1
|
Rao J, Wang X, Chen X, Liu Y, Jiang J, Wang Z. Multi-omics analysis reveals that Cas13d contributes to PI3K-AKT signaling and facilitates cell proliferation via PFKFB4 upregulation. Gene 2024; 927:148760. [PMID: 38992762 DOI: 10.1016/j.gene.2024.148760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The CRISPR-Cas system is a powerful gene editing technology, the clinical application of which is currently constrained due to safety concerns. A substantial body of safety research concerning Cas9 exists; however, scant attention has been directed toward investigating the safety profile of the emergent Cas13 system, which confers RNA editing capabilities. In particular, uncertainties persist regarding the potential cellular impacts of Cas13d in the absence of reliance on a cleavage effect. In this study, we conducted an initial exploration of the effects of Cas13d on HeLa cells. Total RNA and protein samples were extracted after transfection with a Cas13d-expressing plasmid construct, followed by transcriptomic and proteomic sequencing. Differential gene expression analysis identified 94 upregulated and 847 downregulated genes, while differential protein expression analysis identified 185 upregulated and 231 downregulated proteins. Subsequently, enrichment analysis was conducted on the transcriptome and proteome sequencing data, revealing that the PI3K-Akt signaling pathway is a common term. After intersecting the differentially expressed genes enriched in the PI3K-Akt signaling pathway with all the differentially expressed proteins, it was found that the expression of the related regulatory gene PFKFB4 was upregulated. Moreover, western blot analysis demonstrated that Cas13d can mediate PI3K-Akt signaling upregulation through overexpression of PFKFB4. CCK-8 assay, colony formation, and EdU experiments showed that Cas13d can promote cell proliferation. Our data demonstrate, for the first time, that Cas13d significantly impacts the transcriptomic and proteomic profiles, and proliferation phenotype, of HeLa cells, thus offering novel insights into safety considerations regarding gene editing systems.
Collapse
Affiliation(s)
- Jin Rao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xuefu Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiangyu Chen
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yudi Liu
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Junfeng Jiang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China; Histology and Embryology Department, Naval Medical University, Shanghai, China.
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Etemadzadeh A, Salehipour P, Motlagh FM, Khalifeh M, Asadbeigi A, Tabrizi M, Shirkouhi R, Modarressi MH. An Optimized CRISPR/Cas12a Assay to Facilitate the BRAF V600E Mutation Detection. J Clin Lab Anal 2024:e25101. [PMID: 39445676 DOI: 10.1002/jcla.25101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/20/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Accurate detection of the BRAF V600E (1799T > A) mutation status can significantly contribute to selecting an optimal therapeutic strategy for diverse cancer types. CRISPR-based diagnostic platforms exhibit simple programming, cost-effectiveness, high sensitivity, and high specificity in detecting target sequences. The goal of this study is to develop a simple BRAF V600E mutation detection method. METHODS We combined the CRISPR/Cas12a system with recombinase polymerase amplification (RPA). Subsequently, several parameters related to CRISPR/Cas12a reaction efficiency were evaluated. Then, we conducted a comparative analysis of three distinct approaches toward identifying BRAF V600E mutations in the clinical samples. RESULTS Our data suggest that CRISPR/Cas detection is considerably responsive to variations in buffer conditions. Magnesium acetate (MgOAc) demonstrated superior performance compared to all other examined additive salts. It was observed using 150 nM guide RNA (gRNA) in an optimized reaction buffer containing 14 mM MgOAc, coupled with a reduction in the volumes of PCR and RPA products to 1 μL and 3 μL, respectively, resulted in an enhanced sensitivity. Detection time was decreased to 75 min with a 2% limit of detection (LOD), as evidenced by the results obtained from the blue light illuminator. The CRISPR/Cas12a assay confirmed the real-time PCR results in 31 of 32 clinical samples to identify the BRAF V600E mutation status, while Sanger sequencing detected BRAF V600E mutations with lower sensitivity. CONCLUSION We propose a potential diagnostic approach that is facile, fast, and affordable with high fidelity. This method can detect BRAF V600E mutation with a 2% LOD without the need for a thermocycler.
Collapse
Affiliation(s)
- Azadeh Etemadzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Salehipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Movahedi Motlagh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Khalifeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adnan Asadbeigi
- Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Tabrizi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
- Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, Oregon, USA
| | - Reza Shirkouhi
- Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Wu Q, Yi Z, Li H, Han G, Du J, Xiong J, Hu K, Gao H. Harnessing noncanonical trans-cleavage characteristics of Cas12 and Cas13a to enhance CRISPR-based diagnostics. Commun Biol 2024; 7:1312. [PMID: 39394452 PMCID: PMC11470125 DOI: 10.1038/s42003-024-07000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Cas12 and Cas13 are extensively utilized in molecular diagnostics for their trans-cleavage activities, yet their activation characteristics remain partially understood. Here, we conduct an in-depth investigation of Cas12a, Cas12f1, and Cas13a, uncovering the characteristics of their trans-DNase and trans-RNase activities with noncanonical activators. Our findings reveal that DNA can serve as a direct target for CRISPR-Cas13a, markedly increasing the detection sensitivity for single-base mismatches. Moreover, the trans-cleavage activities of Cas12a and Cas13a can be activated by diverse RNA:DNA and RNA:RNA duplexes, respectively, indicating that the presence of stem-loop structures in crRNAs is not essential for their activation. Notably, Cas12f1, unlike Cas12a, exhibits intrinsic RNase activity independently of activation. Leveraging these insights, we have improved the accuracy of a dual-gene target detection approach that employs the CRISPR-Cas12f1 and Cas13a systems. Our research advances the understanding of the noncanonical activation characteristics of Cas12 and Cas13a, contributing to the field of CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Qing Wu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Zhengfei Yi
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Haoran Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Guoxin Han
- Department of Emergency, People's Liberation Army (PLA) Strategic Support Force Medical Center (The 306th Hospital of PLA), Beijing, China
| | - Jianyong Du
- School of Health and Life Sciences, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jingwei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Keping Hu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Hai Gao
- Zhongshan-Xuhui Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Sun Y, Wen T, Zhang P, Wang M, Xu Y. Recent Advances in the CRISPR/Cas-Based Nucleic Acid Biosensor for Food Analysis: A Review. Foods 2024; 13:3222. [PMID: 39456285 PMCID: PMC11507162 DOI: 10.3390/foods13203222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Food safety is a major public health issue of global concern. In recent years, the CRISPR/Cas system has shown promise in the field of molecular detection. The system has been coupled with various nucleic acid amplification methods and combined with different signal output systems to develop a new generation of CRISPR/Cas-based nucleic acid biosensor technology. This review describes the design concept of the CRISPR/Cas-based nucleic acid biosensor and its application in food analysis. A detailed overview of different CRISPR/Cas systems, signal amplification methods, and signal output strategies is provided. CRISPR/Cas-based nucleic acid biosensors have the advantages of high sensitivity, strong specificity, and timeliness, achieving fast analysis of a variety of targets, including bacteria, toxins, metal ions, pesticides, veterinary drugs, and adulteration, promoting the development of rapid food safety detection technology. At the end, we also provide our outlook for the future development of CRISPR/Cas-based nucleic acid biosensors.
Collapse
Affiliation(s)
| | | | | | | | - Yuancong Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (Y.S.); (T.W.); (P.Z.); (M.W.)
| |
Collapse
|
5
|
Greensmith R, Lape IT, Riella CV, Schubert AJ, Metzger JJ, Dighe AS, Tan X, Hemmer B, Rau J, Wendlinger S, Diederich N, Schütz A, Riella LV, Kaminski MM. CRISPR-enabled point-of-care genotyping for APOL1 genetic risk assessment. EMBO Mol Med 2024; 16:2619-2637. [PMID: 39271961 PMCID: PMC11473833 DOI: 10.1038/s44321-024-00126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Detecting genetic variants enables risk factor identification, disease screening, and initiation of preventative therapeutics. However, current methods, relying on hybridization or sequencing, are unsuitable for point-of-care settings. In contrast, CRISPR-based-diagnostics offer high sensitivity and specificity for point-of-care applications. While these methods have predominantly been used for pathogen sensing, their utilization for genotyping is limited. Here, we report a multiplexed CRISPR-based genotyping assay using LwaCas13a, PsmCas13b, and LbaCas12a, enabling the simultaneous detection of six genotypes. We applied this assay to identify genetic variants in the APOL1 gene prevalent among African Americans, which are associated with an 8-30-fold increase in the risk of developing kidney disease. Machine learning facilitated robust analysis across a multicenter clinical cohort of more than 100 patients, accurately identifying their genotypes. In addition, we optimized the readout using a multi-analyte lateral-flow assay demonstrating the ability for simplified genotype determination of clinical samples. Our CRISPR-based genotyping assay enables cost-effective point-of-care genetic variant detection due to its simplicity, versatility, and fast readout.
Collapse
Affiliation(s)
- Robert Greensmith
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Isadora T Lape
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Cristian V Riella
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Alexander J Schubert
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jakob J Metzger
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anand S Dighe
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Xiao Tan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Josefine Rau
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sarah Wendlinger
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nora Diederich
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Schütz
- Protein Production & Characterization, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Leonardo V Riella
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Michael M Kaminski
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
6
|
Son H. Harnessing CRISPR/Cas Systems for DNA and RNA Detection: Principles, Techniques, and Challenges. BIOSENSORS 2024; 14:460. [PMID: 39451674 PMCID: PMC11506544 DOI: 10.3390/bios14100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
The emergence of CRISPR/Cas systems has revolutionized the field of molecular diagnostics with their high specificity and sensitivity. This review provides a comprehensive overview of the principles and recent advancements in harnessing CRISPR/Cas systems for detecting DNA and RNA. Beginning with an exploration of the molecular mechanisms of key Cas proteins underpinning CRISPR/Cas systems, the review navigates the detection of both pathogenic and non-pathogenic nucleic acids, emphasizing the pivotal role of CRISPR in identifying diverse genetic materials. The discussion extends to the integration of CRISPR/Cas systems with various signal-readout techniques, including fluorescence, electrochemical, and colorimetric, as well as imaging and biosensing methods, highlighting their advantages and limitations in practical applications. Furthermore, a critical analysis of challenges in the field, such as target amplification, multiplexing, and quantitative detection, underscores areas requiring further refinement. Finally, the review concludes with insights into the future directions of CRISPR-based nucleic acid detection, emphasizing the potential of these systems to continue driving innovation in diagnostics, with broad implications for research, clinical practice, and biotechnology.
