1
|
Berv JS, Singhal S, Field DJ, Walker-Hale N, McHugh SW, Shipley JR, Miller ET, Kimball RT, Braun EL, Dornburg A, Parins-Fukuchi CT, Prum RO, Winger BM, Friedman M, Smith SA. Genome and life-history evolution link bird diversification to the end-Cretaceous mass extinction. SCIENCE ADVANCES 2024; 10:eadp0114. [PMID: 39083615 PMCID: PMC11290531 DOI: 10.1126/sciadv.adp0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Complex patterns of genome evolution associated with the end-Cretaceous [Cretaceous-Paleogene (K-Pg)] mass extinction limit our understanding of the early evolutionary history of modern birds. Here, we analyzed patterns of avian molecular evolution and identified distinct macroevolutionary regimes across exons, introns, untranslated regions, and mitochondrial genomes. Bird clades originating near the K-Pg boundary exhibited numerous shifts in the mode of molecular evolution, suggesting a burst of genomic heterogeneity at this point in Earth's history. These inferred shifts in substitution patterns were closely related to evolutionary shifts in developmental mode, adult body mass, and patterns of metabolic scaling. Our results suggest that the end-Cretaceous mass extinction triggered integrated patterns of evolution across avian genomes, physiology, and life history near the dawn of the modern bird radiation.
Collapse
Affiliation(s)
- Jacob S. Berv
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Paleontology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Zoology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sonal Singhal
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Daniel J. Field
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
- Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Sean W. McHugh
- Department of Evolution, Ecology, and Population Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - J. Ryan Shipley
- Department of Forest Dynamics, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Zürcherstrasse 111 8903, Birmensdorf, Switzerland
| | - Eliot T. Miller
- Center for Avian Population Studies, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - C. Tomomi Parins-Fukuchi
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Richard O. Prum
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Benjamin M. Winger
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Zoology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matt Friedman
- Museum of Paleontology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Avenue, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Grant AR, Johnson KP, Stanley EL, Baldwin-Brown J, Kolenčík S, Allen JM. Rapid Targeted Assembly of the Proteome Reveals Evolutionary Variation of GC Content in Avian Lice. Bioinform Biol Insights 2024; 18:11779322241257991. [PMID: 38860163 PMCID: PMC11163934 DOI: 10.1177/11779322241257991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Nucleotide base composition plays an influential role in the molecular mechanisms involved in gene function, phenotype, and amino acid composition. GC content (proportion of guanine and cytosine in DNA sequences) shows a high level of variation within and among species. Many studies measure GC content in a small number of genes, which may not be representative of genome-wide GC variation. One challenge when assembling extensive genomic data sets for these studies is the significant amount of resources (monetary and computational) associated with data processing, and many bioinformatic tools have not been optimized for resource efficiency. Using a high-performance computing (HPC) cluster, we manipulated resources provided to the targeted gene assembly program, automated target restricted assembly method (aTRAM), to determine an optimum way to run the program to maximize resource use. Using our optimum assembly approach, we assembled and measured GC content of all of the protein-coding genes of a diverse group of parasitic feather lice. Of the 499 426 genes assembled across 57 species, feather lice were GC-poor (mean GC = 42.96%) with a significant amount of variation within and between species (GC range = 19.57%-73.33%). We found a significant correlation between GC content and standard deviation per taxon for overall GC and GC3, which could indicate selection for G and C nucleotides in some species. Phylogenetic signal of GC content was detected in both GC and GC3. This research provides a large-scale investigation of GC content in parasitic lice laying the foundation for understanding the basis of variation in base composition across species.
