used in combination with the pharmacological approach. Nitrosative stress increased total H3/H4 acetylation and some histone acetylation marks, mainly in sporulating hyphae of diverse (avr/vr) isolates and during potato colonization. These results correlated with transcriptional up-regulation of acetyltransferases PifHAC3 and PifHAM1, catalyzing H3K56 and H4K16 acetylation, respectively. NO or peroxynitrite-mediated changes were also associated with H3K56 and H4K16 mark deposition on the critical pathogenicity-related gene promoters (CesA1, CesA2, CesA3, sPLD-like1, Hmp1, and Avr3a) elevating their expression. Our study highlights RNS-dependent transcriptional reprogramming via histone acetylation of essential gene expression in the sporulating and biotrophic phases of plant colonization by P. infestans as a tool promoting its evolutionary plasticity.
Collapse
Affiliation(s)
- Yufeng Guan
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Joanna Gajewska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | | | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Shands AC, Xu G, Belisle RJ, Seifbarghi S, Jackson N, Bombarely A, Cano LM, Manosalva PM. Genomic and transcriptomic analyses of Phytophthora cinnamomi reveal complex genome architecture, expansion of pathogenicity factors, and host-dependent gene expression profiles. Front Microbiol 2024; 15:1341803. [PMID: 39211322 PMCID: PMC11357935 DOI: 10.3389/fmicb.2024.1341803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Phytophthora cinnamomi is a hemibiotrophic oomycete causing Phytophthora root rot in over 5,000 plant species, threatening natural ecosystems, forestry, and agriculture. Genomic studies of P. cinnamomi are limited compared to other Phytophthora spp. despite the importance of this destructive and highly invasive pathogen. The genome of two genetically and phenotypically distinct P. cinnamomi isolates collected from avocado orchards in California were sequenced using PacBio and Illumina sequencing. Genome sizes were estimated by flow cytometry and assembled de novo to 140-141 Mb genomes with 21,111-21,402 gene models. Genome analyses revealed that both isolates exhibited complex heterozygous genomes fitting the two-speed genome model. The more virulent isolate encodes a larger secretome and more RXLR effectors when compared to the less virulent isolate. Transcriptome analysis after P. cinnamomi infection in Arabidopsis thaliana, Nicotiana benthamiana, and Persea americana de Mill (avocado) showed that this pathogen deploys common gene repertoires in all hosts and host-specific subsets, especially among effectors. Overall, our results suggested that clonal P. cinnamomi isolates employ similar strategies as other Phytophthora spp. to increase phenotypic diversity (e.g., polyploidization, gene duplications, and a bipartite genome architecture) to cope with environmental changes. Our study also provides insights into common and host-specific P. cinnamomi infection strategies and may serve as a method for narrowing and selecting key candidate effectors for functional studies to determine their contributions to plant resistance or susceptibility.
Collapse
Affiliation(s)
- Aidan C. Shands
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Guangyuan Xu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Rodger J. Belisle
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Shirin Seifbarghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Natasha Jackson
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valéncia, Valencia, Spain
| | - Liliana M. Cano
- Department of Plant Pathology, Indian River Research and Education Center (IRREC), Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Patricia M. Manosalva
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
3
|
Guan Y, Gajewska J, Floryszak‐Wieczorek J, Tanwar UK, Sobieszczuk‐Nowicka E, Arasimowicz‐Jelonek M. Histone (de)acetylation in epigenetic regulation of Phytophthora pathobiology. MOLECULAR PLANT PATHOLOGY 2024; 25:e13497. [PMID: 39034655 PMCID: PMC11261156 DOI: 10.1111/mpp.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
Phytophthora species are oomycetes that have evolved a broad spectrum of biological processes and improved strategies to cope with host and environmental challenges. A growing body of evidence indicates that the high pathogen plasticity is based on epigenetic regulation of gene expression linked to Phytophthora's rapid adjustment to endogenous cues and various stresses. As 5mC DNA methylation has not yet been identified in Phytophthora, the reversible processes of acetylation/deacetylation of histone proteins seem to play a pivotal role in the epigenetic control of gene expression in oomycetes. To explore this issue, we review the structure, diversity, and phylogeny of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in six plant-damaging Phytophthora species: P. capsici, P. cinnamomi, P. infestans, P. parasitica, P. ramorum, and P. sojae. To further integrate and improve our understanding of the phylogenetic classification, evolutionary relationship, and functional characteristics, we supplement this review with a comprehensive view of HATs and HDACs using recent genome- and proteome-level databases. Finally, the potential functional role of transcriptional reprogramming mediated by epigenetic changes during Phytophthora species saprophytic and parasitic phases under nitro-oxidative stress is also briefly discussed.
Collapse
Affiliation(s)
- Yufeng Guan
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Joanna Gajewska
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | | | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Ewa Sobieszczuk‐Nowicka
- Department of Plant Physiology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Magdalena Arasimowicz‐Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| |
Collapse
|
4
|
Zhang B, Wang Z, Zhang S, Zhong S, Sun Y, Liu X. N6-methyloxyadenine-mediated detoxification and ferroptosis confer a trade-off between multi-fungicide resistance and fitness. mBio 2024; 15:e0317723. [PMID: 38294217 PMCID: PMC10936191 DOI: 10.1128/mbio.03177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
Multi-fungicide resistance (MFR) is a serious environmental problem, which results in the excessive use of fungicides. Fitness penalty, as a common phenomenon in MFR, can partially counteract the issue of resistance due to the weakened vigor of MFR pathogens. Their underlying mechanism and relationship remain unexplained. By Oxford Nanopore Technologies sequencing and dot blot, we found that N6-methyloxyadenine (6mA) modification, the dominate epigenetic marker in Phytophthora capsici, was significantly altered after MFR emerged. Among the differently methylated genes, PcGSTZ1 could efficiently detoxify SYP-14288, a novel uncoupler, through complexing the fungicide with glutathione and induce MFR. Interestingly, PcGSTZ1 overexpression was induced by elevated 6mA levels and chromatin accessibility to its genomic loci. Moreover, the overexpression led to reactive oxygen species burst and ferroptosis in SYP-14288-resistant mutants, which enhanced the resistance and induced fitness penalty in P. capsici through triggering low energy shock adaptive response. Furthermore, this study revealed that the 6mA-PcGSTZ1-ferroptosis axis could mediate intergenerational resistance memory transmission and enabled adaptive advantage to P. capsici. In conclusion, the findings provide new insights into the biological role of 6mA as well as the mechanisms underlying the trade-off between MFR and fitness. These could also benefit disease control through the blockade of the epigenetic axis to resensitize resistant isolates.IMPORTANCEN6-methyloxyadenine (6mA) modification on DNA is correlated with tolerance under different stress in prokaryotes. However, the role of 6mA in eukaryotes remains poorly understood. Our current study reveals that DNA adenine methyltransferase 1 (DAMT1)-mediated 6mA modification at the upstream region of GST zeta 1 (GSTZ1) is elevated in the resistant strain. This elevation promotes the detoxification uncoupler and induces multifungicide resistance (MFR). Moreover, the overexpression led to reactive oxygen species burst and ferroptosis in SYP-14288-resistant mutants, which enhanced the resistance and induced fitness penalty in Phytophthora capsici through triggering low energy shock adaptive response. Furthermore, this study revealed that the 6mA-PcGSTZ1-ferroptosis axis could mediate intergenerational resistance memory transmission and enabled adaptive advantage to P. capsici. Overall, our findings uncover an innovative mechanism underlying 6mA modification in regulating PcGSTZ1 transcription and the ferroptosis pathway in P. capsici.
Collapse
Affiliation(s)
- Borui Zhang
- China Agricultural University, Beijing, China
| | - Zhiwen Wang
- China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | | | - Shan Zhong
- China Agricultural University, Beijing, China
| | - Ye Sun
- China Agricultural University, Beijing, China
| | - Xili Liu
- China Agricultural University, Beijing, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Zhao H, Ma J, Tang Y, Ma X, Li J, Li H, Liu Z. Genome-wide DNA N6-methyladenosine in Aeromonas veronii and Helicobacter pylori. BMC Genomics 2024; 25:161. [PMID: 38331763 PMCID: PMC10854192 DOI: 10.1186/s12864-024-10074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND DNA N6-methyladenosine (6mA), as an important epigenetic modification, widely exists in bacterial genomes and participates in the regulation of toxicity, antibiotic resistance, and antioxidant. With the continuous development of sequencing technology, more 6mA sites have been identified in bacterial genomes, but few studies have focused on the distribution characteristics of 6mA at the whole-genome level and its association with gene expression and function. RESULTS This study conducted an in-depth analysis of the 6mA in the genomes of two pathogenic bacteria, Aeromonas veronii and Helicobacter pylori. The results showed that the 6mA was widely distributed in both strains. In A. veronii, 6mA sites were enriched at 3' end of protein-coding genes, exhibiting a certain inhibitory effect on gene expression. Genes with low 6mA density were associated with cell motility. While in H. pylori, 6mA sites were enriched at 5' end of protein-coding genes, potentially enhancing gene expression. Genes with low 6mA density were closely related to defense mechanism. CONCLUSIONS This study elucidated the distribution characteristics of 6mA in A. veronii and H. pylori, highlighting the effects of 6mA on gene expression and function. These findings provide valuable insights into the epigenetic regulation and functional characteristics of A. veronii and H. pylori.