Collapse
Affiliation(s)
- Heyjin Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Rahimi S, Balusamy SR, Perumalsamy H, Ståhlberg A, Mijakovic I. CRISPR-Cas target recognition for sensing viral and cancer biomarkers. Nucleic Acids Res 2024; 52:10040-10067. [PMID: 39189452 PMCID: PMC11417378 DOI: 10.1093/nar/gkae736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Nucleic acid-based diagnostics is a promising venue for detection of pathogens causing infectious diseases and mutations related to cancer. However, this type of diagnostics still faces certain challenges, and there is a need for more robust, simple and cost-effective methods. Clustered regularly interspaced short palindromic repeats (CRISPRs), the adaptive immune systems present in the prokaryotes, has recently been developed for specific detection of nucleic acids. In this review, structural and functional differences of CRISPR-Cas proteins Cas9, Cas12 and Cas13 are outlined. Thereafter, recent reports about applications of these Cas proteins for detection of viral genomes and cancer biomarkers are discussed. Further, we highlight the challenges associated with using these technologies to replace the current diagnostic approaches and outline the points that need to be considered for designing an ideal Cas-based detection system for nucleic acids.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
8
|
Jing W, Zhang T, Min X, Li X, Jin K, Feng M, Sui G, Luo L, Cheng X. CHAMP: A Centrifugal Microfluidics-Based CRISPR/Cas12b-Combined Real-Time LAMP One-Pot Method for Mycoplasma pneumoniae Infection Diagnosis. ACS OMEGA 2024; 9:38989-38997. [PMID: 39310129 PMCID: PMC11411642 DOI: 10.1021/acsomega.4c05489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
The Mycoplasma pneumoniae outbreak poses health risks to community residents. However, it still has limitations for current clinical diagnostic methods (qPCR nucleic acid assay or IgM immunoassay), including specialized handling, expensive equipment, prolonged turnaround time, and false positives and negatives, highlighting the need to improve clinical diagnostic methods. Herein, we present a novel centrifugal microfluidics-based method for rapidly diagnosing M. pneumoniae infections (CHAMP system). This user-friendly method combines CRISPR/Cas12b and real-time loop-mediated isothermal amplification (LAMP) in a one-pot reaction, offering high sensitivity, specificity, and simplicity for methodology. By adding fully automated nucleic acid magnetic bead-extracted samples to a prepackaged centrifugal microfluidics chip, 48 samples can be automated tested simultaneously within 15 to 60 min at 60 °C. 427 clinical nasopharyngeal swab specimens were used for validation, demonstrating good positive and negative predictive values and good diagnostic sensitivity, specificity, and significant time savings. This method is particularly suitable for detecting low nucleic acid copies of M. pneumoniae samples.
Collapse
Affiliation(s)
- Wenwen Jing
- Department
of Medical Microbiology and Parasitology, School of Basic Medical
Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Tong Zhang
- Department
of Clinical Laboratory, Shanghai. East Hospital, School of Medicine, Tong Ji University, Shanghai 200120, P. R. China
| | - Xiangyang Min
- Department
of Clinical Laboratory Medicine, Yangpu
Hospital of Tongji University, Shanghai 200120, P. R. China
| | - Xin Li
- Shanghai
Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, P. R. China
| | - Kai Jin
- Department
of Surgical Intensive Care Unit, Huadong
Hospital Affiliated to Fudan University, Shanghai 200040, P. R. China
| | - Meng Feng
- Department
of Medical Microbiology and Parasitology, School of Basic Medical
Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Guodong Sui
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Liulin Luo
- Department
of Clinical Laboratory Medicine, Yangpu
Hospital of Tongji University, Shanghai 200120, P. R. China
| | - Xunjia Cheng
- Department
of Medical Microbiology and Parasitology, School of Basic Medical
Sciences, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
He J, Hu X, Weng X, Wang H, Yu J, Jiang T, Zou L, Zhou X, Lyu Z, Liu J, Zhou P, Xiao X, Zhen D, Deng Z. Efficient, specific and direct detection of double-stranded DNA targets using Cas12f1 nucleases and engineered guide RNAs. Biosens Bioelectron 2024; 260:116428. [PMID: 38805891 DOI: 10.1016/j.bios.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
To address the limitations of the CRISPR/Cas12f1 system in clinical diagnostics, which require the complex preparation of single-stranded DNA (ssDNA) or in vitro transcripts (RNA), we developed a fluorescent biosensor named PDTCTR (PAM-dependent dsDNA Target-activated Cas12f1 Trans Reporter). This innovative biosensor integrates Recombinase Polymerase Amplification (RPA) with the Cas12f_ge4.1 system, facilitating the direct detection of double-stranded DNA (dsDNA). PDTCTR represents a significant leap forward, exhibiting a detection sensitivity that is a hundredfold greater than the original Cas12f1 system. It demonstrates the capability to detect Mycoplasma pneumoniae (M. pneumoniae) and Hepatitis B virus (HBV) with excellent sensitivity of 10 copies per microliter (16.8 aM) and distinguishes single nucleotide variations (SNVs) with high precision, including the EGFR (L858R) mutations prevalent in non-small cell lung cancer (NSCLC). Clinical evaluations of PDTCTR have demonstrated its high sensitivity and specificity, with rates ranging from 93%-100% and 100%, respectively, highlighting its potential to revolutionize diagnostic approaches for infectious diseases and cancer-related SNVs.This research underscores the substantial advancements in CRISPR technology for clinical diagnostics and its promising future in early disease detection and personalized medicine.
Collapse
Affiliation(s)
- Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xipan Hu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China; Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyong Weng
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Haikun Wang
- Department of Public Health Laboratory, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Jianwei Yu
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Tingqing Jiang
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Lintao Zou
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuan Zhou
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - ZhiXian Lyu
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Jian Liu
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - PengJi Zhou
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Xilin Xiao
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Deshuai Zhen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhongliang Deng
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
10
|
Khmeleva SA, Ptitsyn KG, Kurbatov LK, Timoshenko OS, Suprun EV, Radko SP, Lisitsa AV. Biosensing platforms for DNA diagnostics based on CRISPR/Cas nucleases: towards the detection of nucleic acids at the level of single molecules in non-laboratory settings. BIOMEDITSINSKAIA KHIMIIA 2024; 70:287-303. [PMID: 39324194 DOI: 10.18097/pbmc20247005287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The use of CRISPR/Cas nucleases for the development of DNA diagnostic systems in out-of-laboratory conditions (point-of-need testing, PONT) has demonstrated rapid growth in the last few years, starting with the appearance in 2017-2018 of the first diagnostic platforms known as DETECTR and SHERLOCK. The platforms are based on a combination of methods of nucleic acid isothermal amplification with selective CRISPR/Cas detection of target amplicons. This significantly improves the sensitivity and specificity of PONT, making them comparable with or even superior to the sensitivity and specificity of polymerase chain reaction, considered as the "gold standard" of DNA diagnostics. The review considers modern approaches to the coupling of CRISPR/Cas detection using Cas9, Cas12a, Cas12b, Cas13a, Cas14, and Cas3 nucleases to various methods of nucleic acid isothermal amplification, with an emphasis on works in which sensitivity at the level of single molecules (attomolar and subattomolar concentrations of the target) is achieved. The properties of CRISPR/Cas nucleases used for targeted DNA diagnostics and the features of methods of nucleic acid isothermal amplification are briefly considered in the context of the development of diagnostic biosensing platforms. Special attention is paid to the most promising directions for the development of DNA diagnostics using CRISPR/Cas nuclease.
Collapse
Affiliation(s)
- S A Khmeleva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - K G Ptitsyn
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - E V Suprun
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Moscow, Russia
| | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
11
|
Zeng W, Chen W, Liu Y, Zhang T, Zhai C, Li W, Wang L, Zhang C, Zeng Q, Wang F, Ma L. Preamplification-free ultra-fast and ultra-sensitive point-of-care testing via LwaCas13a. Biosens Bioelectron 2024; 259:116400. [PMID: 38776799 DOI: 10.1016/j.bios.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
CRISPR based nucleic acid detection technology provides a deployable approach to point of care testing. While, there remain challenges limiting its practical applications, such as the need for pre-amplification and the long turnaround time. Here, we present a self-cascade signal amplification method with LwaCas13a and an artificially designed "U" rich RNA of stem-loop structure (URH) for pre-amplification-free ultra-fast and ultra-sensitive point-of-care testing (PASSPORT). The PASSPORT system contains: URH, crRNA targeted the URH, crRNA targeted the interesting RNA, fluorescent RNA reporter and LwaCas13a. The assay realized the detection of 100 copies/mL, within 5 min. The PASSPORT platform was further adopted for the detection of marker gene from SASR-CoV-2 and Severe fever with thrombocytopenia syndrome virus (SFTSV), respectively, and 100% accuracy for the analysis of clinical specimens (100 SASR-CoV-2 specimens and 16 SFTSV specimens) was obtained. Integrated with a lateral flow assay device, this assay could provide an alternative platform for the development of point of care testing (POCT) biosensors. PASSPORT has the potential to enable sensitive, specific, user-friendly, rapid, affordable, equipment-free and point-of-care testing for the purpose of large-scale screening and in case of epidemic outbreak.