Collapse
Affiliation(s)
- Avery R Grant
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | - Stanislav Kolenčík
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Koper, Slovenia
| | - Julie M Allen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
3
|
Bénitière F, Duret L, Necsulea A. GTDrift: a resource for exploring the interplay between genetic drift, genomic and transcriptomic characteristics in eukaryotes. NAR Genom Bioinform 2024; 6:lqae064. [PMID: 38867915 PMCID: PMC11167491 DOI: 10.1093/nargab/lqae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
We present GTDrift, a comprehensive data resource that enables explorations of genomic and transcriptomic characteristics alongside proxies of the intensity of genetic drift in individual species. This resource encompasses data for 1506 eukaryotic species, including 1413 animals and 93 green plants, and is organized in three components. The first two components contain approximations of the effective population size, which serve as indicators of the extent of random genetic drift within each species. In the first component, we meticulously investigated public databases to assemble data on life history traits such as longevity, adult body length and body mass for a set of 979 species. The second component includes estimations of the ratio between the rate of non-synonymous substitutions and the rate of synonymous substitutions (dN/dS) in protein-coding sequences for 1324 species. This ratio provides an estimate of the efficiency of natural selection in purging deleterious substitutions. Additionally, we present polymorphism-derived N e estimates for 66 species. The third component encompasses various genomic and transcriptomic characteristics. With this component, we aim to facilitate comparative transcriptomics analyses across species, by providing easy-to-use processed data for more than 16 000 RNA-seq samples across 491 species. These data include intron-centered alternative splicing frequencies, gene expression levels and sequencing depth statistics for each species, obtained with a homogeneous analysis protocol. To enable cross-species comparisons, we provide orthology predictions for conserved single-copy genes based on BUSCO gene sets. To illustrate the possible uses of this database, we identify the most frequently used introns for each gene and we assess how the sequencing depth available for each species affects our power to identify major and minor splice variants.
Collapse
Affiliation(s)
- Florian Bénitière
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, UMR CNRS 5558, Villeurbanne, France
- Laboratoire d’Écologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, UMR CNRS 5023, Villeurbanne, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, UMR CNRS 5558, Villeurbanne, France
| | - Anamaria Necsulea
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, UMR CNRS 5558, Villeurbanne, France
| |
Collapse
|
4
|
Joseph J. Increased Positive Selection in Highly Recombining Genes Does not Necessarily Reflect an Evolutionary Advantage of Recombination. Mol Biol Evol 2024; 41:msae107. [PMID: 38829800 PMCID: PMC11173204 DOI: 10.1093/molbev/msae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
It is commonly thought that the long-term advantage of meiotic recombination is to dissipate genetic linkage, allowing natural selection to act independently on different loci. It is thus theoretically expected that genes with higher recombination rates evolve under more effective selection. On the other hand, recombination is often associated with GC-biased gene conversion (gBGC), which theoretically interferes with selection by promoting the fixation of deleterious GC alleles. To test these predictions, several studies assessed whether selection was more effective in highly recombining genes (due to dissipation of genetic linkage) or less effective (due to gBGC), assuming a fixed distribution of fitness effects (DFE) for all genes. In this study, I directly derive the DFE from a gene's evolutionary history (shaped by mutation, selection, drift, and gBGC) under empirical fitness landscapes. I show that genes that have experienced high levels of gBGC are less fit and thus have more opportunities for beneficial mutations. Only a small decrease in the genome-wide intensity of gBGC leads to the fixation of these beneficial mutations, particularly in highly recombining genes. This results in increased positive selection in highly recombining genes that is not caused by more effective selection. Additionally, I show that the death of a recombination hotspot can lead to a higher dN/dS than its birth, but with substitution patterns biased towards AT, and only at selected positions. This shows that controlling for a substitution bias towards GC is therefore not sufficient to rule out the contribution of gBGC to signatures of accelerated evolution. Finally, although gBGC does not affect the fixation probability of GC-conservative mutations, I show that by altering the DFE, gBGC can also significantly affect nonsynonymous GC-conservative substitution patterns.
Collapse
Affiliation(s)
- Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
| |
Collapse
|
5
|
Zheng W, Gojobori J, Suh A, Satta Y. Different Host-Endogenous Retrovirus Relationships between Mammals and Birds Reflected in Genome-Wide Evolutionary Interaction Patterns. Genome Biol Evol 2024; 16:evae065. [PMID: 38527852 PMCID: PMC11005779 DOI: 10.1093/gbe/evae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/25/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Mammals and birds differ largely in their average endogenous retrovirus loads, namely the proportion of endogenous retrovirus in the genome. The host-endogenous retrovirus relationships, including conflict and co-option, have been hypothesized among the causes of this difference. However, there has not been studies about the genomic evolutionary signal of constant host-endogenous retrovirus interactions in a long-term scale and how such interactions could lead to the endogenous retrovirus load difference. Through a phylogeny-controlled correlation analysis on ∼5,000 genes between the dN/dS ratio of each gene and the load of endogenous retrovirus in 12 mammals and 21 birds, separately, we detected genes that may have evolved in association with endogenous retrovirus loads. Birds have a higher proportion of genes with strong correlation between dN/dS and the endogenous retrovirus load than mammals. Strong evidence of association is found between the dN/dS of the coding gene for leucine-rich repeat-containing protein 23 and endogenous retrovirus load in birds. Gene set enrichment analysis shows that gene silencing rather than immunity and DNA recombination may have a larger contribution to the association between dN/dS and the endogenous retrovirus load for both mammals and birds. The above results together showing different evolutionary patterns between bird and mammal genes can partially explain the apparently lower endogenous retrovirus loads of birds, while gene silencing may be a universal mechanism that plays a remarkable role in the evolutionary interaction between the host and endogenous retrovirus. In summary, our study presents signals that the host genes might have driven or responded to endogenous retrovirus load changes in long-term evolution.