Collapse
Affiliation(s)
- Honghao Zhao
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Jiayue Ma
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yanqiong Tang
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Xiang Ma
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Juanjuan Li
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Hong Li
- School of Life and Health Sciences, Hainan University, Haikou, China.
| | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou, China.
| |
Collapse
|
6
|
Li H, Mo P, Zhang J, Xie Z, Liu X, Chen H, Yang L, Liu M, Zhang H, Wang P, Zhang Z. Methionine biosynthesis enzyme MoMet2 is required for rice blast fungus pathogenicity by promoting virulence gene expression via reducing 5mC modification. PLoS Genet 2023; 19:e1010927. [PMID: 37733784 PMCID: PMC10547190 DOI: 10.1371/journal.pgen.1010927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/03/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023] Open
Abstract
The emergence of fungicide resistance severely threatens crop production by limiting the availability and application of established fungicides. Therefore, it is urgent to identify new fungicidal targets for controlling plant diseases. Here, we characterized the function of a conserved homoserine O-acetyltransferase (HOA) from the rice blast fungus Magnaporthe oryzae that could serve as the candidate antifungal target. Deletion of the MoMET2 and MoCYS2 genes encoding HOAs perturbed the biosynthesis of methionine and S-adenyl methionine, a methyl group donor for epigenetic modifications, and severely attenuated the development and virulence of M. oryzae. The ∆Momet2 mutant is significantly increased in 5-methylcytosine (5mC) modification that represses the expression of genes required for pathogenicity, including MoGLIK and MoCDH-CYT. We further showed that host-induced gene silencing (HIGS) targeting MoMET2 and MoCYS2 effectively controls rice blasts. Our studies revealed the importance of HOA in the development and virulence of M. oryzae, which suggests the potential feasibility of HOA as new targets for novel anti-rice blast measurements.
Collapse
Affiliation(s)
- Huimin Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Pengcheng Mo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jun Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhuoer Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Han Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Febrimarsa, Gornik SG, Barreira SN, Salinas‐Saavedra M, Schnitzler CE, Baxevanis AD, Frank U. Randomly incorporated genomic N6-methyldeoxyadenosine delays zygotic transcription initiation in a cnidarian. EMBO J 2023; 42:e112934. [PMID: 37708295 PMCID: PMC10390872 DOI: 10.15252/embj.2022112934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/16/2023] Open
Abstract
N6-methyldeoxyadenosine (6mA) is a chemical alteration of DNA, observed across all realms of life. Although the functions of 6mA are well understood in bacteria and protists, its roles in animal genomes have been controversial. We show that 6mA randomly accumulates in early embryos of the cnidarian Hydractinia symbiolongicarpus, with a peak at the 16-cell stage followed by clearance to background levels two cell cycles later, at the 64-cell stage-the embryonic stage at which zygotic genome activation occurs in this animal. Knocking down Alkbh1, a putative initiator of animal 6mA clearance, resulted in higher levels of 6mA at the 64-cell stage and a delay in the initiation of zygotic transcription. Our data are consistent with 6mA originating from recycled nucleotides of degraded m6A-marked maternal RNA postfertilization. Therefore, while 6mA does not function as an epigenetic mark in Hydractinia, its random incorporation into the early embryonic genome inhibits transcription. In turn, Alkbh1 functions as a genomic 6mA "cleaner," facilitating timely zygotic genome activation. Given the random nature of genomic 6mA accumulation and its ability to interfere with gene expression, defects in 6mA clearance may represent a hitherto unknown cause of various pathologies.
Collapse
Affiliation(s)
- Febrimarsa
- Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayRepublic of Ireland
| | - Sebastian G Gornik
- Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayRepublic of Ireland
- Present address:
Centre for Organismal StudiesHeidelberg UniversityHeidelbergGermany
| | - Sofia N Barreira
- Computational and Statistical Genomics Branch, Division of Intramural ResearchNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Miguel Salinas‐Saavedra
- Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayRepublic of Ireland
| | - Christine E Schnitzler
- Whitney Laboratory for Marine BioscienceUniversity of FloridaSt. AugustineFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural ResearchNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Uri Frank
- Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayRepublic of Ireland
| |
Collapse
|
8
|
Wang L, Zhao F, Liu H, Chen H, Zhang F, Li S, Sun T, Nekrasov V, Huang S, Dong S. A modified Agrobacterium-mediated transformation for two oomycete pathogens. PLoS Pathog 2023; 19:e1011346. [PMID: 37083862 PMCID: PMC10156060 DOI: 10.1371/journal.ppat.1011346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/03/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
Oomycetes are a group of filamentous microorganisms that include some of the biggest threats to food security and natural ecosystems. However, much of the molecular basis of the pathogenesis and the development in these organisms remains to be learned, largely due to shortage of efficient genetic manipulation methods. In this study, we developed modified transformation methods for two important oomycete species, Phytophthora infestans and Plasmopara viticola, that bring destructive damage in agricultural production. As part of the study, we established an improved Agrobacterium-mediated transformation (AMT) method by prokaryotic expression in Agrobacterium tumefaciens of AtVIP1 (VirE2-interacting protein 1), an Arabidopsis bZIP gene required for AMT but absent in oomycetes genomes. Using the new method, we achieved an increment in transformation efficiency in two P. infestans strains. We further obtained a positive GFP transformant of P. viticola using the modified AMT method. By combining this method with the CRISPR/Cas12a genome editing system, we successfully performed targeted mutagenesis and generated loss-of-function mutations in two P. infestans genes. We edited a MADS-box transcription factor-encoding gene and found that a homozygous mutation in MADS-box results in poor sporulation and significantly reduced virulence. Meanwhile, a single-copy avirulence effector-encoding gene Avr8 in P. infestans was targeted and the edited transformants were virulent on potato carrying the cognate resistance gene R8, suggesting that loss of Avr8 led to successful evasion of the host immune response by the pathogen. In summary, this study reports on a modified genetic transformation and genome editing system, providing a potential tool for accelerating molecular genetic studies not only in oomycetes, but also other microorganisms.
Collapse
Affiliation(s)
- Luyao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Fei Zhao
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Haohao Liu
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Han Chen
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Fan Zhang
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Suhua Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Vladimir Nekrasov
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, United Kingdom
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Suomeng Dong
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Yang M, Leng D, Zeng B, Wang T, Xu Z, Li D. Characteristics and functions of DNA N(6)-methyladenine in embryonic chicken muscle development. Poult Sci 2023; 102:102528. [PMID: 36907131 PMCID: PMC10024188 DOI: 10.1016/j.psj.2023.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
DNA N(6)-methyladenine (DNA-6mA) is a new epigenetic mark in eukaryotes, the distribution and functions of which in genomic DNA remain unknown. Although recent studies have suggested that 6mA is present in multiple model organisms and is dynamically regulated during development, the genomic features of 6mA in avian species have yet to be elucidated. 6mA immunoprecipitation sequencing approach was used to analysis the distribution and function of 6mA in the muscle genomic DNA during embryonic chicken development. 6mA immunoprecipitation sequencing was combined with transcriptomic sequencing to reveal the role of 6mA in the regulation of gene expression and to explore possible pathways by which 6mA is involved in muscle development. We here provide evidence that 6mA modification exists widely throughout the chicken genome, and show preliminary data regarding genome-wide distribution of this epigenetic mark. Gene expression was shown to be inhibited by 6mA modification in promoter regions. In addition, the promoters of some genes related to development were modified by 6mA, indicating that 6mA may be involved in embryonic chicken development. Furthermore, 6mA may participate in muscle development and immune function by regulating HSPB8 and OASL expression. Our study improves our understanding of the distribution and function of 6mA modification in higher organisms and provide new information about differences between mammals and other vertebrates. These findings demonstrate an epigenetic role for 6mA in gene expression and potential involvement in chicken muscle development. Furthermore, the results suggest a potential epigenetic role for 6mA in avian embryonic development.