Collapse
Affiliation(s)
- Wanting Zeng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Ting Zhang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wenqiang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Cheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Qili Zeng
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
12
|
Pandya K, Jagani D, Singh N. CRISPR-Cas Systems: Programmable Nuclease Revolutionizing the Molecular Diagnosis. Mol Biotechnol 2024; 66:1739-1753. [PMID: 37466850 DOI: 10.1007/s12033-023-00819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
CRISPR-Cas system has evolved as a highly preferred genetic engineering tool to perform target gene manipulation via alteration of the guide RNA (gRNA) sequence. The ability to recognize and cleave a specific target with high precision has led to its applicability in multiple frontiers pertaining to human health and medicine. From basic research focused on understanding the molecular basis of disease to translational approach leading to early and precise disease diagnosis as well as developing effective therapeutics, the CRISPR-Cas system has proved to be a quite versatile tool. The coupling of CRISPR-Cas mediated cleavage with isothermal amplification (ISA) of target DNA, followed by a read-out using fluorescent or colorimetric reporters appears quite promising in providing a solution to the urgent need for nucleic acid-based point-of-care diagnostic. Hence, it has been recognized as a highly sophisticated molecular diagnostic tool for the detection of disease-specific biomarkers not limited to nucleic acids-based detection but also of non-nucleic acid targets such as proteins, exosomes, and other small molecules. In this review, we have presented salient features and principles of class 2 type II, V, and VI CRISPR-Cas systems represented by Cas9, Cas12, and Cas13 endonucleases which are frequently used in molecular diagnosis. The article then highlights different medical diagnostic applications of CRISPR-Cas systems focusing on the diagnosis of SARS-CoV-2, Dengue, Mycobacterium tuberculosis, and Listeria monocytogenes. Lastly, we discuss existing obstacles and potential future pathways concerning this subject in a concise manner.
Collapse
Affiliation(s)
- Kavya Pandya
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, India
| | - Deep Jagani
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, India
| | - Neeru Singh
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
13
|
Choi W, Cha S, Kim K. Navigating the CRISPR/Cas Landscape for Enhanced Diagnosis and Treatment of Wilson's Disease. Cells 2024; 13:1214. [PMID: 39056796 PMCID: PMC11274827 DOI: 10.3390/cells13141214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system continues to evolve, thereby enabling more precise detection and repair of mutagenesis. The development of CRISPR/Cas-based diagnosis holds promise for high-throughput, cost-effective, and portable nucleic acid screening and genetic disease diagnosis. In addition, advancements in transportation strategies such as adeno-associated virus (AAV), lentiviral vectors, nanoparticles, and virus-like vectors (VLPs) offer synergistic insights for gene therapeutics in vivo. Wilson's disease (WD), a copper metabolism disorder, is primarily caused by mutations in the ATPase copper transporting beta (ATP7B) gene. The condition is associated with the accumulation of copper in the body, leading to irreversible damage to various organs, including the liver, nervous system, kidneys, and eyes. However, the heterogeneous nature and individualized presentation of physical and neurological symptoms in WD patients pose significant challenges to accurate diagnosis. Furthermore, patients must consume copper-chelating medication throughout their lifetime. Herein, we provide a detailed description of WD and review the application of novel CRISPR-based strategies for its diagnosis and treatment, along with the challenges that need to be overcome.
Collapse
Affiliation(s)
- Woong Choi
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Seongkwang Cha
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Song R, Chen Z, Xiao H, Wang H. The CRISPR-Cas system in molecular diagnostics. Clin Chim Acta 2024; 561:119820. [PMID: 38901631 DOI: 10.1016/j.cca.2024.119820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Robust, sensitive, and rapid molecular detection tools are essential prerequisites for disease diagnosis and epidemiological control. However, the current mainstream tests necessitate expensive equipment and specialized operators, impeding the advancement of molecular diagnostics. The CRISPR-Cas system is an integral component of the bacterial adaptive immune system, wherein Cas proteins recognize PAM sequences by binding to CRISPR RNA, subsequently triggering DNA or RNA cleavage. The discovery of the CRISPR-Cas system has invigorated molecular diagnostics. With further in-depth research on this system, its application in molecular diagnosis is flourishing. In this review, we provide a comprehensive overview of recent research progress on the CRISPR-Cas system, specifically focusing on its application in molecular diagnosis.
Collapse
Affiliation(s)
- Rao Song
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhongyi Chen
- Department of Pathology, Suining Central Hospital, Suining 629000, China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Haojun Wang
- Department of Pathology, Suining Central Hospital, Suining 629000, China.
| |
Collapse
|
15
|
Jiao C, Peeck NL, Yu J, Ghaem Maghami M, Kono S, Collias D, Martinez Diaz SL, Larose R, Beisel CL. TracrRNA reprogramming enables direct PAM-independent detection of RNA with diverse DNA-targeting Cas12 nucleases. Nat Commun 2024; 15:5909. [PMID: 39003282 PMCID: PMC11246509 DOI: 10.1038/s41467-024-50243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/04/2024] [Indexed: 07/15/2024] Open
Abstract
Many CRISPR-Cas immune systems generate guide (g)RNAs using trans-activating CRISPR RNAs (tracrRNAs). Recent work revealed that Cas9 tracrRNAs could be reprogrammed to convert any RNA-of-interest into a gRNA, linking the RNA's presence to Cas9-mediated cleavage of double-stranded (ds)DNA. Here, we reprogram tracrRNAs from diverse Cas12 nucleases, linking the presence of an RNA-of-interest to dsDNA cleavage and subsequent collateral single-stranded DNA cleavage-all without the RNA necessarily encoding a protospacer-adjacent motif (PAM). After elucidating nuclease-specific design rules, we demonstrate PAM-independent RNA detection with Cas12b, Cas12e, and Cas12f nucleases. Furthermore, rationally truncating the dsDNA target boosts collateral cleavage activity, while the absence of a gRNA reduces background collateral activity and enhances sensitivity. Finally, we apply this platform to detect 16 S rRNA sequences from five different bacterial pathogens using a universal reprogrammed tracrRNA. These findings extend tracrRNA reprogramming to diverse dsDNA-targeting Cas12 nucleases, expanding the flexibility and versatility of CRISPR-based RNA detection.
Collapse
Affiliation(s)
- Chunlei Jiao
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Natalia L Peeck
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Mohammad Ghaem Maghami
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sarah Kono
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Daphne Collias
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sandra L Martinez Diaz
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Rachael Larose
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany.
- Medical Faculty, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
16
|
Yu D, Zhong Q, Xiao Y, Feng Z, Tang F, Feng S, Cai Y, Gao Y, Lan T, Li M, Yu F, Wang Z, Gao X, Li Z. Combination of MRI-based prediction and CRISPR/Cas12a-based detection for IDH genotyping in glioma. NPJ Precis Oncol 2024; 8:140. [PMID: 38951603 PMCID: PMC11217299 DOI: 10.1038/s41698-024-00632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Early identification of IDH mutation status is of great significance in clinical therapeutic decision-making in the treatment of glioma. We demonstrate a technological solution to improve the accuracy and reliability of IDH mutation detection by combining MRI-based prediction and a CRISPR-based automatic integrated gene detection system (AIGS). A model was constructed to predict the IDH mutation status using whole slices in MRI scans with a Transformer neural network, and the predictive model achieved accuracies of 0.93, 0.87, and 0.84 using the internal and two external test sets, respectively. Additionally, CRISPR/Cas12a-based AIGS was constructed, and AIGS achieved 100% diagnostic accuracy in terms of IDH detection using both frozen tissue and FFPE samples in one hour. Moreover, the feature attribution of our predictive model was assessed using GradCAM, and the highest correlations with tumor cell percentages in enhancing and IDH-wildtype gliomas were found to have GradCAM importance (0.65 and 0.5, respectively). This MRI-based predictive model could, therefore, guide biopsy for tumor-enriched, which would ensure the veracity and stability of the rapid detection results. The combination of our predictive model and AIGS improved the early determination of IDH mutation status in glioma patients. This combined system of MRI-based prediction and CRISPR/Cas12a-based detection can be used to guide biopsy, resection, and radiation for glioma patients to improve patient outcomes.
Collapse
Affiliation(s)
- Donghu Yu
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qisheng Zhong
- Department of Neurosurgery, 960 Hospital of PLA, Jinan, Shandong, China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Zhebin Feng
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Feng Tang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shiyu Feng
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Yuxiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yutong Gao
- Department of Prosthodontics, Wuhan University Hospital of Stomatology, Wuhan, China
| | - Tian Lan
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingjun Li
- Department of Radiology, Liaocheng People's Hospital, Liaocheng, China
| | - Fuhua Yu
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Zefen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Xu Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Zhiqiang Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Tong X, Zhang K, Han Y, Li T, Duan M, Ji R, Wang X, Zhou X, Zhang Y, Yin H. Fast and sensitive CRISPR detection by minimized interference of target amplification. Nat Chem Biol 2024; 20:885-893. [PMID: 38332130 DOI: 10.1038/s41589-023-01534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024]
Abstract
Despite the great potential of CRISPR-based detection, it has not been competitive with other market diagnostics for on-site and in-home testing. Here we dissect the rate-limiting factors that undermine the performance of Cas12b- and Cas13a-mediated detection. In one-pot testing, Cas12b interferes with loop-mediated isothermal amplification by binding to and cleaving the amplicon, while Cas13a directly degrades the viral RNA, reducing its amplification. We found that the protospacer-adjacent motif-interacting domain engineered Cas12b accelerated one-pot testing with 10-10,000-fold improved sensitivity, and detected 85 out of 85 SARS-CoV-2 clinical samples with a sensitivity of 0.5 cp μl-1, making it superior to wild-type Cas12b. In parallel, by diminishing the interference of Cas13a with viral RNA, the optimized Cas13a-based assay detected 86 out of 87 SARS-CoV-2 clinical samples at room temperature in 30 min with a sensitivity of 0.5 cp μl-1. The relaxed reaction conditions and improved performance of CRISPR-based assays make them competitive for widespread use in pathogen detection.
Collapse
Affiliation(s)
- Xiaohan Tong
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Kun Zhang
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Tianle Li
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Min Duan
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Ruijin Ji
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xianguang Wang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Zhang
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hao Yin
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China.