Collapse
Affiliation(s)
- Wanjing Zheng
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Gojobori
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
| | - Alexander Suh
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala 75236, Sweden
- School of Biological Sciences—Organisms and the Environment, University of East Anglia, Norwich, UK
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
| |
Collapse
|
6
|
Bénitière F, Necsulea A, Duret L. Random genetic drift sets an upper limit on mRNA splicing accuracy in metazoans. eLife 2024; 13:RP93629. [PMID: 38470242 DOI: 10.7554/elife.93629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Most eukaryotic genes undergo alternative splicing (AS), but the overall functional significance of this process remains a controversial issue. It has been noticed that the complexity of organisms (assayed by the number of distinct cell types) correlates positively with their genome-wide AS rate. This has been interpreted as evidence that AS plays an important role in adaptive evolution by increasing the functional repertoires of genomes. However, this observation also fits with a totally opposite interpretation: given that 'complex' organisms tend to have small effective population sizes (Ne), they are expected to be more affected by genetic drift, and hence more prone to accumulate deleterious mutations that decrease splicing accuracy. Thus, according to this 'drift barrier' theory, the elevated AS rate in complex organisms might simply result from a higher splicing error rate. To test this hypothesis, we analyzed 3496 transcriptome sequencing samples to quantify AS in 53 metazoan species spanning a wide range of Ne values. Our results show a negative correlation between Ne proxies and the genome-wide AS rates among species, consistent with the drift barrier hypothesis. This pattern is dominated by low abundance isoforms, which represent the vast majority of the splice variant repertoire. We show that these low abundance isoforms are depleted in functional AS events, and most likely correspond to errors. Conversely, the AS rate of abundant isoforms, which are relatively enriched in functional AS events, tends to be lower in more complex species. All these observations are consistent with the hypothesis that variation in AS rates across metazoans reflects the limits set by drift on the capacity of selection to prevent gene expression errors.
Collapse
Affiliation(s)
- Florian Bénitière
- Laboratoire de Biometrie et Biologie Evolutive, CNRS, Universite Lyon 1, Villeurbanne, France
| | - Anamaria Necsulea
- Laboratoire de Biometrie et Biologie Evolutive, CNRS, Universite Lyon 1, Villeurbanne, France
| | - Laurent Duret
- Laboratoire de Biometrie et Biologie Evolutive, CNRS, Universite Lyon 1, Villeurbanne, France
| |
Collapse
|
7
|
Cruz-Nicolás J, Jaramillo-Correa JP, Gernandt DS. Stochastic processes and changes in evolutionary rate are associated with diversification in a lineage of tropical hard pines (Pinus). Mol Phylogenet Evol 2024; 192:108011. [PMID: 38195010 DOI: 10.1016/j.ympev.2024.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/08/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
The study of the patterns of polymorphism and molecular evolution among closely related species is key to understanding the evolutionary forces involved in the diversification of lineages. This point is a big challenge in species with slow evolutionary rates, long life cycles, and ancient, shared polymorphisms such as conifers. Under the premise of divergence in a stepwise migration process, we expect clinal geographical patterns of purifying selection efficiency, and genetic structure related to latitude or longitude. If migration is accompanied by changes in the environment, we could further expect a role of positive selection in driving species divergence. Here, we infer patterns of polymorphism, efficiency of purifying selection, and molecular evolution using a dataset of 161 nuclear genes (∼71 Kb) in a lineage of hard pines from North America, the Caribbean, Mexico, and Central America presumed to have migrated from North America toward lower latitudes with tropical conditions. Under the premise of differences in selective pressures, we also look for possible signals of positive selection. To test our hypothesis, first we estimated different indices to infer patterns of polymorphism and efficiency of purifying selection (Ka, Ks, Ka/Ks, dN, dS, dN/dS, and dxy) and compared these metrics across five clades. Also, we investigated possible clinal patterns in these indices and morphological traits (needle length and cone length). Then we inferred genetic structure and environmental differences among species to test for possible signals of positive selection using phylogenetic methods in specific clades. We found differences among clades using Ka, Ks, and Ka/Ks with a relaxation of purifying selection, especially in the Elliotti and Patula clades. We also found environmental differences related to geographic distance, and among clades suggesting differences in selective pressures. The indices Ks, dxy, and needle length had relationships with geography but not ovulate cone length. Finally, we found that most analyzed genes are under purifying selection, but there was an exception of faster evolutionary rate in some pine species, suggesting the possible action of positive selection in divergence. Our study indicated that stochastic processes have played a key role in the diversification of the group, with a possible input of positive selection in pines from Mexico and Central America.