Collapse
Affiliation(s)
- Maosen Yang
- School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Leng
- School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongxian Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637002, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Macquet J, Mounichetty S, Raffaele S. Genetic co-option into plant-filamentous pathogen interactions. TRENDS IN PLANT SCIENCE 2022; 27:1144-1158. [PMID: 35909010 DOI: 10.1016/j.tplants.2022.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Plants are engaged in a coevolutionary arms race with their pathogens that drives rapid diversification and specialization of genes involved in resistance and virulence. However, some major innovations in plant-pathogen interactions, such as molecular decoys, trans-kingdom RNA interference, two-speed genomes, and receptor networks, evolved through the expansion of the functional landscape of genes. This is a typical outcome of genetic co-option, the evolutionary process by which available genes are recruited into new biological functions. Co-option into plant-pathogen interactions emerges generally from (i) cis-regulatory variation, (ii) horizontal gene transfer (HGT), (iii) mutations altering molecular promiscuity, and (iv) rewiring of gene networks and protein complexes. Understanding these molecular mechanisms is key for the functional and predictive biology of plant-pathogen interactions.
Collapse
Affiliation(s)
- Joris Macquet
- Laboratoire des Interactions Plante-Microbe-Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet Tolosan, France
| | - Shantala Mounichetty
- Laboratoire des Interactions Plante-Microbe-Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plante-Microbe-Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet Tolosan, France.
| |
Collapse
|
11
|
Azevedo V, Daddiego L, Cardone MF, Perrella G, Sousa L, Santos RB, Malhó R, Bergamini C, Marsico AD, Figueiredo A, Alagna F. Transcriptomic and methylation analysis of susceptible and tolerant grapevine genotypes following Plasmopara viticola infection. PHYSIOLOGIA PLANTARUM 2022; 174:e13771. [PMID: 36053855 PMCID: PMC9826190 DOI: 10.1111/ppl.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most economically significant grapevine diseases worldwide. Current strategies to cope with this threat rely on the massive use of chemical compounds during each cultivation season. The economic costs and negative environmental impact associated with these applications increased the urge to search for sustainable strategies of disease control. Improved knowledge of plant mechanisms to counteract pathogen infection may allow the development of alternative strategies for plant protection. Epigenetic regulation, in particular DNA methylation, is emerging as a key factor in the context of plant-pathogen interactions associated with the expression modulation of defence genes. To improve our understanding of the genetic and epigenetic mechanisms underpinning grapevine response to P. viticola, we studied the modulation of both 5-mC methylation and gene expression at 6 and 24 h post-infection (hpi). Leaves of two table grape genotypes (Vitis vinifera), selected by breeding activities for their contrasting level of susceptibility to the pathogen, were analysed. Following pathogen infection, we found variations in the 5-mC methylation level and the gene expression profile. The results indicate a genotype-specific response to pathogen infection. The tolerant genotype (N23/018) at 6 hpi exhibits a lower methylation level compared to the susceptible one (N20/020), and it shows an early modulation (at 6 hpi) of defence and epigenetic-related genes during P. viticola infection. These data suggest that the timing of response is an important mechanism to efficiently counteract the pathogen attack.
Collapse
Affiliation(s)
- Vanessa Azevedo
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Loretta Daddiego
- Energy Technologies and Renewable Sources DepartmentNational Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research CentreRotondellaMateraItaly
| | - Maria Francesca Cardone
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | | | - Lisete Sousa
- Department of Statistics and Operations Research, Faculdade de Ciências; Centre of Statistics and its Applications (CEAUL)Universidade de LisboaLisbonPortugal
| | - Rita B. Santos
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Rui Malhó
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Carlo Bergamini
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | - Antonio Domenico Marsico
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | - Andreia Figueiredo
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Fiammetta Alagna
- Energy Technologies and Renewable Sources DepartmentNational Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research CentreRotondellaMateraItaly
| |
Collapse
|
12
|
Daly P, Zhou D, Shen D, Chen Y, Xue T, Chen S, Zhang Q, Zhang J, McGowan J, Cai F, Pang G, Wang N, Sheikh TMM, Deng S, Li J, Soykam HO, Kara I, Fitzpatrick DA, Druzhinina IS, Bayram Akcapinar G, Wei L. Genome of Pythium myriotylum Uncovers an Extensive Arsenal of Virulence-Related Genes among the Broad-Host-Range Necrotrophic Pythium Plant Pathogens. Microbiol Spectr 2022; 10:e0226821. [PMID: 35946960 PMCID: PMC9430622 DOI: 10.1128/spectrum.02268-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
The Pythium (Peronosporales, Oomycota) genus includes devastating plant pathogens that cause widespread diseases and severe crop losses. Here, we have uncovered a far greater arsenal of virulence factor-related genes in the necrotrophic Pythium myriotylum than in other Pythium plant pathogens. The genome of a plant-virulent P. myriotylum strain (~70 Mb and 19,878 genes) isolated from a diseased rhizome of ginger (Zingiber officinale) encodes the largest repertoire of putative effectors, proteases, and plant cell wall-degrading enzymes (PCWDEs) among the studied species. P. myriotylum has twice as many predicted secreted proteins than any other Pythium plant pathogen. Arrays of tandem duplications appear to be a key factor of the enrichment of the virulence factor-related genes in P. myriotylum. The transcriptomic analysis performed on two P. myriotylum isolates infecting ginger leaves showed that proteases were a major part of the upregulated genes along with PCWDEs, Nep1-like proteins (NLPs), and elicitin-like proteins. A subset of P. myriotylum NLPs were analyzed and found to have necrosis-inducing ability from agroinfiltration of tobacco (Nicotiana benthamiana) leaves. One of the heterologously produced infection-upregulated putative cutinases found in a tandem array showed esterase activity with preferences for longer-chain-length substrates and neutral to alkaline pH levels. Our results allow the development of science-based targets for the management of P. myriotylum-caused disease, as insights from the genome and transcriptome show that gene expansion of virulence factor-related genes play a bigger role in the plant parasitism of Pythium spp. than previously thought. IMPORTANCE Pythium species are oomycetes, an evolutionarily distinct group of filamentous fungus-like stramenopiles. The Pythium genus includes several pathogens of important crop species, e.g., the spice ginger. Analysis of our genome from the plant pathogen Pythium myriotylum uncovered a far larger arsenal of virulence factor-related genes than found in other Pythium plant pathogens, and these genes contribute to the infection of the plant host. The increase in the number of virulence factor-related genes appears to have occurred through the mechanism of tandem gene duplication events. Genes from particular virulence factor-related categories that were increased in number and switched on during infection of ginger leaves had their activities tested. These genes have toxic activities toward plant cells or activities to hydrolyze polymeric components of the plant. The research suggests targets to better manage diseases caused by P. myriotylum and prompts renewed attention to the genomics of Pythium plant pathogens.
Collapse
Affiliation(s)
- Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongmei Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yifan Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Taiqiang Xue
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Siqiao Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Qimeng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinfeng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jamie McGowan
- Genome Evolution Laboratory, Maynooth University, Maynooth, Ireland
| | - Feng Cai
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Guan Pang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Nan Wang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Taha Majid Mahmood Sheikh
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sheng Deng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingjing Li
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hüseyin Okan Soykam
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Kara
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Irina S. Druzhinina
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Department of Accelerated Taxonomy, The Royal Botanic Gardens Kew, London, United Kingdom
| | - Günseli Bayram Akcapinar
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Lihui Wei
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Miao Z, Wang G, Shen H, Wang X, Gabriel DW, Liang W. BcMettl4-Mediated DNA Adenine N6-Methylation Is Critical for Virulence of Botrytis cinerea. Front Microbiol 2022; 13:925868. [PMID: 35847085 PMCID: PMC9279130 DOI: 10.3389/fmicb.2022.925868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
DNA adenine N6-methylation (6mA) plays a critical role in various biological functions, but its occurrence and functions in filamentous plant pathogens are largely unexplored. Botrytis cinerea is an important pathogenic fungus worldwide. A systematic analysis of 6mA in B. cinerea was performed in this study, revealing that 6mA is widely distributed in the genome of this fungus. The 2 kb regions flanking many genes, particularly the upstream promoter regions, were susceptible to methylation. The role of BcMettl4, a 6mA methyltransferase, in the virulence of B. cinerea was investigated. BcMETTL4 disruption and point mutations of its catalytic motif “DPPW” both resulted in significant 6mA reduction in the genomic DNA and in reduced virulence of B. cinerea. RNA-Seq analysis revealed a total of 13 downregulated genes in the disruption mutant ΔBcMettl4 in which methylation occurred at the promoter sites. These were involved in oxidoreduction, secretory pathways, autophagy and carbohydrate metabolism. Two of these genes, BcFDH and BcMFS2, were independently disrupted. Knockout of BcFDH led to reduced sclerotium formation, while disruption of BcMFS2 resulted in dramatically decreased conidium formation and pathogenicity. These observations indicated that 6mA provides potential epigenetic markers in B. cinerea and that BcMettl4 regulates virulence in this important plant pathogen.