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
18
|
Zhu Y, Lin Y, Gong B, Zhang Y, Su G, Yu Y. Dual toeholds regulated CRISPR-Cas12a sensing platform for ApoE single nucleotide polymorphisms genotyping. Biosens Bioelectron 2024; 255:116255. [PMID: 38565025 DOI: 10.1016/j.bios.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Single nucleotide polymorphisms (SNPs) are closely associated with many biological processes, including genetic disease, tumorigenesis, and drug metabolism. Accurate and efficient SNP determination has been proved pivotal in pharmacogenomics and diagnostics. Herein, a universal and high-fidelity genotyping platform is established based on the dual toeholds regulated Cas12a sensing methodology. Different from the conventional single stranded or double stranded activation mode, the dual toeholds regulated mode overcomes protospacer adjacent motif (PAM) limitation via cascade toehold mediated strand displacement reaction, which is highly universal and ultra-specific. To enhance the sensitivity for biological samples analysis, a modified isothermal recombinant polymerase amplification (RPA) strategy is developed via utilizing deoxythymidine substituted primer and uracil-DNA glycosylase (UDG) treatment, designated as RPA-UDG. The dsDNA products containing single stranded toehold domain generated in the RPA-UDG allow further incorporation with dual toeholds regulated Cas12a platform for high-fidelity human sample genotyping. We discriminate all the single-nucleotide polymorphisms of ApoE gene at rs429358 and rs7412 loci with human buccal swab samples with 100% accuracy. Furthermore, we engineer visual readout of genotyping results by exploiting commercial lateral flow strips, which opens new possibilities for field deployable implementation.
Collapse
Affiliation(s)
- Yuedong Zhu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yanan Lin
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Bin Gong
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yan Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
19
|
Acharya S, Ansari AH, Kumar Das P, Hirano S, Aich M, Rauthan R, Mahato S, Maddileti S, Sarkar S, Kumar M, Phutela R, Gulati S, Rahman A, Goel A, Afzal C, Paul D, Agrawal T, Pulimamidi VK, Jalali S, Nishimasu H, Mariappan I, Nureki O, Maiti S, Chakraborty D. PAM-flexible Engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics. Nat Commun 2024; 15:5471. [PMID: 38942756 PMCID: PMC11213958 DOI: 10.1038/s41467-024-49233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024] Open
Abstract
The clinical success of CRISPR therapies hinges on the safety and efficacy of Cas proteins. The Cas9 from Francisella novicida (FnCas9) is highly precise, with a negligible affinity for mismatched substrates, but its low cellular targeting efficiency limits therapeutic use. Here, we rationally engineer the protein to develop enhanced FnCas9 (enFnCas9) variants and broaden their accessibility across human genomic sites by ~3.5-fold. The enFnCas9 proteins with single mismatch specificity expanded the target range of FnCas9-based CRISPR diagnostics to detect the pathogenic DNA signatures. They outperform Streptococcus pyogenes Cas9 (SpCas9) and its engineered derivatives in on-target editing efficiency, knock-in rates, and off-target specificity. enFnCas9 can be combined with extended gRNAs for robust base editing at sites which are inaccessible to PAM-constrained canonical base editors. Finally, we demonstrate an RPE65 mutation correction in a Leber congenital amaurosis 2 (LCA2) patient-specific iPSC line using enFnCas9 adenine base editor, highlighting its therapeutic utility.
Collapse
Affiliation(s)
- Sundaram Acharya
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Asgar Hussain Ansari
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prosad Kumar Das
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Meghali Aich
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Riya Rauthan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudipta Mahato
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Savitri Maddileti
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Sajal Sarkar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rhythm Phutela
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sneha Gulati
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Abdul Rahman
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Arushi Goel
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C Afzal
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Deepanjan Paul
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Trupti Agrawal
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Kumar Pulimamidi
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Subhadra Jalali
- Srimati Kannuri Santhamma Centre for vitreoretinal diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto, 600-8411, Japan
| | - Indumathi Mariappan
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
20
|
Chen J, Chen Y, Huang L, Lin X, Chen H, Xiang W, Liu L. Trans-nuclease activity of Cas9 activated by DNA or RNA target binding. Nat Biotechnol 2024:10.1038/s41587-024-02255-7. [PMID: 38811761 DOI: 10.1038/s41587-024-02255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Type V and type VI CRISPR-Cas systems have been shown to cleave nonspecific single-stranded DNA (ssDNA) or single-stranded RNA (ssRNA) in trans, but this has not been observed in type II CRISPR-Cas systems using single guide RNA. We show here that the type II CRISPR-Cas9 systems directed by CRISPR RNA and trans-activating CRISPR RNA dual RNAs show RuvC domain-dependent trans-cleavage activity for both ssDNA and ssRNA substrates. Cas9 possesses sequence preferences for trans-cleavage substrates, preferring to cleave T- or C-rich ssDNA substrates. We find that the trans-cleavage activity of Cas9 can be activated by target ssDNA, double-stranded DNA and ssRNA. The crystal structure of Cas9 in complex with guide RNA and target RNA provides a structural basis for the binding of target RNA to activate Cas9. Based on the trans-cleavage activity of Cas9 and nucleic acid amplification technology, we develop the nucleic acid detection platforms DNA-activated Cas9 detection and RNA-activated Cas9 detection, which are capable of detecting DNA and RNA samples with high sensitivity and specificity.
Collapse
Affiliation(s)
- Jiyun Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Linglong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaofeng Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hong Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Wenwen Xiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Liang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
21
|
Lin K, Yao K, Li X, Li Q, Guo X, You W, Ren W, Bian Y, Guo J, Sun Z, Zhang R, Yang X, Li Z, Li B. Rapid and sensitive detection of nucleic acids using an RAA-CRISPR/Cas12b one-pot detection assay (Rcod). Talanta 2024; 271:125616. [PMID: 38277969 DOI: 10.1016/j.talanta.2023.125616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/28/2024]
Abstract
Rapid, sensitive and specific methods are crucial for nucleic acid detection. CRISPR/Cas12b has recently been widely used in nucleic acid detection. However, due to its thermophagic property, DNA isothermal recombinase-aided amplification (RAA) and subsequent CRISPR/Cas12b detection require two separate reactions, which is cumbersome and inconvenient and may cause aerosol pollution. In this study, we propose an RAA-CRISPR/Cas12b one-pot detection assay (Rcod) for Bordetella pertussis detection without additional amplification product transfer steps. The time from sample processing to response time was less than 30 min using nucleic acid extraction-free method, and the sensitivity reached 0.2 copies/μL. In this system, Alicyclobacillus acidoterrestris Cas12b protein (AacCas12b) exhibited strong and specific trans-cleavage activity at a constant temperature of 37 °C, while the cis-cleavage activity was weak. This characteristic reduces the interference of AacCas12b with nucleic acids in the system. Compared with real-time PCR, our Rcod system detected B. pertussis in 221 clinical samples with a sensitivity and specificity of 97.96 % and 99.19 %, respectively, with nucleic acid extraction-free method. The rapid, sensitive and specific Rcod system provides ideas for the establishment of CRISPR-based one-step nucleic acid detection and may aid the development of reliable point-of-care nucleic acid tests. IMPORTANCE: Pertussis is an acute respiratory infection caused by B. pertussis that is highly contagious and potentially fatal, and early diagnosis is essential for the treatment of whooping cough. In this study, we found that AacCas12b has high and strongly specific trans-cleavage activity at lower temperatures. A RAA-CRISPR/Cas12b one-step detection platform (Rcod) without interference with amplification was developed. In addition, the combination of Rcod and nucleic acid extraction-free method can quickly and accurately detect the qualitative detection of B. pertussis, and the detection results are visualized, which makes the pathogen nucleic acid detection and analysis process simpler, and provides a new method for the rapid clinical diagnosis of B. pertussis.
Collapse
Affiliation(s)
- Kangfeng Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Laboratory of Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiao Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qinghan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiangju Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Weixin You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenjing Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ya Bian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jianguang Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhen Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Rui Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xiaoqing Yang
- Pediatrics Department, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.
| | - Zhiyong Li
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, China.
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
22
|
Wang Z, Wang Y, Zhang Y, Qin G, Sun W, Wang A, Wang Y, Zhang G, Zhao J. On-site detection and differentiation of African swine fever virus variants using an orthogonal CRISPR-Cas12b/Cas13a-based assay. iScience 2024; 27:109050. [PMID: 38571763 PMCID: PMC10987800 DOI: 10.1016/j.isci.2024.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 01/23/2024] [Indexed: 04/05/2024] Open
Abstract
The African swine fever virus (ASFV) and its variants have induced substantial economic losses in China, prompting a critical need for efficient detection methods. Several PCR-based methods have been developed to discriminate between wild-type ASFV and gene-deleted variants. However, the requirement for sophisticated equipment and skilled operators limits their use in field settings. Here, we developed a CRISPR-Cas12b/Cas13a-based detection assay that can identify ASFV variants with minimal equipment requirements and a short turnaround time. The assay utilizes the distinct DNA/RNA collateral cleavage preferences of Cas12b/Cas13a to detect two amplified targets from multiplex recombinase polymerase amplification (RPA) in a single tube, and the results can be visualized through fluorescent or lateral-flow readouts. When tested with clinical samples in field settings, our assay successfully detected all ASFV-positive samples in less than 60 min. This assay provides a rapid on-site surveillance tool for detecting ASFV and its emerging variants.
Collapse
Affiliation(s)
- Zhe Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Yu Wang
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosong Qin
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jianguo Zhao
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
23
|
Zhu X, Zhang J, Pan R, Zhang K, Dai H. CRISPR/Cas12a-mediated entropy-driven electrochemical biosensor for detection of genetically modified maize Mon810. Anal Chim Acta 2024; 1296:342290. [PMID: 38401924 DOI: 10.1016/j.aca.2024.342290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Genetically modified crops (GMOs) have led to significant, if not revolutionary, agricultural advances. The development of GMOs requires necessary regulations, which depend on the detection of GMOs. A sensitive and specific biosensor for the detection of transgenic crops is crucial to improve the detection efficiency of GMOs. Here, we developed a CRISPR/Cas12a-mediated entropy-driven electrochemiluminescence (ECL) biosensor for the sensitive and specific detection of MON810, the world's most widely used transgenic insect-resistant maize. We designed two crRNAs to activate CRISPR/Cas12a, allowing it to cut non-specific single strands, and we modified the DNA tetrahedron (DT) on the surface of the gold electrode to diminish non-specific adsorption. The entropy-driven chain displacement reaction with the target DNA takes place for amplification. After optimization, the biosensor has satisfactory accuracy and selectivity, with a linear range of ECL of 1-106 fM and a limit of detection (LOD) of 3.3 fM by the 3σ method. The biosensor does not require polymerase chain reaction (PCR) amplification or complex sample processing, which dramatically improves transgenic crop detection efficiency. This new biosensor achieves rapid, sensitive, and highly specific detection of transgenic crops, and has great potential for large-scale field detection of transgenic crops.