Collapse
Affiliation(s)
- Jorge Cruz-Nicolás
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México CDMX 04510, Mexico.
| | - Juan Pablo Jaramillo-Correa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México CDMX 04510, Mexico
| | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México CDMX 04510, Mexico.
| |
Collapse
|
8
|
de Jong MJ, van Oosterhout C, Hoelzel AR, Janke A. Moderating the neutralist-selectionist debate: exactly which propositions are we debating, and which arguments are valid? Biol Rev Camb Philos Soc 2024; 99:23-55. [PMID: 37621151 DOI: 10.1111/brv.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Half a century after its foundation, the neutral theory of molecular evolution continues to attract controversy. The debate has been hampered by the coexistence of different interpretations of the core proposition of the neutral theory, the 'neutral mutation-random drift' hypothesis. In this review, we trace the origins of these ambiguities and suggest potential solutions. We highlight the difference between the original, the revised and the nearly neutral hypothesis, and re-emphasise that none of them equates to the null hypothesis of strict neutrality. We distinguish the neutral hypothesis of protein evolution, the main focus of the ongoing debate, from the neutral hypotheses of genomic and functional DNA evolution, which for many species are generally accepted. We advocate a further distinction between a narrow and an extended neutral hypothesis (of which the latter posits that random non-conservative amino acid substitutions can cause non-ecological phenotypic divergence), and we discuss the implications for evolutionary biology beyond the domain of molecular evolution. We furthermore point out that the debate has widened from its initial focus on point mutations, and also concerns the fitness effects of large-scale mutations, which can alter the dosage of genes and regulatory sequences. We evaluate the validity of neutralist and selectionist arguments and find that the tested predictions, apart from being sensitive to violation of underlying assumptions, are often derived from the null hypothesis of strict neutrality, or equally consistent with the opposing selectionist hypothesis, except when assuming molecular panselectionism. Our review aims to facilitate a constructive neutralist-selectionist debate, and thereby to contribute to answering a key question of evolutionary biology: what proportions of amino acid and nucleotide substitutions and polymorphisms are adaptive?
Collapse
Affiliation(s)
- Menno J de Jong
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325, Germany
| | - Cock van Oosterhout
- Centre for Ecology, Evolution and Conservation, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - A Rus Hoelzel
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt am Main, 60325, Germany
| |
Collapse
|
9
|
Chase MA, Vilcot M, Mugal CF. The role of recombination dynamics in shaping signatures of direct and indirect selection across the Ficedula flycatcher genome †. Proc Biol Sci 2024; 291:20232382. [PMID: 38228173 DOI: 10.1098/rspb.2023.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Recombination is a central evolutionary process that reshuffles combinations of alleles along chromosomes, and consequently is expected to influence the efficacy of direct selection via Hill-Robertson interference. Additionally, the indirect effects of selection on neutral genetic diversity are expected to show a negative relationship with recombination rate, as background selection and genetic hitchhiking are stronger when recombination rate is low. However, owing to the limited availability of recombination rate estimates across divergent species, the impact of evolutionary changes in recombination rate on genomic signatures of selection remains largely unexplored. To address this question, we estimate recombination rate in two Ficedula flycatcher species, the taiga flycatcher (Ficedula albicilla) and collared flycatcher (Ficedula albicollis). We show that recombination rate is strongly correlated with signatures of indirect selection, and that evolutionary changes in recombination rate between species have observable impacts on this relationship. Conversely, signatures of direct selection on coding sequences show little to no relationship with recombination rate, even when restricted to genes where recombination rate is conserved between species. Thus, using measures of indirect and direct selection that bridge micro- and macro-evolutionary timescales, we demonstrate that the role of recombination rate and its dynamics varies for different signatures of selection.