Collapse
Affiliation(s)
- Zhengang Miao
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Heng Shen
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Xue Wang
- Yantai Agricultural Technology Extension Center, Yantai, China
| | - Dean W. Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Wenxing Liang,
| |
Collapse
|
14
|
Li H, Zhang N, Wang Y, Xia S, Zhu Y, Xing C, Tian X, Du Y. DNA N6-Methyladenine Modification in Eukaryotic Genome. Front Genet 2022; 13:914404. [PMID: 35812743 PMCID: PMC9263368 DOI: 10.3389/fgene.2022.914404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is treated as an important epigenetic mark in various biological activities. In the past, a large number of articles focused on 5 mC while lacking attention to N6-methyladenine (6 mA). The presence of 6 mA modification was previously discovered only in prokaryotes. Recently, with the development of detection technologies, 6 mA has been found in several eukaryotes, including protozoans, metazoans, plants, and fungi. The importance of 6 mA in prokaryotes and single-celled eukaryotes has been widely accepted. However, due to the incredibly low density of 6 mA and restrictions on detection technologies, the prevalence of 6 mA and its role in biological processes in eukaryotic organisms are highly debated. In this review, we first summarize the advantages and disadvantages of 6 mA detection methods. Then, we conclude existing reports on the prevalence of 6 mA in eukaryotic organisms. Next, we highlight possible methyltransferases, demethylases, and the recognition proteins of 6 mA. In addition, we summarize the functions of 6 mA in eukaryotes. Last but not least, we summarize our point of view and put forward the problems that need further research.
Collapse
Affiliation(s)
- Hao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yating Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chen Xing
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xuefeng Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du,
| |
Collapse
|
15
|
González-Tobón J, Childers RR, Rodríguez A, Fry W, Myers KL, Thompson JR, Restrepo S, Danies G. Searching for the Mechanism that Mediates Mefenoxam-Acquired Resistance in Phytophthora infestans and How It Is Regulated. PHYTOPATHOLOGY 2022; 112:1118-1133. [PMID: 34763530 DOI: 10.1094/phyto-07-21-0280-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytophthora infestans, the causal agent of late blight disease of potatoes, is mainly controlled by the use of fungicides. Isolates that are resistant to commonly used fungicides have been reported. Also, several studies show that originally mefenoxam-sensitive isolates acquire resistance to this fungicide when exposed to sublethal concentrations. This phenomenon, termed "mefenoxam-acquired resistance," has been observed in different Phytophthora species and seems to be unique to mefenoxam. In this study, we aimed to elucidate the molecular mechanism mediating this type of resistance as well as a possible regulatory process behind it. A combination of computational analyses and experimental approaches was used to identify differentially expressed genes with a potential association to the phenomenon. These genes were classified into seven functional groups. Most of them seem to be associated with a pleiotropic drug resistance (PDR) phenotype, typically involved in the expulsion of diverse metabolites, drugs, or other substances out of the cell. Despite the importance of RNA Polymerase I for the constitutive resistance of P. infestans to mefenoxam, our results indicate no clear interaction between this protein and the acquisition of mefenoxam resistance. Several small non-coding RNAs were found to be differentially expressed and specifically related to genes mediating the PDR phenotype, thus suggesting a possible regulatory process. We propose a model of the molecular mechanisms acting within the cell when P. infestans acquires resistance to mefenoxam after exposed to sublethal concentrations of the fungicide. This study provides important insights into P. infestans' cellular and regulatory functionalities.
Collapse
Affiliation(s)
- Juliana González-Tobón
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia 111711
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | | | - Alejandra Rodríguez
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia 111711
| | - William Fry
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | - Kevin L Myers
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | - Jeremy R Thompson
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland 1072, New Zealand
| | - Silvia Restrepo
- Department of Food and Chemical Engineering, Universidad de los Andes, Bogotá, Colombia 111711
| | - Giovanna Danies
- Department of Design, Universidad de los Andes, Bogotá, Colombia 111711
| |
Collapse
|
16
|
Wang W, Zhang F, Zhang S, Xue Z, Xie L, Govers F, Liu X. Phytophthora capsici sterol reductase PcDHCR7 has a role in mycelium development and pathogenicity. Open Biol 2022; 12:210282. [PMID: 35382565 PMCID: PMC8984297 DOI: 10.1098/rsob.210282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The de novo biosynthesis of sterols is critical for the majority of eukaryotes; however, some organisms lack this pathway, including most oomycetes. Phytophthora spp. are sterol auxotrophic but, remarkably, have retained a few genes encoding enzymes in the sterol biosynthesis pathway. Here, we show that PcDHCR7, a gene in Phytophthora capsici predicted to encode Δ7-sterol reductase, displays multiple functions. When expressed in Saccharomyces cerevisiae, PcDHCR7 showed the Δ7-sterol reductase activity. Knocking out PcDHCR7 in P. capsici resulted in loss of the capacity to transform ergosterol into brassicasterol, which means PcDHCR7 has the Δ7-sterol reductase activity in P. capsici itself. This enables P. capsici to transform sterols recruited from the environment for better use. The biological characteristics of ΔPcDHCR7 transformants were compared with those of the wild-type strain and a PcDHCR7 complemented transformant, and the results showed that PcDHCR7 plays a key role in mycelium development and pathogenicity of zoospores. Further analysis of the transcriptome indicated that the expression of many genes changed in the ΔPcDHCR7 transformant, which involve in different biological processes. It is possible that P. capsici compensates for the defects caused by the loss of PcDHCR7 by remodelling its transcriptome.
Collapse
Affiliation(s)
- Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China,Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Fan Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Sicong Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Zhaolin Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Linfang Xie
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
17
|
Zhao JH, Guo HS. RNA silencing: From discovery and elucidation to application and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:476-498. [PMID: 34964265 DOI: 10.1111/jipb.13213] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes. The discovery of natural trans-kingdom RNAi indicated that small RNAs act as signaling molecules and enable communication between organisms in different kingdoms. The phenomenon and potential mechanisms of trans-kingdom RNAi are among the most exciting research topics. To better understand trans-kingdom RNAi, we review the history of the discovery and elucidation of RNAi mechanisms. Based on canonical RNAi mechanisms, we summarize the major points of divergence around RNAi pathways in the main eukaryotes' kingdoms, including plants, animals, and fungi. We review the representative incidents associated with the mechanisms and applications of trans-kingdom RNAi in crop protection, and discuss the critical factors that should be considered to develop successful trans-kingdom RNAi-based crop protection strategies.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Lv S, Zhou X, Li YM, Yang T, Zhang SJ, Wang Y, Jia SH, Peng DT. N6-methyladenine-modified DNA was decreased in Alzheimer’s disease patients. World J Clin Cases 2022; 10:448-457. [PMID: 35097069 PMCID: PMC8771380 DOI: 10.12998/wjcc.v10.i2.448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent years, the prevalence of Alzheimer’s disease (AD) has increased, which places a great burden on society and families and creates considerable challenges for medical services. N6-methyladenine (m6A) deoxyribonucleic acid (DNA) adenine methylation is a novel biomarker and is abundant in the brain, but less common in AD. We support to analyze the relationship between DNA m6A and cognition in patients with AD and normal controls (NCs) in China.
AIM To analyze the relationship between the novel m6A DNA and cognition in patients with AD and NCs in China.
METHODS A total of 179 AD patients (mean age 71.60 ± 9.89 years; males: 91; females: 88) and 147 NCs (mean age 69.59 ± 11.22 years; males: 77; females: 70) who were age- and sex-matched were included in our study. All subjects underwent neuropsychological scale assessment and magnetic resonance imaging examination. Apolipoprotein E (APOE) genotypes were measured through agarose gel electrophoresis. Global m6A levels were evaluated by a MethylFlash m6A DNA Methylation ELISA Kit (colorimetric). Global m6A levels in total DNA from ten AD patients with 18F-AV-45 (florbetapir) positron emission tomography (PET) positivity and ten NCs with PET negativity were analyzed by dot blotting to determine the results.