Collapse
Affiliation(s)
- Xia Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jianfeng Zhang
- Beijing Life Science Academy, Changping, 102209, Beijing, China
| | - Ronghui Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology. Nanjing, 210044, China.
| | - Huaxin Dai
- Beijing Life Science Academy, Changping, 102209, Beijing, China.
| |
Collapse
|
24
|
Chen Q, Wu J, Tang C, Wang Y. CRISPR-based platforms for the specific and dual detection of defoliating/nondefoliating strains of Verticillium dahliae. PEST MANAGEMENT SCIENCE 2024; 80:2042-2052. [PMID: 38117128 DOI: 10.1002/ps.7940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Verticillium dahliae is a soil-borne pathogenic fungus that causes Verticillium wilt disease on more than 400 plant species worldwide. Because of its broad host range and its ability to survive long term in the soil, there are few effective control measures for V. dahliae once it has become established. Accurate, sensitive, and rapid detection of V. dahliae is crucial for limiting pathogen entry into new regional environments and early management of Verticillium wilt. RESULTS In this study, we developed a method to detect V. dahliae based on recombinase polymerase amplification (RPA) and CRISPR/Cas technology and used fluorescence and lateral flow test strips to monitor the outcomes. Through the establishment and optimization of RPA-CRISPR/Cas13a detection, the sensitivity of the fluorescence method was 1 am for genomic DNA (gDNA) within 20 min, whereas the sensitivity of the lateral flow strip method was 100 am for gDNA in 30 min. The field applicability of RPA-CRISPR/Cas13a was also validated by the detection of V. dahliae on smoke trees (Cotinus coggygria) in Xiangshan Park, Beijing, China. Finally, diplex detection for defoliating and nondefoliating pathotypes of V. dahliae was established by combining CRISPR-Cas12a/Cas13a with specific target genes. CONCLUSION Taken together, this study achieved rapid, sensitive, and accurate detection of V. dahliae and the differentiation of defoliating and nondefoliating pathotypes and provides potential for field-deployable diagnostic tools for rapid and ultrasensitive detection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Jin Wu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chen Tang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
25
|
Zhou J, Li Z, Seun Olajide J, Wang G. CRISPR/Cas-based nucleic acid detection strategies: Trends and challenges. Heliyon 2024; 10:e26179. [PMID: 38390187 PMCID: PMC10882038 DOI: 10.1016/j.heliyon.2024.e26179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
CRISPR/Cas systems have become integral parts of nucleic acid detection apparatus and biosensors. Various CRISPR/Cas systems such as CRISPR/Cas9, CRISPR/Cas12, CRISPR/Cas13, CRISPR/Cas14 and CRISPR/Cas3 utilize different mechanisms to detect or differentiate biological activities and nucleotide sequences. Usually, CRISPR/Cas-based nucleic acid detection systems are combined with polymerase chain reaction, loop-mediated isothermal amplification, recombinase polymerase amplification and transcriptional technologies for effective diagnostics. Premised on these, many CRISPR/Cas-based nucleic acid biosensors have been developed to detect nucleic acids of viral and bacterial pathogens in clinical samples, as well as other applications in life sciences including biosecurity, food safety and environmental assessment. Additionally, CRISPR/Cas-based nucleic acid detection systems have showed better specificity compared with other molecular diagnostic methods. In this review, we give an overview of various CRISPR/Cas-based nucleic acid detection methods and highlight some advances in their development and components. We also discourse some operational challenges as well as advantages and disadvantages of various systems. Finally, important considerations are offered for the improvement of CRISPR/Cas-based nucleic acid testing.
Collapse
Affiliation(s)
- Jian Zhou
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510000, People's Republic of China
- Department of Laboratory Medicines, the First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, People's Republic of China
| | - Zhuo Li
- Department of Laboratory Medicines, the First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, People's Republic of China
| | - Joshua Seun Olajide
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510000, People's Republic of China
| | - Gang Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510000, People's Republic of China
| |
Collapse
|
26
|
Xu T, Yang X, Feng X, Luo H, Luo C, Jia MA, Lei L. Sensitive and Visual Detection of Brassica Yellows Virus Using Reverse Transcription Loop-Mediated Isothermal Amplification-Coupled CRISPR-Cas12 Assay. PHYTOPATHOLOGY 2024; 114:474-483. [PMID: 37589413 DOI: 10.1094/phyto-06-23-0195-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Brassica yellows virus (BrYV) is an economically important virus on cruciferous species. In this study, a one-pot reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system was developed for the detection of BrYV. The limit of detection of this method reached 32.8 copies of the BrYV ORF5, which is 100-fold more sensitive than the RT-LAMP method. Moreover, there was no cross-reactivity with other rapeseed-infecting RNA viruses or poleroviruses. We dried the CRISPR/Cas12a reagent in a trehalose and pullulan mixture to retain its efficacy at the RT-LAMP temperature of 63°C in order to allow portable BrYV detection in a water bath. The entire process can be performed in about 1 h, and a positive result can be rapidly and conveniently detected using a handheld UV lamp. In the field, the RT-LAMP-CRISPR/Cas12a assay was accurate and had higher sensitivity than RT-LAMP and reverse transcription-polymerase chain reaction assays. The novel RT-LAMP-CRISPR/Cas12a assay allows convenient, portable, rapid, low-cost, highly sensitive, and specific detection of BrYV and has great potential for on-site monitoring of BrYV.
Collapse
Affiliation(s)
- Tengzhi Xu
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xiaolan Yang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xia Feng
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Hao Luo
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Chun Luo
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Meng-Ao Jia
- Guizhou Academy of Tobacco Sciences, Guiyang, Guizhou 550001, China
| | - Lei Lei
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
| |
Collapse
|
27
|
Cao G, Yang N, Xiong Y, Shi M, Wang L, Nie F, Huo D, Hou C. Completely Free from PAM Limitations: Asymmetric RPA with CRISPR/Cas12a for Nucleic Acid Assays. ACS Sens 2023; 8:4655-4663. [PMID: 38010352 DOI: 10.1021/acssensors.3c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Experimentally, Cas12a can recognize multiple protospacer adjacent motif (PAM) sequences and is not restricted to the "TTTN". However, the application of the CRISPR/Cas12a system is still limited by the PAM for double-stranded DNA (dsDNA). Here, we developed asymmetric RPA (Asy-RPA) to completely break the limitations of PAM. Asy-RPA not only achieved efficient amplification but also converted dsDNA to single-stranded DNA (ssDNA) without complicated steps. The ssDNA products activated the trans-cleavage activity of Cas12a, outputting signals. The application of Asy-RPA completely freed Cas12a from the PAM, which can be more widely used in nucleic acid detection, such as lumpy skin disease virus, with an actual detection limit as low as 1.21 × 101 copies·μL-1. More importantly, Cas12a was intolerant to mutations on ssDNA. This provided technical support for the detection and identification of wild-type Mycobacterium tuberculosis (WT-TB) and rifampin-resistant mutant-type M. tuberculosis (MT-TB). The detection limit was as low as 1 fM for 1% mixed samples. The detection and availability of different treatment options for treatment-resistant and WT-TB were significant for the elimination of TB. In summary, the platform consisting of Asy-RPA and CRISPR/Cas12a was suitable for the detection of various viruses and bacteria and was a boon for the detection of dsDNA without recognizable PAM.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Nannan Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Meimei Shi
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Lin Wang
- Science and Technology Research Center of China Customs, Beijing 100730, PR China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
28
|
Wu J, Gao P, Shi Y, Zhang C, Tong X, Fan H, Zhou X, Zhang Y, Yin H. Characterization of a thermostable Cas12a ortholog. CELL INSIGHT 2023; 2:100126. [PMID: 38047138 PMCID: PMC10692460 DOI: 10.1016/j.cellin.2023.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 12/05/2023]
Abstract
CRISPR-Cas12a has been used for genome editing and molecular diagnosis. The well-studied Cas12a orthologs have a T-rich PAM and are usually categorized as non-thermally stable enzymes. Here, we identified a new Cas12a ortholog from Clostridium thermobutyricum, which survives at 60 °C. This Cas12a ortholog is named as CtCas12a and exhibits low sequence similarity to the known Cas12a family members. CtCas12a is active in a wide temperature range from 17 to 77 °C. Moreover, this ortholog has a relaxed PAM of YYV (Y=C or T, V = A or C or G). We optimized the conditions for trans-cleavage and enabled its detection of nucleic acids. CtCas12a executed genome editing in human cells and generated up to 26% indel formation in the EGFP locus. With the ability to be active at high temperatures as well as having a relaxed PAM sequence, CtCas12a holds potential to be further engineered for pathogen detection and editing a wide range of genomic sequences.
Collapse
Affiliation(s)
- Jing Wu
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Pan Gao
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yajing Shi
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Caixiang Zhang
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiaohan Tong
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Huidi Fan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, 430071, China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, 430071, China
| | - Ying Zhang
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Hao Yin
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
29
|
Wang R, Mao X, Xu J, Yao P, Jiang J, Li Q, Wang F. Engineering of the LAMP-CRISPR/Cas12b platform for Chlamydia psittaci detection. J Med Microbiol 2023; 72. [PMID: 38054656 DOI: 10.1099/jmm.0.001781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Introduction. Chlamydia psittaci (C. psittaci) is a zoonotic infection, that causes psittacosis (parrot fever) in humans, leading to severe clinical manifestations, including severe pneumonia, adult respiratory distress syndrome, and, in rare cases, death.Gap Statement. Rapid, sensitive and specific detection of C. psittaci facilitates timely diagnosis and treatment of patients.Aim. This study aimed to engineer the LAMP-CRISPR/Cas12b platform for C. psittaci detection.Methodology. The loop-mediated isothermal amplification (LAMP) technique and clustered regularly interspaced short palindromic repeats-CRISPR associated protein 12b (CRISPR-Cas12b) assay were combined to establish two-step and one-tube LAMP-CRISPR/Cas12b reaction systems, respectively, for rapidly detecting C. psittaci.Results. The two-step and one-tube LAMP-CRISPR/Cas12b assay could complete detection within 1 h. No cross-reactivity was observed from non-C. psittaci templates with specific LAMP amplification primers and single-guide RNA (sgRNA) targeting the highly conserved short fragment CPSIT_0429 gene of C. psittaci. The detection limits of the two-step and one-tube LAMP-CRISPR/Cas12b reaction were 102 aM and 103 aM, respectively. The results were consistent with qPCR for nucleic acid detection in 160 clinical samples, including 80 suspected C. psittaci samples, kept in the laboratory.Conclusions. The LAMP-CRISPR/Cas12b assay developed in this study provides a sensitive and specific method for rapidly detecting C. psittaci and offers technical support for its rapid diagnosis.