Collapse
Affiliation(s)
- Madeline A Chase
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Swiss Ornithological Institute, 6204 Sempach, Switzerland
| | - Maurine Vilcot
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- CEFE, University of Montpellier, CNRS, EPHE, IRD, 34293 Montpellier 5, France
| | - Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Laboratory of Biometry and Evolutionary Biology, University of Lyon 1, CNRS UMR 5558, 69622 Villeurbanne cedex, France
| |
Collapse
|
10
|
Näsvall K, Boman J, Talla V, Backström N. Base Composition, Codon Usage, and Patterns of Gene Sequence Evolution in Butterflies. Genome Biol Evol 2023; 15:evad150. [PMID: 37565492 PMCID: PMC10462419 DOI: 10.1093/gbe/evad150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Coding sequence evolution is influenced by both natural selection and neutral evolutionary forces. In many species, the effects of mutation bias, codon usage, and GC-biased gene conversion (gBGC) on gene sequence evolution have not been detailed. Quantification of how these forces shape substitution patterns is therefore necessary to understand the strength and direction of natural selection. Here, we used comparative genomics to investigate the association between base composition and codon usage bias on gene sequence evolution in butterflies and moths (Lepidoptera), including an in-depth analysis of underlying patterns and processes in one species, Leptidea sinapis. The data revealed significant G/C to A/T substitution bias at third codon position with some variation in the strength among different butterfly lineages. However, the substitution bias was lower than expected from previously estimated mutation rate ratios, partly due to the influence of gBGC. We found that A/T-ending codons were overrepresented in most species, but there was a positive association between the magnitude of codon usage bias and GC-content in third codon positions. In addition, the tRNA-gene population in L. sinapis showed higher GC-content at third codon positions compared to coding sequences in general and less overrepresentation of A/T-ending codons. There was an inverse relationship between synonymous substitutions and codon usage bias indicating selection on synonymous sites. We conclude that the evolutionary rate in Lepidoptera is affected by a complex interaction between underlying G/C -> A/T mutation bias and partly counteracting fixation biases, predominantly conferred by overall purifying selection, gBGC, and selection on codon usage.
Collapse
Affiliation(s)
- Karin Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Jesper Boman
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Venkat Talla
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Peona V, Kutschera VE, Blom MPK, Irestedt M, Suh A. Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol Ecol 2023; 32:1288-1305. [PMID: 35488497 DOI: 10.1111/mec.16484] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
Satellite DNA (satDNA) is a fast-evolving portion of eukaryotic genomes. The homogeneous and repetitive nature of such satDNA causes problems during the assembly of genomes, and therefore it is still difficult to study it in detail in nonmodel organisms as well as across broad evolutionary timescales. Here, we combined the use of short- and long-read data to explore the diversity and evolution of satDNA between individuals of the same species and between genera of birds spanning ~40 millions of years of bird evolution using birds-of-paradise (Paradisaeidae) and crow (Corvus) species. These avian species highlighted the presence of a GC-rich Corvoidea satellitome composed of 61 satellite families and provided a set of candidate satDNA monomers for being centromeric on the basis of length, abundance, homogeneity and transcription. Surprisingly, we found that the satDNA of crow species rapidly diverged between closely related species while the satDNA appeared more similar between birds-of-paradise species belonging to different genera.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Verena E Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Mozes P K Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,School of Biological Sciences-Organisms and the Environment, University of East Anglia, Norwich, UK
| |
Collapse
|
12
|
Duchemin L, Lanore V, Veber P, Boussau B. Evaluation of Methods to Detect Shifts in Directional Selection at the Genome Scale. Mol Biol Evol 2022; 40:6889995. [PMID: 36510704 PMCID: PMC9940701 DOI: 10.1093/molbev/msac247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Identifying the footprints of selection in coding sequences can inform about the importance and function of individual sites. Analyses of the ratio of nonsynonymous to synonymous substitutions (dN/dS) have been widely used to pinpoint changes in the intensity of selection, but cannot distinguish them from changes in the direction of selection, that is, changes in the fitness of specific amino acids at a given position. A few methods that rely on amino-acid profiles to detect changes in directional selection have been designed, but their performances have not been well characterized. In this paper, we investigate the performance of six of these methods. We evaluate them on simulations along empirical phylogenies in which transition events have been annotated and compare their ability to detect sites that have undergone changes in the direction or intensity of selection to that of a widely used dN/dS approach, codeml's branch-site model A. We show that all methods have reduced performance in the presence of biased gene conversion but not CpG hypermutability. The best profile method, Pelican, a new implementation of Tamuri AU, Hay AJ, Goldstein RA. (2009. Identifying changes in selective constraints: host shifts in influenza. PLoS Comput Biol. 5(11):e1000564), performs as well as codeml in a range of conditions except for detecting relaxations of selection, and performs better when tree length increases, or in the presence of persistent positive selection. It is fast, enabling genome-scale searches for site-wise changes in the direction of selection associated with phenotypic changes.