RESULTS Our ELISA results showed that the global m6A DNA levels in peripheral blood were different between patients with AD and NCs (P = 0.002; < 0.05). And ten AD patients who were PET positive and ten NCs who were PET negative also showed the same results through dot blotting. There were significant differences between the two groups, which indicated that the leukocyte m6A DNA levels were different (P = 0.005; < 0.05). The m6A level was approximately 8.33% lower in AD patients than in NCs (mean 0.011 ± 0.006 vs 0.012 ± 0.005). A significant correlation was found between the Montreal Cognitive Assessment score and the peripheral blood m6A level in the tested population (r = 0.143, P = 0.01; < 0.05). However, no relationship was found with APOE ε4 (P = 0.633, > 0.05). Further studies should be performed to validate these findings.
CONCLUSION Our results show that reduced global m6A DNA methylation levels are significantly lower in AD patients than in NCs by approximately 8.33% in China.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao Zhou
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Neurology, Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Yi-Ming Li
- Department of Cardiovascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tao Yang
- Department of Geriatric, The Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Shu-Juan Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shu-Hong Jia
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dan-Tao Peng
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Neurology, Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100029, China
| |
Collapse
|
19
|
Hu X, Persson Hodén K, Liao Z, Åsman A, Dixelius C. Phytophthora infestans Ago1-associated miRNA promotes potato late blight disease. THE NEW PHYTOLOGIST 2022; 233:443-457. [PMID: 34605025 DOI: 10.1111/nph.17758] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Phytophthora spp. cause serious damage to plants by exploiting a large number of effector proteins and small RNAs (sRNAs). Several reports have described modulation of host RNA biogenesis and defence gene expression. Here, we analysed Phytophthora infestans Argonaute (Ago) 1 associated small RNAs during potato leaf infection. Small RNAs were co-immunoprecipitated, deep sequenced and analysed against the P. infestans and potato genomes, followed by transcript analyses and transgenic assays on a predicted target. Extensive targeting of potato and pathogen-derived sRNAs to a range of mRNAs was observed, including 638 sequences coding for resistance (R) proteins in the host genome. The single miRNA encoded by P. infestans (miR8788) was found to target a potato alpha/beta hydrolase-type encoding gene (StABH1), a protein localized to the plasma membrane. Analyses of stable transgenic potato lines harbouring overexpressed StABH1 or artificial miRNA gene constructs demonstrated the importance of StABH1 during infection by P. infestans. miR8788 knock-down strains showed reduced growth on potato, and elevated StABH1 expression levels were observed when plants were inoculated with the two knock-down strains compared to the wild-type strain 88069. The findings of our study suggest that sRNA encoded by P. infestans can affect potato mRNA, thereby expanding our knowledge of the multifaceted strategies this species uses to facilitate infection.
Collapse
Affiliation(s)
- Xinyi Hu
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| | - Kristian Persson Hodén
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| | - Zhen Liao
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| | - Anna Åsman
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7015, S-75007, Uppsala, Sweden
| | - Christina Dixelius
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| |
Collapse
|
20
|
Dong S, Ma W. How to win a tug-of-war: the adaptive evolution of Phytophthora effectors. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102027. [PMID: 33684881 DOI: 10.1016/j.pbi.2021.102027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The 'zigzag' model formulates some of the fundamental principles underpinning the dynamic interactions between pathogen effectors and plant immunity. As key virulence factors, effectors often exhibit a pattern of rapid evolution, presumably as a result of the host-pathogen arms race. Here, we summarize the current knowledge of mechanisms that may accelerate effector evolution in the highly successful Phytophthora pathogens. Recent findings on epigenetic regulation of effector genes that allows evasion of host recognition and maintenance of cost/benefit balance, and a conserved structural unit in effector proteins that may promote the evolution of virulence activities are highlighted.
Collapse
Affiliation(s)
- Suomeng Dong
- Department of Plant Pathology and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom; Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
21
|
Rojas-Rojas FU, Vega-Arreguín JC. Epigenetic insight into regulatory role of chromatin covalent modifications in lifecycle and virulence of Phytophthora. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:445-457. [PMID: 33876568 DOI: 10.1111/1758-2229.12954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The Oomycota phylum includes fungi-like filamentous microorganisms classified as plant pathogens. The most destructive genus within oomycetes is Phytophthora, which causes diseases in plants of economic importance in agriculture, forestry and ornamental. Phytophthora species are widespread worldwide and some of them enable adaptation to different hosts and environmental changes. The development of sexual and asexual reproductive structures and the secretion of proteins to control plant immunity are critical for the adaptative lifestyle. However, molecular mechanisms underlying the adaptation of Phytophthora to different hosts and environmental changes are poorly understood. In the last decade, the role of epigenetics has gained attention, and important evidence has demonstrated the potential role of chromatin covalent modifications, such as DNA methylation and histone acetylation/methylation, in the regulation of gene expression during Phytophthora development and plant infection. Here, we review for the first time the evidence of the potential role of chromatin covalent modifications in the lifecycle of the phytopathogenic genus Phytophthora, including virulence, and host and environment adaptation processes.
Collapse
Affiliation(s)
- Fernando Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
| | - Julio C Vega-Arreguín
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
| |
Collapse
|
22
|
Nellist CF, Armitage AD, Bates HJ, Sobczyk MK, Luberti M, Lewis LA, Harrison RJ. Comparative Analysis of Host-Associated Variation in Phytophthora cactorum. Front Microbiol 2021; 12:679936. [PMID: 34276614 PMCID: PMC8285097 DOI: 10.3389/fmicb.2021.679936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/21/2021] [Indexed: 12/30/2022] Open
Abstract
Phytophthora cactorum is often described as a generalist pathogen, with isolates causing disease in a range of plant species. It is the causative agent of two diseases in the cultivated strawberry, crown rot (CR; causing whole plant collapse) and leather rot (LR; affecting the fruit). In the cultivated apple, P. cactorum causes girdling bark rots on the scion (collar rot) and rootstock (crown rot), as well as necrosis of the fine root system (root rot) and fruit rots. We investigated evidence for host specialisation within P. cactorum through comparative genomic analysis of 18 isolates. Whole genome phylogenetic analysis provided genomic support for discrete lineages within P. cactorum, with well-supported non-recombining clades for strawberry CR and apple infecting isolates specialised to strawberry crowns and apple tissue. Isolates of strawberry CR are genetically similar globally, while there is more diversity in apple-infecting isolates. We sought to identify the genetic basis of host specialisation, demonstrating gain and loss of effector complements within the P. cactorum phylogeny, representing putative determinants of host boundaries. Transcriptomic analysis highlighted that those effectors found to be specific to a single host or expanded in the strawberry lineage are amongst those most highly expressed during infection of strawberry and give a wider insight into the key effectors active during strawberry infection. Many effectors that had homologues in other Phytophthoras that have been characterised as avirulence genes were present but not expressed in our tested isolate. Our results highlight several RxLR-containing effectors that warrant further investigation to determine whether they are indeed virulence factors and host-specificity determinants for strawberry and apple. Furthermore, additional work is required to determine whether these effectors are suitable targets to focus attention on for future resistance breeding efforts.
Collapse
Affiliation(s)
| | - Andrew D. Armitage
- NIAB EMR, East Malling, United Kingdom
- National Resources Institute, University of Greenwich, Chatham, United Kingdom
| | - Helen J. Bates
- NIAB EMR, East Malling, United Kingdom
- NIAB, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Gu B, Shao G, Gao W, Miao J, Wang Q, Liu X, Tyler BM. Transcriptional Variability Associated With CRISPR-Mediated Gene Replacements at the Phytophthora sojae Avr1b-1 Locus. Front Microbiol 2021; 12:645331. [PMID: 33815332 PMCID: PMC8012851 DOI: 10.3389/fmicb.2021.645331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/02/2022] Open
Abstract
Transcriptional plasticity enables oomycetes to rapidly adapt to environmental challenges including emerging host resistance. For example, the soybean pathogen Phytophthora sojae can overcome resistance conferred by the host resistance gene Rps1b through natural silencing of its corresponding effector gene, Avr1b-1. With the Phytophthora CRISPR/Cas9 genome editing system, it is possible to generate site-specific knock-out (KO) and knock-in (KI) mutants and to investigate the biological functions of target genes. In this study, the Avr1b-1 gene was deleted from the P. sojae genome using a homology-directed recombination strategy that replaced Avr1b-1 with a gene encoding the fluorescent protein mCherry. As expected, all selected KO transformants gained virulence on Rps1b plants, while infection of plants lacking Rps1b was not compromised. When a sgRNA-resistant version of Avr1b-1 was reintroduced into the Avr1b-1 locus of an Avr1b KO transformant, KI transformants with a well-transcribed Avr1b-1 gene were unable to infect Rps1b-containing soybeans. However, loss of expression of the incoming Avr1b-1 gene was frequently observed in KI transformants, which resulted in these transformants readily infecting Rps1b soybeans. A similar variability in the expression levels of the incoming gene was observed with AVI- or mCherry-tagged Avr1b-1 constructs. Our results suggest that Avr1b-1 may be unusually susceptible to transcriptional variation.