Collapse
Affiliation(s)
- Rong Wang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xujian Mao
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, Jiangsu 213022, PR China
| | - Jian Xu
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, Jiangsu 213022, PR China
| | - Ping Yao
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, Jiangsu 213022, PR China
| | - Jingyi Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, Jiangsu 213022, PR China
| | - Qiong Li
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, Jiangsu 213022, PR China
| | - Fengming Wang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, Jiangsu 213022, PR China
| |
Collapse
|
30
|
Yigci D, Atçeken N, Yetisen AK, Tasoglu S. Loop-Mediated Isothermal Amplification-Integrated CRISPR Methods for Infectious Disease Diagnosis at Point of Care. ACS OMEGA 2023; 8:43357-43373. [PMID: 38027359 PMCID: PMC10666231 DOI: 10.1021/acsomega.3c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Infectious diseases continue to pose an imminent threat to global public health, leading to high numbers of deaths every year and disproportionately impacting developing countries where access to healthcare is limited. Biological, environmental, and social phenomena, including climate change, globalization, increased population density, and social inequity, contribute to the emergence of novel communicable diseases. Rapid and accurate diagnoses of infectious diseases are essential to preventing the transmission of infectious diseases. Although some commonly used diagnostic technologies provide highly sensitive and specific measurements, limitations including the requirement for complex equipment/infrastructure and refrigeration, the need for trained personnel, long sample processing times, and high cost remain unresolved. To ensure global access to affordable diagnostic methods, loop-mediated isothermal amplification (LAMP) integrated clustered regularly interspaced short palindromic repeat (CRISPR) based pathogen detection has emerged as a promising technology. Here, LAMP-integrated CRISPR-based nucleic acid detection methods are discussed in point-of-care (PoC) pathogen detection platforms, and current limitations and future directions are also identified.
Collapse
Affiliation(s)
- Defne Yigci
- School
of Medicine, Koç University, Istanbul 34450, Turkey
| | - Nazente Atçeken
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Savas Tasoglu
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Boğaziçi
Institute of Biomedical Engineering, Boğaziçi
University, Istanbul 34684, Turkey
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Istanbul 34450, Turkey
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, Stuttgart 70569, Germany
| |
Collapse
|
31
|
Zhao Z, Wang S, Dong Z, Fan Q, Lei R, Kuang R, Zhang Y. One-Step Reverse-Transcription Recombinase-Aided Amplification CRISPR/Cas12a-Based Lateral Flow Assay for Fast Field Screening and Accurate Differentiation of Four Major Tobamoviruses Infecting Tomato and Pepper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37916776 DOI: 10.1021/acs.jafc.3c05268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Several tobamoviruses cause substantial economic losses to tomato and pepper crops globally, especially the pepper mild mosaic virus (PMMoV), tomato brown rugose fruit virus (ToBRFV), tomato mosaic virus (ToMV), and tomato mottle mosaic virus (ToMMV). A fast and accurate detection method is essential for virus identification. An all-in-one reaction method combining a one-step reverse-transcription recombinase-aided amplification (RT-RAA) and CRISPR/Cas12a-based lateral flow assay in one mixture was developed to rapidly screen and accurately differentiate among these four tobamoviruses for field detection in tomato and pepper plants. With a generic RT-RAA primer set and a mix of four specific crRNAs, along with a portable metal incubator and the use of a crude extraction method, this method screened for PMMoV, ToBRFV, ToMV, and ToMMV concurrently in less than 1 h, enabling field workers to take action immediately. The accurate differentiation of these four viruses could be achieved by later adding a single specific crRNA.
Collapse
Affiliation(s)
- Zhenxing Zhao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Siyuan Wang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Zheng Dong
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qixuan Fan
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, 100193 Beijing, China
| | - Rong Lei
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ruirui Kuang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, 100193 Beijing, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
32
|
Wang B, Yang H. Progress of CRISPR-based programmable RNA manipulation and detection. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1804. [PMID: 37282821 DOI: 10.1002/wrna.1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
Prokaryotic clustered regularly interspaced short palindromic repeats and CRISPR associated (CRISPR-Cas) systems provide adaptive immunity by using RNA-guided endonucleases to recognize and eliminate invading foreign nucleic acids. Type II Cas9, type V Cas12, type VI Cas13, and type III Csm/Cmr complexes have been well characterized and developed as programmable platforms for selectively targeting and manipulating RNA molecules of interest in prokaryotic and eukaryotic cells. These Cas effectors exhibit remarkable diversity of ribonucleoprotein (RNP) composition, target recognition and cleavage mechanisms, and self discrimination mechanisms, which are leveraged for various RNA targeting applications. Here, we summarize the current understanding of mechanistic and functional characteristics of these Cas effectors, give an overview on RNA detection and manipulation toolbox established so far including knockdown, editing, imaging, modification, and mapping RNA-protein interactions, and discuss the future directions for CRISPR-based RNA targeting tools. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
33
|
Lin C, Chen F, Huang D, Li W, He C, Tang Y, Li X, Liu C, Han L, Yang Y, Zhu Y, Chen R, Shi Y, Xia C, Yan Z, Du H, Huang L. A universal all-in-one RPA-Cas12a strategy with de novo autodesigner and its application in on-site ultrasensitive detection of DNA and RNA viruses. Biosens Bioelectron 2023; 239:115609. [PMID: 37611446 DOI: 10.1016/j.bios.2023.115609] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Revolutionary all-in-one RPA-CRISPR assays are rapidly becoming the most sought-after tools for point-of-care testing (POCT) due to their high sensitivity and ease of use. Despite the availability of one-pot methods for specific targets, the development of more efficient methods for new targets remains a significant challenge. In this study, we present a rapid and universal approach to establishing an all-in-one RPA-Cas12a method CORDSv2 based on rational balancing amplification and Cas12a cleavage, which achieves ultrasensitive detection of several targets, including SARS-CoV-2, ASFV, HPV16, and HPV18. CORDSv2 demonstrates a limit of detection (LOD) of 0.6 cp/μL and 100% sensitivity for SARS-CoV-2, comparable to qPCR. Combining with our portable device(hippo-CORDS), it has a visual detection LOD of 6 cp/μL and a sensitivity up to 100% for SARS-CoV-2 and 97% for Ct<35 ASFV samples, surpassing most one-pot visual methods. To simplify and accelerate the process for new targets, we also develop a de novo autodesigner by which the optimal couples of primers and crRNA can be selected rapidly. As a universal all-in-one RPA-CRISPR method for on-site testing, CORDSv2 becomes an attractive choice for rapid and accurate diagnosis in resource-limited settings.
Collapse
Affiliation(s)
- Cailing Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Feng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Dongchao Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Wenyan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Changsheng He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingjun Tang
- WENS Foodstuff Group Co., Ltd., Yunfu, 527400, China
| | - Xueping Li
- Guangzhou Yoyoung Bio-tech Company, Guangzhou, 510300, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China
| | - Liya Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yunpeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yongchong Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ruikang Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yuanju Shi
- Guangzhou Yoyoung Bio-tech Company, Guangzhou, 510300, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China
| | - Zhibin Yan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Fangrui Institute of Innovative Drugs, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
34
|
Shigemori H, Fujita S, Tamiya E, Wakida SI, Nagai H. Solid-Phase Collateral Cleavage System Based on CRISPR/Cas12 and Its Application toward Facile One-Pot Multiplex Double-Stranded DNA Detection. Bioconjug Chem 2023; 34:1754-1765. [PMID: 37782626 PMCID: PMC10587867 DOI: 10.1021/acs.bioconjchem.3c00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/31/2023] [Indexed: 10/04/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 12 (Cas12) system is attracting interest for its potential as a next-generation nucleic acid detection tool. The system can recognize double-stranded DNA (dsDNA) based on Cas12-CRISPR RNA (crRNA) and induce signal transduction by collateral cleavage. This property is expected to simplify comprehensive genotyping. Here, we report a solid-phase collateral cleavage (SPCC) reaction by CRISPR/Cas12 and its application toward one-pot multiplex dsDNA detection with minimal operational steps. In the sensor, Cas12-crRNA and single-stranded DNA (ssDNA) are immobilized on the sensing surface and act as enzyme and reporter substrates, respectively. We also report a dual-target dsDNA sensor prepared by immobilizing Cas12-crRNA and a fluorophore-labeled ssDNA reporter on separate spots. When a spot captures a target dsDNA sequence, it cleaves the ssDNA reporter on the same spot and reduces its fluorescence by 42.1-57.3%. Crucially, spots targeting different sequences do not show a reduction in fluorescence, thus confirming the one-pot multiplex dsDNA detection by SPCC. Furthermore, the sequence specificity has a two-base resolution, and the detectable concentration for the target dsDNA is at least 10-9 M. In the future, the SPCC-based sensor array could achieve one-pot comprehensive genotyping by using an array spotter as a reagent-immobilizing method.