Collapse
Affiliation(s)
| | - Vincent Lanore
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Univ Lyon 1, CNRS, VetAgro Sup, UMR5558, Villeurbanne, France
| | - Philippe Veber
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Univ Lyon 1, CNRS, VetAgro Sup, UMR5558, Villeurbanne, France
| | | |
Collapse
|
13
|
Latrille T, Lartillot N. An Improved Codon Modeling Approach for Accurate Estimation of the Mutation Bias. Mol Biol Evol 2022; 39:6503505. [PMID: 35021218 PMCID: PMC8831783 DOI: 10.1093/molbev/msac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phylogenetic codon models are routinely used to characterize selective regimes in coding sequences. Their parametric design, however, is still a matter of debate, in particular concerning the question of how to account for differing nucleotide frequencies and substitution rates. This problem relates to the fact that nucleotide composition in protein-coding sequences is the result of the interactions between mutation and selection. In particular, because of the structure of the genetic code, the nucleotide composition differs between the three coding positions, with the third position showing a more extreme composition. Yet, phylogenetic codon models do not correctly capture this phenomenon and instead predict that the nucleotide composition should be the same for all three positions. Alternatively, some models allow for different nucleotide rates at the three positions, an approach conflating the effects of mutation and selection on nucleotide composition. In practice, it results in inaccurate estimation of the strength of selection. Conceptually, the problem comes from the fact that phylogenetic codon models do not correctly capture the fixation bias acting against the mutational pressure at the mutation–selection equilibrium. To address this problem and to more accurately identify mutation rates and selection strength, we present an improved codon modeling approach where the fixation rate is not seen as a scalar, but as a tensor. This approach gives an accurate representation of how mutation and selection oppose each other at equilibrium and yields a reliable estimate of the mutational process, while disentangling the mean fixation probabilities prevailing in different mutational directions.
Collapse
Affiliation(s)
- T Latrille
- CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR, Université de Lyon, Université Lyon 1, 5558, Villeurbanne, F-69622, France.,École Normale Supérieure de Lyon, Université de Lyon, Université Lyon 1, Lyon, France
| | - N Lartillot
- CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR, Université de Lyon, Université Lyon 1, 5558, Villeurbanne, F-69622, France
| |
Collapse
|
14
|
Abstract
The nearly neutral theory is a common framework to describe natural selection at the molecular level. This theory emphasizes the importance of slightly deleterious mutations by recognizing their ability to segregate and eventually get fixed due to genetic drift in spite of the presence of purifying selection. As genetic drift is stronger in smaller than in larger populations, a correlation between population size and molecular measures of natural selection is expected within the nearly neutral theory. However, this hypothesis was originally formulated under equilibrium conditions. As most natural populations are not in equilibrium, testing the relationship empirically may lead to confounded outcomes. Demographic nonequilibria, for instance following a change in population size, are common scenarios that are expected to push the selection–drift relationship off equilibrium. By explicitly modeling the effects of a change in population size on allele frequency trajectories in the Poisson random field framework, we obtain analytical solutions of the nonstationary allele frequency spectrum. This enables us to derive exact results of measures of natural selection and effective population size in a demographic nonequilibrium. The study of their time-dependent relationship reveals a substantial deviation from the equilibrium selection–drift balance after a change in population size. Moreover, we show that the deviation is sensitive to the combination of different measures. These results therefore constitute relevant tools for empirical studies to choose suitable measures for investigating the selection–drift relationship in natural populations. Additionally, our new modeling approach extends existing population genetics theory and can serve as foundation for methodological developments.