Collapse
Affiliation(s)
- Biao Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guangda Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenxin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Brett M Tyler
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
24
|
Adams TM, Olsson TSG, Ramírez-González RH, Bryant R, Bryson R, Campos PE, Fenwick P, Feuerhelm D, Hayes C, Henriksson T, Hubbard A, Jevtić R, Judge C, Kerton M, Lage J, Lewis CM, Lilly C, Meidan U, Novoselović D, Patrick C, Wanyera R, Saunders DGO. Rust expression browser: an open source database for simultaneous analysis of host and pathogen gene expression profiles with expVIP. BMC Genomics 2021; 22:166. [PMID: 33750297 PMCID: PMC7941908 DOI: 10.1186/s12864-021-07488-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/26/2021] [Indexed: 01/05/2023] Open
Abstract
Background Transcriptomics is being increasingly applied to generate new insight into the interactions between plants and their pathogens. For the wheat yellow (stripe) rust pathogen (Puccinia striiformis f. sp. tritici, Pst) RNA-based sequencing (RNA-Seq) has proved particularly valuable, overcoming the barriers associated with its obligate biotrophic nature. This includes the application of RNA-Seq approaches to study Pst and wheat gene expression dynamics over time and the Pst population composition through the use of a novel RNA-Seq based surveillance approach called “field pathogenomics”. As a dual RNA-Seq approach, the field pathogenomics technique also provides gene expression data from the host, giving new insight into host responses. However, this has created a wealth of data for interrogation. Results Here, we used the field pathogenomics approach to generate 538 new RNA-Seq datasets from Pst-infected field wheat samples, doubling the amount of transcriptomics data available for this important pathosystem. We then analysed these datasets alongside 66 RNA-Seq datasets from four Pst infection time-courses and 420 Pst-infected plant field and laboratory samples that were publicly available. A database of gene expression values for Pst and wheat was generated for each of these 1024 RNA-Seq datasets and incorporated into the development of the rust expression browser (http://www.rust-expression.com). This enables for the first time simultaneous ‘point-and-click’ access to gene expression profiles for Pst and its wheat host and represents the largest database of processed RNA-Seq datasets available for any of the three Puccinia wheat rust pathogens. We also demonstrated the utility of the browser through investigation of expression of putative Pst virulence genes over time and examined the host plants response to Pst infection. Conclusions The rust expression browser offers immense value to the wider community, facilitating data sharing and transparency and the underlying database can be continually expanded as more datasets become publicly available. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07488-3.
Collapse
Affiliation(s)
- Thomas M Adams
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | - Ruth Bryant
- RAGT Seeds Ltd, Grange Road, Ickleton, Essex, CB10 1TA, UK
| | - Rosie Bryson
- BASF SE, Agricultural Centre, Limburgerhof, Germany
| | | | | | - David Feuerhelm
- Syngenta Seeds Ltd, Hill Farm Road, Cambridgeshire, CB22 4QT, UK
| | | | | | | | | | | | - Matthew Kerton
- DSV United Kingdom Ltd, Banbury, Oxfordshire, OX17 1FE, UK
| | - Jacob Lage
- KWS UK Limited, Hertfordshire, SG8 7RE, UK
| | - Clare M Lewis
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Christine Lilly
- Frontier Agriculture, Witham St Hughs, Lincolnshire, LN6 9TN, UK
| | - Udi Meidan
- Hazera Seeds Ltd., Berurim M.P Shikmim, 7983700, Tel Aviv-Yafo, Israel
| | | | - Colin Patrick
- Masstock Arable (UK) Ltd. (trading as Agrii), Andoversford, Gloucestershire, GL54 4LZ, UK
| | - Ruth Wanyera
- Kenya Agricultural and Livestock Research Organization, Njoro, Nakuru, Kenya
| | | |
Collapse
|
25
|
Wang S, Xing R, Wang Y, Shu H, Fu S, Huang J, Paulus JK, Schuster M, Saunders DGO, Win J, Vleeshouwers V, Wang Y, Zheng X, van der Hoorn RAL, Dong S. Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity. THE NEW PHYTOLOGIST 2021; 229:3424-3439. [PMID: 33251609 DOI: 10.1111/nph.17120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
The plant apoplast is a harsh environment in which hydrolytic enzymes, especially proteases, accumulate during pathogen infection. However, the defense functions of most apoplastic proteases remain largely elusive. We show here that a newly identified small cysteine-rich secreted protein PC2 from the potato late blight pathogen Phytophthora infestans induces immunity in Solanum plants only after cleavage by plant apoplastic subtilisin-like proteases, such as tomato P69B. A minimal 61 amino acid core peptide carrying two key cysteines, conserved widely in most oomycete species, is sufficient for PC2-induced cell death. Furthermore, we showed that Kazal-like protease inhibitors, such as EPI1, produced by P. infestans prevent PC2 cleavage and dampen PC2 elicited host immunity. This study reveals that cleavage of pathogen proteins to release immunogenic peptides is an important function of plant apoplastic proteases.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongkang Xing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenggui Fu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Judith K Paulus
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Mariana Schuster
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Diane G O Saunders
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Vivianne Vleeshouwers
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
26
|
Chen H, Raffaele S, Dong S. Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiol Rev 2021; 45:6095737. [PMID: 33440001 DOI: 10.1093/femsre/fuab002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Both animals and plants have evolved a robust immune system to surveil and defeat invading pathogenic microbes. Evasion of host immune surveillance is the key for pathogens to initiate successful infection. To evade the host immunity, plant pathogens evolved a variety of strategies such as masking themselves from host immune recognitions, blocking immune signaling transductions, reprogramming immune responses and adapting to immune microenvironmental changes. Gain of new virulence genes, sequence and structural variations enables plant pathogens to evade host immunity through changes in the genetic code. However, recent discoveries demonstrated that variations at the transcriptional, post-transcriptional, post-translational and glycome level enable pathogens to cope with the host immune system without coding sequence changes. The biochemical modification of pathogen associated molecular patterns and silencing of effector genes emerged as potent ways for pathogens to hide from host recognition. Altered processing in mRNA activities provide pathogens with resilience to microenvironment changes. Importantly, these hiding variants are directly or indirectly modulated by catalytic enzymes or enzymatic complexes and cannot be revealed by classical genomics alone. Unveiling these novel host evasion mechanisms in plant pathogens enables us to better understand the nature of plant disease and pinpoints strategies for rational diseases management in global food protection.