Collapse
Affiliation(s)
- Hiroki Shigemori
- Advanced
Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL),
National Institute of Advanced Industrial Science and Technology (AIST), Photonics Center Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
- Graduate
School of Human Development and Environment, Kobe University, 3-11
Tsurukabuto, Nada-ku, Kobe, Hyogo 657-0011, Japan
| | - Satoshi Fujita
- Advanced
Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL),
National Institute of Advanced Industrial Science and Technology (AIST), Photonics Center Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Eiichi Tamiya
- Advanced
Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL),
National Institute of Advanced Industrial Science and Technology (AIST), Photonics Center Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
- Institute
of Scientific and Industrial Research (SANKEN), Osaka University, 8-1
Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shin-ichi Wakida
- Advanced
Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL),
National Institute of Advanced Industrial Science and Technology (AIST), Photonics Center Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
- Institute
of Scientific and Industrial Research (SANKEN), Osaka University, 8-1
Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hidenori Nagai
- Advanced
Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL),
National Institute of Advanced Industrial Science and Technology (AIST), Photonics Center Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
- Graduate
School of Human Development and Environment, Kobe University, 3-11
Tsurukabuto, Nada-ku, Kobe, Hyogo 657-0011, Japan
| |
Collapse
|
35
|
Li W, Ma X, Yong YC, Liu G, Yang Z. Review of paper-based microfluidic analytical devices for in-field testing of pathogens. Anal Chim Acta 2023; 1278:341614. [PMID: 37709421 DOI: 10.1016/j.aca.2023.341614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
Pathogens cause various infectious diseases and high morbidity and mortality which is a global public health threat. The highly sensitive and specific detection is of significant importance for the effective treatment and intervention to minimise the impact. However, conventional detection methods including culture and molecular method gravely depend on expensive equipment and well-trained skilled personnel, limiting in the laboratory. It remains challenging to adapt in resource-limiting areas, e.g., low and middle-income countries (LMICs). To this end, low-cost, rapid, and sensitive detection tools with the capability of field testing e.g., a portable device for identification and quantification of pathogens, has attracted increasing attentions. Recently, paper-based microfluidic analytical devices (μPADs) have shown a promising tool for rapid and on-site diagnosis, providing a cost-effective and sensitive analytical approach for pathogens detection. The fast turn-round data collection may also contribute to better understanding of the risks and insights on mitigation method. In this paper, critical developments of μPADs for in-field detection of pathogens both for clinical diagnostics and environmental surveillance are reviewed. The future development, and challenges of μPADs for rapid and onsite detection of pathogens are discussed, including using the cross-disciplinary development with, emerging techniques such as deep learning and Internet of Things (IoT).
Collapse
Affiliation(s)
- Wenliang Li
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom
| | - Xuanye Ma
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom
| | - Yang-Chun Yong
- Biofuels Institute, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Emergency Management & School of Environment and Safety Engineering, Zhenjiang, 212013, Jiangsu Province, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom.
| |
Collapse
|
36
|
Zeng Q, Zhou M, Hu Z, Deng W, Li Z, Wu L, Liang D. Rapid and sensitive Cas12a-based one-step nucleic acid detection with ssDNA-modified crRNA. Anal Chim Acta 2023; 1276:341622. [PMID: 37573099 DOI: 10.1016/j.aca.2023.341622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
CRISPR-Cas12a RNA-guided complexes have been developed to facilitate the rapid and sensitive detection of nucleic acids. However, they are limited by the complexity of the operation, risk of carry-over contamination, and degradation of CRISPR RNA (crRNA). In this study, a Cas12a-based single-stranded DNA (ssDNA)-modified crRNA (mD-crRNA)-mediated one-step diagnostic method (CasDOS) was established to overcome these drawbacks. mD-crRNA consisted of wild-type crRNA (Wt-crRNA) with ssDNA extensions at the 3' and 5' ends. Compared to Wt-crRNA, mD-crRNA exhibited a 100-1000-fold increase in sensitivity in the one-step assay, reducing the cis-cleavage activity of Cas12a to avoid excessive cleavage of the target DNA in the early stages of the reaction, leading to increased amplification and accumulation of the target amplicons, and improved the speed and intensity of the generated fluorescence signal. The detectability of CasDOS was 16.6 aM for the constructed plasmids of Streptococcus agalactiae (GBS), human papillomavirus type 16 (HPV16), and type 18 (HPV18). In clinical trials, CasDOS achieved 100% accuracy in identifying the known genotypes of the five HPV DNA samples. Moreover, CasDOS showed complete concordance with the qPCR results for GBS detection in ten vaginal or cervical swab samples, with a turnaround time from sampling to results within 30 min. In addition, mD-crRNA remained stable after Ribonuclease R treatment, suggesting that it might be more suitable as a raw material for the CRISPR detection kit. In conclusion, we have developed a universal, rapid, and highly sensitive one-step CRISPR detection assay.
Collapse
Affiliation(s)
- Qinlong Zeng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Zhiqing Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Weiheng Deng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China.
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China.
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
37
|
Sharma N, Neill T, Yang HC, Oliver CL, Mahaffee WF, Naegele R, Moyer MM, Miles TD. Development of a PNA-LNA-LAMP Assay to Detect an SNP Associated with QoI Resistance in Erysiphe necator. PLANT DISEASE 2023; 107:3238-3247. [PMID: 37005502 DOI: 10.1094/pdis-09-22-2027-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The repetitive use of quinone outside inhibitor fungicides (QoIs, strobilurins; Fungicide Resistance Action Committee [FRAC] 11) to manage grape powdery mildew has led to development of resistance in Erysiphe necator. While several point mutations in the mitochondrial cytochrome b gene are associated with resistance to QoI fungicides, the substitution of glycine to alanine at codon 143 (G143A) has been the only mutation observed in QoI-resistant field populations. Allele-specific detection methods such as digital droplet PCR and TaqMan probe-based assays can be used to detect the G143A mutation. In this study, a peptide nucleic acid-locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA-LAMP) assay consisting of an A-143 reaction and a G-143 reaction, was designed for rapidly detecting QoI resistance in E. necator. The A-143 reaction amplifies the mutant A-143 allele faster than the wild-type G-143 allele, while the G-143 reaction amplifies the G-143 allele faster than the A-143 allele. Identification of resistant or sensitive E. necator samples was determined by which reaction had the shorter time to amplification. Sixteen single-spore QoI-resistant and -sensitive E. necator isolates were tested using both assays. Assay specificity in distinguishing the single nucleotide polymorphism (SNP) approached 100% when tested using purified DNA of QoI-sensitive and -resistant E. necator isolates. This diagnostic tool was sensitive to one-conidium equivalent of extracted DNA with an R2 value of 0.82 and 0.87 for the G-143 and A-143 reactions, respectively. This diagnostic approach was also evaluated against a TaqMan probe-based assay using 92 E. necator samples collected from vineyards. The PNA-LNA-LAMP assay detected QoI resistance in ≤30 min and showed 100% agreement with the TaqMan probe-based assay (≤1.5 h) for the QoI-sensitive and -resistant isolates. There was 73.3% agreement with the TaqMan probe-based assay when samples had mixed populations with both G-143 and A-143 alleles present. Validation of the PNA-LNA-LAMP assay was conducted in three different laboratories with different equipment. The results showed 94.4% accuracy in one laboratory and 100% accuracy in two other laboratories. The PNA-LNA-LAMP diagnostic tool was faster and required less expensive equipment relative to the previously developed TaqMan probe-based assay, making it accessible to a broader range of diagnostic laboratories for detection of QoI resistance in E. necator. This research demonstrates the utility of the PNA-LANA-LAMP for discriminating SNPs from field samples and its utility for point-of-care monitoring of plant pathogen genotypes.
Collapse
Affiliation(s)
- Nancy Sharma
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
| | - Tara Neill
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR
| | - Hui-Ching Yang
- USDA-ARS Crop Diseases, Pests and Genetics Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA
| | - Charlotte L Oliver
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA
| | - Walter F Mahaffee
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR
| | - Rachel Naegele
- USDA-ARS Crop Diseases, Pests and Genetics Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA
| | - Michelle M Moyer
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA
| | - Timothy D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
38
|
Huang B, Lou Y, Zeng Z, Kan X, Shi X, Wu Y, Guo L, Wang M, Huang X, Tian X, Wang X. A Cas12a-based fluorescent microfluidic system for rapid on-site human papillomavirus diagnostics. Appl Microbiol Biotechnol 2023; 107:6287-6297. [PMID: 37626187 DOI: 10.1007/s00253-023-12728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Persistent infection with human papillomavirus (HPV) is the leading cause of cervical cancer, and early diagnosis is crucial for clinical management. However, the easy and rapid on-site diagnostic for HPV genotyping remains challenging. Here, we develop a Cas12a-based fluorescent microfluidic detection system for diagnosing six HPV subtypes (HPV6, HPV11, HPV16, HPV18, HPV31, and HPV33). A panel of crRNAs and recombinase polymerase amplification (RPA) primers targeting the HPV L1 gene was screened for sensitive and specific detection. Furthermore, a one-pot RPA reaction was developed to amplify the six HPV subtypes without cross-reactivity. For on-site detection, we integrated the RPA-Cas12a detection into a microfluidic device, enabling the detection of processed clinical samples within 35 minutes. The assay was validated using 112 clinical swab samples and obtained consistent results with the qPCR assay, with a concordance rate of 99.1%. Overall, our diagnostic method offers a rapid, sensitive, and easy-to-use on-site assay for detecting HPV genotypes and holds promise for improving cervical cancer screening and prevention. KEY POINTS: • The Cas12a-based fluorescent microfluidic detection system for the diagnosis of six HPV subtypes. • A one-pot RPA reaction for amplifying the six HPV subtypes without cross-reactivity. • The RPA-Cas12a-microfluidic system provides results within 35 minutes for on-site detection.