Collapse
Affiliation(s)
- Rebekka Müller
- Department of Mathematics, Uppsala University, 752 37 Uppsala, Sweden
| | - Ingemar Kaj
- Department of Mathematics, Uppsala University, 752 37 Uppsala, Sweden
| | - Carina F. Mugal
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
- Corresponding author: E-mail:
| |
Collapse
|
15
|
Latrille T, Lanore V, Lartillot N. Inferring long-term effective population size with Mutation-Selection Models. Mol Biol Evol 2021; 38:4573-4587. [PMID: 34191010 PMCID: PMC8476147 DOI: 10.1093/molbev/msab160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutation–selection phylogenetic codon models are grounded on population genetics first principles and represent a principled approach for investigating the intricate interplay between mutation, selection, and drift. In their current form, mutation–selection codon models are entirely characterized by the collection of site-specific amino-acid fitness profiles. However, thus far, they have relied on the assumption of a constant genetic drift, translating into a unique effective population size (Ne) across the phylogeny, clearly an unrealistic assumption. This assumption can be alleviated by introducing variation in Ne between lineages. In addition to Ne, the mutation rate (μ) is susceptible to vary between lineages, and both should covary with life-history traits (LHTs). This suggests that the model should more globally account for the joint evolutionary process followed by all of these lineage-specific variables (Ne, μ, and LHTs). In this direction, we introduce an extended mutation–selection model jointly reconstructing in a Bayesian Monte Carlo framework the fitness landscape across sites and long-term trends in Ne, μ, and LHTs along the phylogeny, from an alignment of DNA coding sequences and a matrix of observed LHTs in extant species. The model was tested against simulated data and applied to empirical data in mammals, isopods, and primates. The reconstructed history of Ne in these groups appears to correlate with LHTs or ecological variables in a way that suggests that the reconstruction is reasonable, at least in its global trends. On the other hand, the range of variation in Ne inferred across species is surprisingly narrow. This last point suggests that some of the assumptions of the model, in particular concerning the assumed absence of epistatic interactions between sites, are potentially problematic.
Collapse
Affiliation(s)
- T Latrille
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR, 5558, F-69622, Villeurbanne, France.,École Normale Supérieure de Lyon, Université de Lyon, Université Lyon 1, Lyon, France,
| | - V Lanore
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR, 5558, F-69622, Villeurbanne, France
| | - N Lartillot
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR, 5558, F-69622, Villeurbanne, France
| |
Collapse
|
16
|
Abstract
Recombination increases the local GC-content in genomic regions through GC-biased gene conversion (gBGC). The recent discovery of a large genomic region with extreme GC-content in the fat sand rat Psammomys obesus provides a model to study the effects of gBGC on chromosome evolution. Here, we compare the GC-content and GC-to-AT substitution patterns across protein-coding genes of four gerbil species and two murine rodents (mouse and rat). We find that the known high-GC region is present in all the gerbils, and is characterized by high substitution rates for all mutational categories (AT-to-GC, GC-to-AT, and GC-conservative) both at synonymous and nonsynonymous sites. A higher AT-to-GC than GC-to-AT rate is consistent with the high GC-content. Additionally, we find more than 300 genes outside the known region with outlying values of AT-to-GC synonymous substitution rates in gerbils. Of these, over 30% are organized into at least 17 large clusters observable at the megabase-scale. The unusual GC-skewed substitution pattern suggests the evolution of genomic regions with very high recombination rates in the gerbil lineage, which can lead to a runaway increase in GC-content. Our results imply that rapid evolution of GC-content is possible in mammals, with gerbil species providing a powerful model to study the mechanisms of gBGC.