Collapse
Affiliation(s)
- Han Chen
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, 24 Chemin de Borde Rouge - Auzeville, CS52627, F31326 Castanet Tolosan Cedex, France
| | - Suomeng Dong
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
27
|
Zhang F, Chen H, Zhang X, Gao C, Huang J, Lü L, Shen D, Wang L, Huang C, Ye W, Zheng X, Wang Y, Vossen JH, Dong S. Genome Analysis of Two Newly Emerged Potato Late Blight Isolates Sheds Light on Pathogen Adaptation and Provides Tools for Disease Management. PHYTOPATHOLOGY 2021; 111:96-107. [PMID: 33026300 DOI: 10.1094/phyto-05-20-0208-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora infestans, the causal agent of the Irish Potato Famine in the 1840s, is one of the most destructive crop pathogens that threaten global food security. Host resistance (R) genes may help to control the disease, but recognition by through the gene products can be evaded by newly emerging isolates. Such isolates are dangerous as they may cause disease outbreaks under favorable conditions. However, our lack of knowledge about adaptation in these isolates jeopardizes an apt response to resistance breakdown. Here we performed genome and transcriptome sequencing of HB1501 and HN1602, two field isolates from distinct Chinese geographic regions. We found extensive polymorphisms in these isolates, including gene copy number variations, nucleotide polymorphisms, and gene expression changes. Effector encoding genes, which contribute to virulence, show distinct expression landscapes in P. infestans isolates HB1501 and HN1602. In particular, polymorphisms at multiple effectors required for recognition (Avr loci) enabled these isolates to overcome corresponding R gene based resistance. Although the isolates evolved multiple strategies to evade recognition, we experimentally verified that several R genes such as R8, RB, and Rpi-vnt1.1 remain effective against these isolates and are valuable to potato breeding in the future. In summary, rapid characterization of the adaptation in emerging field isolates through genomic tools inform rational agricultural management to prevent potential future epidemics.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xinjie Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Li Lü
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Luyao Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518120, China
| | - Chong Huang
- National Agro-Tech Extension and Service Center, Maizidian Street, No. 20, Beijing, 100125, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
28
|
Cook DE, Kramer HM, Torres DE, Seidl MF, Thomma BPHJ. A unique chromatin profile defines adaptive genomic regions in a fungal plant pathogen. eLife 2020; 9:e62208. [PMID: 33337321 PMCID: PMC7781603 DOI: 10.7554/elife.62208] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Genomes store information at scales beyond the linear nucleotide sequence, which impacts genome function at the level of an individual, while influences on populations and long-term genome function remains unclear. Here, we addressed how physical and chemical DNA characteristics influence genome evolution in the plant pathogenic fungus Verticillium dahliae. We identified incomplete DNA methylation of repetitive elements, associated with specific genomic compartments originally defined as Lineage-Specific (LS) regions that contain genes involved in host adaptation. Further chromatin characterization revealed associations with features such as H3 Lys-27 methylated histones (H3K27me3) and accessible DNA. Machine learning trained on chromatin data identified twice as much LS DNA as previously recognized, which was validated through orthogonal analysis, and we propose to refer to this DNA as adaptive genomic regions. Our results provide evidence that specific chromatin profiles define adaptive genomic regions, and highlight how different epigenetic factors contribute to the organization of these regions.
Collapse
Affiliation(s)
- David E Cook
- Department of Plant Pathology, Kansas State UniversityManhattanUnited States
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
| | - H Martin Kramer
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
| | - David E Torres
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht UniversityUtrechtNetherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht UniversityUtrechtNetherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
29
|
The epigenetic roles of DNA N6-Methyladenine (6mA) modification in eukaryotes. Cancer Lett 2020; 494:40-46. [DOI: 10.1016/j.canlet.2020.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022]
|
30
|
Adams TM, Armitage AD, Sobczyk MK, Bates HJ, Tabima JF, Kronmiller BA, Tyler BM, Grünwald NJ, Dunwell JM, Nellist CF, Harrison RJ. Genomic Investigation of the Strawberry Pathogen Phytophthora fragariae Indicates Pathogenicity Is Associated With Transcriptional Variation in Three Key Races. Front Microbiol 2020; 11:490. [PMID: 32351458 PMCID: PMC7174552 DOI: 10.3389/fmicb.2020.00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
The oomycete Phytophthora fragariae is a highly destructive pathogen of cultivated strawberry (Fragaria × ananassa), causing the root rotting disease, "red core". The host-pathogen interaction has a well described gene-for-gene resistance relationship, but to date neither candidate avirulence nor resistance genes have been identified. We sequenced a set of American, Canadian, and United Kingdom isolates of known race type, along with three representatives of the closely related pathogen of the raspberry (Rubus idaeus), P. rubi, and found a clear population structure, with a high degree of nucleotide divergence seen between some race types and abundant private variation associated with race types 4 and 5. In contrast, between isolates defined as United Kingdom races 1, 2, and 3 (UK1-2-3) there was no evidence of gene loss or gain; or the presence of insertions/deletions (INDELs) or Single Nucleotide Polymorphisms (SNPs) within or in proximity to putative pathogenicity genes could be found associated with race variation. Transcriptomic analysis of representative UK1-2-3 isolates revealed abundant expression variation in key effector family genes associated with pathogen race; however, further long read sequencing did not reveal any long range polymorphisms to be associated with avirulence to race UK2 or UK3 resistance, suggesting either control in trans or other stable forms of epigenetic modification modulating gene expression. This work reveals the combined power of population resequencing to uncover race structure in pathosystems and in planta transcriptomic analysis to identify candidate avirulence genes. This work has implications for the identification of putative avirulence genes in the absence of associated expression data and points toward the need for detailed molecular characterisation of mechanisms of effector regulation and silencing in oomycete plant pathogens.
Collapse
Affiliation(s)
- Thomas M. Adams
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Andrew D. Armitage
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
| | - Maria K. Sobczyk
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
| | - Helen J. Bates
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
| | - Javier F. Tabima
- Department of Botany and Plant Pathology, Center for Genome Biology and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Brent A. Kronmiller
- Center for Genome Biology and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Brett M. Tyler
- Department of Botany and Plant Pathology, Center for Genome Biology and Biocomputing, Oregon State University, Corvallis, OR, United States
- Center for Genome Biology and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Niklaus J. Grünwald
- Horticultural Crops Research Unit, Agricultural Research Service, United States Department of Agriculture, Corvallis, OR, United States
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | | | - Richard J. Harrison
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
- NIAB Cambridge Crop Research, NIAB, Cambridge, United Kingdom
| |
Collapse
|
31
|
Ochola S, Huang J, Ali H, Shu H, Shen D, Qiu M, Wang L, Li X, Chen H, Kange A, Qutob D, Dong S. Editing of an effector gene promoter sequence impacts plant-Phytophthora interaction. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:378-392. [PMID: 31691466 DOI: 10.1111/jipb.12883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Pathogen avirulence (Avr) effectors interplay with corresponding plant resistance (R) proteins and activate robust plant immune responses. Although the expression pattern of Avr genes has been tied to their functions for a long time, it is still not clear how Avr gene expression patterns impact plant-microbe interactions. Here, we selected PsAvr3b, which shows a typical effector gene expression pattern from a soybean root pathogen Phytophthora sojae. To modulate gene expression, we engineered PsAvr3b promoter sequences by in situ substitution with promoter sequences from Actin (constitutive expression), PsXEG1 (early expression), and PsNLP1 (later expression) using the CRISPR/Cas9. PsAvr3b driven by different promoters resulted in distinct expression levels across all the tested infection time points. Importantly, those mutants with low PsAvr3b expression successfully colonized soybean plants carrying the cognate R gene Rps3b. To dissect the difference in plant responses to the PsAvr3b expression level, we conducted RNA-sequencing of different infection samples at 24 h postinfection and found soybean immune genes, including a few previously unknown genes that are associated with resistance. Our study highlights that fine-tuning in Avr gene expression impacts the compatibility of plant disease and provides clues to improve crop resistance in disease control management.