Collapse
Affiliation(s)
- Rodrigo Pracana
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - John F Mulley
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | | |
Collapse
|
17
|
Shen XX, Steenwyk JL, LaBella AL, Opulente DA, Zhou X, Kominek J, Li Y, Groenewald M, Hittinger CT, Rokas A. Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota. SCIENCE ADVANCES 2020; 6:eabd0079. [PMID: 33148650 PMCID: PMC7673691 DOI: 10.1126/sciadv.abd0079] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2020] [Indexed: 05/14/2023]
Abstract
Ascomycota, the largest and most well-studied phylum of fungi, contains three subphyla: Saccharomycotina (budding yeasts), Pezizomycotina (filamentous fungi), and Taphrinomycotina (fission yeasts). Despite its importance, we lack a comprehensive genome-scale phylogeny or understanding of the similarities and differences in the mode of genome evolution within this phylum. By examining 1107 genomes from Saccharomycotina (332), Pezizomycotina (761), and Taphrinomycotina (14) species, we inferred a robust genome-wide phylogeny that resolves several contentious relationships and estimated that the Ascomycota last common ancestor likely originated in the Ediacaran period. Comparisons of genomic properties revealed that Saccharomycotina and Pezizomycotina differ greatly in their genome properties and enabled inference of the direction of evolutionary change. The Saccharomycotina typically have smaller genomes, lower guanine-cytosine contents, lower numbers of genes, and higher rates of molecular sequence evolution compared with Pezizomycotina. These results provide a robust evolutionary framework for understanding the diversity and ecological lifestyles of the largest fungal phylum.
Collapse
Affiliation(s)
- Xing-Xing Shen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Jacek Kominek
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Chris T Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
18
|
Sackton TB. Studying Natural Selection in the Era of Ubiquitous Genomes. Trends Genet 2020; 36:792-803. [DOI: 10.1016/j.tig.2020.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/15/2023]
|
19
|
Yusuf L, Heatley MC, Palmer JPG, Barton HJ, Cooney CR, Gossmann TI. Noncoding regions underpin avian bill shape diversification at macroevolutionary scales. Genome Res 2020; 30:553-565. [PMID: 32269134 PMCID: PMC7197477 DOI: 10.1101/gr.255752.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.
Collapse
Affiliation(s)
- Leeban Yusuf
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Centre for Biological Diversity, School of Biology, University of St. Andrews, Fife, KY16 9TF, United Kingdom
| | - Matthew C Heatley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Joseph P G Palmer
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Organismal and Evolutionary Biology Research Programme, Viikinkaari 9 (PL 56), University of Helsinki, Helsinki, FI-00014, Finland
| | - Christopher R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Department of Animal Behaviour, Bielefeld University, Bielefeld, DE-33501, Germany
| |
Collapse
|
20
|
Mugal CF, Kutschera VE, Botero-Castro F, Wolf JBW, Kaj I. Polymorphism Data Assist Estimation of the Nonsynonymous over Synonymous Fixation Rate Ratio ω for Closely Related Species. Mol Biol Evol 2020; 37:260-279. [PMID: 31504782 PMCID: PMC6984366 DOI: 10.1093/molbev/msz203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ratio of nonsynonymous over synonymous sequence divergence, dN/dS, is a widely used estimate of the nonsynonymous over synonymous fixation rate ratio ω, which measures the extent to which natural selection modulates protein sequence evolution. Its computation is based on a phylogenetic approach and computes sequence divergence of protein-coding DNA between species, traditionally using a single representative DNA sequence per species. This approach ignores the presence of polymorphisms and relies on the indirect assumption that new mutations fix instantaneously, an assumption which is generally violated and reasonable only for distantly related species. The violation of the underlying assumption leads to a time-dependence of sequence divergence, and biased estimates of ω in particular for closely related species, where the contribution of ancestral and lineage-specific polymorphisms to sequence divergence is substantial. We here use a time-dependent Poisson random field model to derive an analytical expression of dN/dS as a function of divergence time and sample size. We then extend our framework to the estimation of the proportion of adaptive protein evolution α. This mathematical treatment enables us to show that the joint usage of polymorphism and divergence data can assist the inference of selection for closely related species. Moreover, our analytical results provide the basis for a protocol for the estimation of ω and α for closely related species. We illustrate the performance of this protocol by studying a population data set of four corvid species, which involves the estimation of ω and α at different time-scales and for several choices of sample sizes.
Collapse
Affiliation(s)
- Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Verena E Kutschera
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Fidel Botero-Castro
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen B W Wolf
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.,Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Ingemar Kaj
- Department of Mathematics, Uppsala University, Uppsala, Sweden
| |
Collapse
|