Collapse
Affiliation(s)
- Sylvans Ochola
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Haider Ali
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liyuan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Alex Kange
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dinah Qutob
- Department of Math and Science, Walsh University, North Canton, OH, 44720, USA
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
32
|
Wang L, Chen H, Li J, Shu H, Zhang X, Wang Y, Tyler BM, Dong S. Effector gene silencing mediated by histone methylation underpins host adaptation in an oomycete plant pathogen. Nucleic Acids Res 2020; 48:1790-1799. [PMID: 31819959 PMCID: PMC7039004 DOI: 10.1093/nar/gkz1160] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
The relentless adaptability of pathogen populations is a major obstacle to effective disease control measures. Increasing evidence suggests that gene transcriptional polymorphisms are a strategy deployed by pathogens to evade host immunity. However, the underlying mechanisms of transcriptional plasticity remain largely elusive. Here we found that the soybean root rot pathogen Phytophthora sojae evades the soybean Resistance gene Rps1b through transcriptional polymorphisms in the effector gene Avr1b that occur in the absence of any sequence variation. Elevated levels of histone H3 Lysine27 tri-methylation (H3K27me3) were observed at the Avr1b locus in a naturally occurring Avr1b-silenced strain but not in an Avr1b-expressing strain, suggesting a correlation between this epigenetic modification and silencing of Avr1b. To genetically test this hypothesis, we edited the gene, PsSu(z)12, encoding a core subunit of the H3K27me3 methyltransferase complex by using CRISPR/Cas9, and obtained three deletion mutants. H3K27me3 depletion within the Avr1b genomic region correlated with impaired Avr1b gene silencing in these mutants. Importantly, these mutants lost the ability to evade immune recognition by soybeans carrying Rps1b. These data support a model in which pathogen effector transcriptional polymorphisms are associated with changes in chromatin epigenetic marks, highlighting epigenetic variation as a mechanism of pathogen adaptive plasticity.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - JiangJiang Li
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
| | - Xiangxue Zhang
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
33
|
Tzelepis G, Hodén KP, Fogelqvist J, Åsman AKM, Vetukuri RR, Dixelius C. Dominance of Mating Type A1 and Indication of Epigenetic Effects During Early Stages of Mating in Phytophthora infestans. Front Microbiol 2020; 11:252. [PMID: 32153537 PMCID: PMC7046690 DOI: 10.3389/fmicb.2020.00252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
The potato late blight pathogen Phytophthora infestans has both an asexual and a sexual mode of reproduction. In Scandinavia, the pathogen is reproducing sexually on a regular basis, whereas clonal lineages dominate in other geographical regions. This study aimed at elucidating events or key genes underlying this difference in sexual behavior. First, the transcriptomes of eight strains, known as either clonal or sexual, were compared during early stages of mating. Principal component analysis (PCA) divided the samples in two clusters A and B and a clear grouping of the mating samples together with the A1 mating type parents was observed. Induction of genes encoding DNA adenine N6-methylation (6mA) methyl-transferases clearly showed a bias toward the cluster A. In contrast, the Avrblb2 effector gene family was highly induced in most of the mating samples and was associated with cluster B in the PCA, similarly to genes coding for acetyl-transferases, which play an important role in RXLR modification prior to secretion. Avrblb2 knock-down strains displayed a reduction in virulence and oospore formation, suggesting a role during the mating process. In conclusion, a number of gene candidates important for the reproductive processes were revealed. The results suggest a possible epigenetic influence and involvement of specific RXLR effectors in mating-related processes.
Collapse
Affiliation(s)
- Georgios Tzelepis
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kristian Persson Hodén
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Fogelqvist
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna K M Åsman
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christina Dixelius
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
34
|
Cai J, Wang D, Chen R, Niu Y, Ye X, Su R, Xiao G, Wei L. A Bioinformatics Tool for the Prediction of DNA N6-Methyladenine Modifications Based on Feature Fusion and Optimization Protocol. Front Bioeng Biotechnol 2020; 8:502. [PMID: 32582654 PMCID: PMC7287168 DOI: 10.3389/fbioe.2020.00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 01/04/2023] Open
Abstract
DNA N6-methyladenine (6mA) is closely involved with various biological processes. Identifying the distributions of 6mA modifications in genome-scale is of great significance to in-depth understand the functions. In recent years, various experimental and computational methods have been proposed for this purpose. Unfortunately, existing methods cannot provide accurate and fast 6mA prediction. In this study, we present 6mAPred-FO, a bioinformatics tool that enables researchers to make predictions based on sequences only. To sufficiently capture the characteristics of 6mA sites, we integrate the sequence-order information with nucleotide positional specificity information for feature encoding, and further improve the feature representation capacity by analysis of variance-based feature optimization protocol. The experimental results show that using this feature protocol, we can significantly improve the predictive performance. Via further feature analysis, we found that the sequence-order information and positional specificity information are complementary to each other, contributing to the performance improvement. On the other hand, the improvement is also due to the use of the feature optimization protocol, which is capable of effectively capturing the most informative features from the original feature space. Moreover, benchmarking comparison results demonstrate that our 6mAPred-FO outperforms several existing predictors. Finally, we establish a web-server that implements the proposed method for convenience of researchers' use, which is currently available at http://server.malab.cn/6mAPred-FO.
Collapse
Affiliation(s)
- Jianhua Cai
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
| | - Donghua Wang
- Department of General Surgery, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Riqing Chen
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Niu
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Guobao Xiao
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China
- *Correspondence: Guobao Xiao
| | - Leyi Wei
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China
- School of Software, Shandong University, Jinan, China
- Leyi Wei
| |
Collapse
|
35
|
Zhang X, Liu B, Zou F, Shen D, Yin Z, Wang R, He F, Wang Y, Tyler BM, Fan W, Qian W, Dou D. Whole Genome Re-sequencing Reveals Natural Variation and Adaptive Evolution of Phytophthora sojae. Front Microbiol 2019; 10:2792. [PMID: 31849921 PMCID: PMC6895562 DOI: 10.3389/fmicb.2019.02792] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
Due to the monocultural basis of agricultural crops, mutated plant microbes with increased pathogenicity can easily spread in the field and lead to serious yield losses. As a major threat to a wide range of crop plants, oomycete pathogens continuously undergo adaptive evolution to overcome plant defense barriers. However, the genetic basis of their evolution at the molecular level remains largely unknown. Here, we investigated the nature variation and the population genomics of the soybean pathogen Phytophthora sojae by high-throughput genome re-sequencing. Genomic variation analysis revealed uneven “two-speed” evolutionary pattern with genes in gene-sparse regions (GSRs) showing higher rates of structural polymorphisms and positive selection. GSRs are enriched in effector genes and transposase-related genes. Our results also suggested that the NADH oxidase and MIP transporter gene families undergo rapid and diversifying selection. Furthermore, we demonstrated that P. sojae isolates possess varying numbers of RxLR effectors with diverse sequences, totaling 471 members. Among them, 42 core RxLR effectors are assumed to be important for infection. Finally, we observed that Avr genes exhibit abundant sequence variation in P. sojae isolates. Several novel variants lead to the evading of host resistance, including a complete deletion in Avr3c and amino acid mutations in Avr1a. Taken together, our results provide an adaptive landscape of P. sojae at single-nucleotide resolution, as well as resources for further resistance breeding and disease prevention against this important plant pathogen.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Bo Liu
- Agricultural Genomic Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fen Zou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyuan Yin
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Rongbo Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Feng He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Wei Fan
- Agricultural Genomic Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wanqiang Qian
- Agricultural Genomic Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Tsukamoto Y, Tamura T, Maeda Y, Miyake K, Ato M. N6-methylated adenine on the target sites of mamA from Mycobacterium bovis BCG enhances macrophage activation by CpG DNA in mice. Tuberculosis (Edinb) 2019; 121:101890. [PMID: 32279869 DOI: 10.1016/j.tube.2019.101890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023]
Abstract
CpG motifs in DNA sequences are recognized by Toll-like receptor 9 and activate immune cells. Bacterial genomic DNA (gDNA) has modified cytosine bases (5-methylcytosine [5 mC]) and modified adenine bases (6-methyladenine [6 mA]). 5 mC inhibits immune activation by CpG DNA; however, it is unclear whether 6 mA inhibits immune activation by CpG DNA. Mycobacterium bovis BCG (BCG) has three adenine methyltransferases (MTases) that act on specific target sequences. In this study, we examined whether the 6 mA at the target sites of adenine MTases affected the immunostimulatory activity of CpG DNA. Our results showed that only 6 mA located at the target sequence of mamA, an adenine MTase from BCG, enhanced interleukin (IL)-12p40 production from murine bone marrow-derived macrophages (BMDMs) stimulated with CpG DNA. Enhancement of IL-12p40 production in BMDMs was also observed when BMDMs were stimulated with CpG DNA ligated to oligodeoxynucleotides (ODNs) harboring 6 mA. Accordingly, we then evaluated whether gDNA from adenine MTase-deficient BCG was less efficient with regard to stimulation of BMDMs. Indeed, gDNA from a mamA-deficient BCG had less ability to activate BMDMs than that from wild-type BCG. We concluded from these results that adenine methylation on ODNs and bacterial gDNA may enhance immune activity induced by CpG DNA.
Collapse
Affiliation(s)
- Yumiko Tsukamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Toshiki Tamura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumi Maeda
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
37
|
Abstract
Maintenance of genome stability requires control over the expression of transposable elements (TEs), whose activity can have substantial deleterious effects on the host. Chemical modification of DNA is a commonly used strategy to achieve this, and it has long been argued that the emergence of 5-methylcytosine (5mC) in many species was driven by the requirement to silence TEs. Potential roles in TE regulation have also been suggested for other DNA modifications, such as N6-methyladenine and oxidation derivatives of 5mC, although the underlying mechanistic relationships are poorly understood. Here, we discuss current evidence implicating DNA modifications and DNA-modifying enzymes in TE regulation across different species.
Collapse
Affiliation(s)
- Özgen Deniz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | - Jennifer M Frost
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | - Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK.
| |
Collapse
|