Collapse
Affiliation(s)
| | - Yufeng Lou
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
- Center for Innovation & Translational Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Xinping Shi
- Department of Laboratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yue Wu
- Zhejiang Laboratory, Hangzhou, China
| | - Ling Guo
- Zhejiang Laboratory, Hangzhou, China
| | - Muzhen Wang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | | | - Xuemei Tian
- School of Life Sciences, South China Normal University, Guangzhou, China.
| | - Xinjie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
39
|
Gao P, Yang M, Chen Y, Yan J, Han M, Deng H, Qian K, Yang J, Lu Y, Zhou L, Huang A, Li X, Deng W, Long Q. A spacer design strategy for CRISPR-Cas12f1 with single-nucleotide polymorphism mutation resolution capability and its application in the mutations diagnosis of pathogens. J Med Virol 2023; 95:e29189. [PMID: 37855689 DOI: 10.1002/jmv.29189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Infectious diseases remain a major global issue in public health. It is important to develop rapid, sensitive, and accurate diagnostic methods to detect pathogens and their mutations. Cas12f1 is an exceptionally compact RNA-guided nuclease and have the potential to fulfill the clinical needs. Based on the interaction between crRNA-SSDNA binary sequence and Cas12f1, here, we addressed the essential features that determine the recognition ability of CRISPR-Cas12f1 single-nucleotide polymorphism (SNP), such as the length of spacer region and the base pairing region that determines the trans-cleavage of ssDNA. A fine-tuning spacer design strategy is also proposed to enhance the SNP recognition capability of CRISPR-Cas12f1. The optimized spacer confers the Cas12f1 system a strong SNP identification capability for viral or bacterial drug-resistance mutations, with a specificity ratio ranging from 19.63 to 110.20 and an admirable sensitivity up to 100 copy/μL. Together, the spacer screening and CRISPR-Cas12f1 based SNP identification method, is sensitive and versatile, and will have a wide application prospect in pathogen DNA mutation diagnosis and other mutation profiling.
Collapse
Affiliation(s)
- Panqi Gao
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Maoyi Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jun Yan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Miaomiao Han
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Keli Qian
- Department of Infection Control, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiandong Yang
- Urumqi Municipal Centre for Disease Control and Prevention, Xinjiang, China
| | - Yaoqin Lu
- Urumqi Municipal Centre for Disease Control and Prevention, Xinjiang, China
| | - Ling Zhou
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wanyan Deng
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Quanxin Long
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Jiang W, Aman R, Ali Z, Rao GS, Mahfouz M. PNA-Pdx: Versatile Peptide Nucleic Acid-Based Detection of Nucleic Acids and SNPs. Anal Chem 2023; 95:14209-14218. [PMID: 37696750 PMCID: PMC10535012 DOI: 10.1021/acs.analchem.3c01809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
Monitoring diseases caused by pathogens or by mutations in DNA sequences requires accurate, rapid, and sensitive tools to detect specific nucleic acid sequences. Here, we describe a new peptide nucleic acid (PNA)-based nucleic acid detection toolkit, termed PNA-powered diagnostics (PNA-Pdx). PNA-Pdx employs PNA probes that bind specifically to a target and are then detected in lateral flow assays. This can precisely detect a specific pathogen or genotype genomic sequence. PNA probes can also be designed to invade double-stranded DNAs (dsDNAs) to produce single-stranded DNAs for precise CRISPR-Cas12b-based detection of genomic SNPs without requiring the protospacer-adjacent motif (PAM), as Cas12b requires PAM sequences only for dsDNA targets. PNA-Pdx identified target nucleic acid sequences at concentrations as low as 2 copies/μL and precisely detected the SARS-CoV-2 genome in clinical samples in 40 min. Furthermore, the specific dsDNA invasion by the PNA coupled with CRISPR-Cas12b precisely detected genomic SNPs without PAM restriction. Overall, PNA-Pdx provides a novel toolkit for nucleic acid and SNP detection as well as highlights the benefits of engineering PNA probes for detecting nucleic acids.
Collapse
Affiliation(s)
- Wenjun Jiang
- Laboratory for Genome Engineering and
Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rashid Aman
- Laboratory for Genome Engineering and
Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and
Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gundra S. Rao
- Laboratory for Genome Engineering and
Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and
Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
41
|
Li X, Su B, Yang L, Kou Z, Wu H, Zhang T, Liu L, Han Y, Niu M, Sun Y, Li H, Jiang T. Highly sensitive and rapid point-of-care testing for HIV-1 infection based on CRISPR-Cas13a system. BMC Infect Dis 2023; 23:627. [PMID: 37749486 PMCID: PMC10518925 DOI: 10.1186/s12879-023-08492-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/28/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus type one (HIV-1) is the leading cause of acquired immunodeficiency syndrome (AIDS). AIDS remains a global public health concern but can be effectively suppressed by life-long administration of combination antiretroviral therapy. Early detection and diagnosis are two key strategies for the prevention and control of HIV/AIDS. Rapid and accurate point-of-care testing (POCT) provides critical tools for managing HIV-1 epidemic in high-risk areas and populations. METHODS In this study, a POCT for HIV-1 RNA was developed by CRISPR-Cas13a lateral flow strip combined with reverse transcriptase recombinase-aided amplification (RT-RAA) technology, the results can be directly observed by naked eyes. RESULTS Moreover, with the degenerate base-binding CRISPR-Cas13a system was introduced into the RT-RAA primer designing, the technology developed in this study can be used to test majority of HIV-1 RNA with limit of detection (LOD) 1 copy/μL, while no obvious cross-reaction with other pathogens. We evaluated this method for detecting HIV-1 RNA of clinical samples, the results showed that the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were 91.81% (85.03- 96.19%), 100% (92.60-100%), 100% (96.41-100%), 39.14% (25.59-54.60%) and 92.22% (86.89-95.88%), respectively. The lowest viral load detectable by this method was 112copies/mL. CONCLUSION Above all, this method provides a point-of-care detection of HIV-1 RNA, which is stable, simple and with good sensitivity and specificity. This method has potential to be developed for promoting early diagnosis and treatment effect monitoring of HIV patients in clinical.
Collapse
Affiliation(s)
- Xiaohui Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lan Yang
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhihua Kou
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lifeng Liu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yao Han
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Mengwei Niu
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yansong Sun
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Hao Li
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Taiyi Jiang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
42
|
Deng B, Xue J. HIV infection detection using CRISPR/Cas systems: Present and future prospects. Comput Struct Biotechnol J 2023; 21:4409-4423. [PMID: 37711183 PMCID: PMC10498128 DOI: 10.1016/j.csbj.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection poses substantial medical risks to global public health. An essential strategy to combat the HIV epidemic is timely and effective virus testing. CRISPR-based assays combine the highly compatible CRISPR system with different elements, yielding portability, digitization capabilities, low economic burden and low operational thresholds. The application of CRISPR-based assays has demonstrated rapid, accurate, and accessible means of pathogen testing, suggesting great potential as point-of-care (POC) assays. This review outlines the different types of CRISPR/Cas systems based on Cas proteins and their applications for the detection of HIV. Additionally, we also offer an overview of future perspectives on CRISPR-based methods for HIV detection, including advances in nucleic acid amplification-free testing, improved personal testing, and refined testing for HIV genotypes and drug-resistant strains.
Collapse
Affiliation(s)
- Bingpeng Deng
- Beijing Key Laboratory for Animal Models of Emerging and Re-Emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Jing Xue
- Beijing Key Laboratory for Animal Models of Emerging and Re-Emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
43
|
Wang M, Chen M, Wu X, Huang X, Yu B. CRISPR applications in cancer diagnosis and treatment. Cell Mol Biol Lett 2023; 28:73. [PMID: 37674114 PMCID: PMC10481571 DOI: 10.1186/s11658-023-00483-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
Cancer remains a significant global health challenge, necessitating the exploration of novel and more precise therapeutic options beyond conventional treatments. In this regard, clustered regularly interspaced short palindromic repeats (CRISPR) systems have emerged as highly promising tools for clinical gene editing applications. The CRISPR family encompasses diverse CRISPR-associated (Cas) proteins that possess the ability to recognize specific target sequences. The initial CRISPR system consisted of the Cas9 protein and a single-guide RNA, which guide Cas9 to the desired target sequence, facilitating precise double-stranded cleavage. In addition to the traditional cis-cleavage activity, the more recently discovered Cas12 and Cas13 proteins exhibit trans-cleavage activity, which expands their potential applications in cancer diagnosis. In this review, we provide an overview of the functional characteristics of Cas9, Cas12, and Cas13. Furthermore, we highlight the latest advancements and applications of these CRISPR systems in cancer gene therapy and molecular diagnosis. We also emphasize the importance of understanding the strengths and limitations of each CRISPR system to maximize their clinical utility. By providing a comprehensive overview of the current state of CRISPR technology in cancer research, we aim to inspire further exploration and innovation in this rapidly evolving field.
Collapse
Affiliation(s)
- Mingxia Wang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Menghui Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xia Wu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xinbo Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
44
|
Wu F, Xue Y, Wang Y, Si X, Zhang X, Xu Y, Luo Z. Rapid and accurate genotyping of human SNP rs671 in aldehyde dehydrogenase 2 gene using one-step CRISPR/Cas12b assay without DNA amplification. Cell Div 2023; 18:14. [PMID: 37641062 PMCID: PMC10464061 DOI: 10.1186/s13008-023-00095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The SNP rs671 of Human aldehyde dehydrogenase (ALDH) is G-A transition at 1510th nucleotides, which is an important clinical indicator of alcoholic liver disease, digestive tract cancer and some drug efficiency. The commonly used genotyping assay of this polymorphism is relatively time-consuming and costly. FINDING This study develops a rapid and accurate one-step CRISPR/Cas12b assay to distinguish the G1510A polymorphism of human ALDH2 free of DNA amplification. The method we established requires only one step of adding 1 μl genomic DNA sample to premixed system, and waiting for the acquisition of fluorescent signal, taking approximate 30 min. CONCLUSIONS This method provides a potential tool for more accurate and reliable nucleic acid detection with a single base difference and supports the relevant disease diagnosis and personalized medicine.
Collapse
Affiliation(s)
- Fang Wu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yong Xue
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yan Wang
- Department of Pathology, The Second People's Hospital of Lianyungang, Lianyungang, 222001, China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinyue Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuyang Xu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhidan Luo
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
45
|
Burkin KM, Ivanov AV, Zherdev AV, Dzantiev BB, Safenkova IV. A Critical Study on DNA Probes Attached to Microplate for CRISPR/Cas12 Trans-Cleavage Activity. BIOSENSORS 2023; 13:824. [PMID: 37622910 PMCID: PMC10452489 DOI: 10.3390/bios13080824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
CRISPR/Cas12-based biosensors are emerging tools for diagnostics. However, their application of heterogeneous formats needs the efficient detection of Cas12 activity. We investigated DNA probes attached to the microplate surface and cleaved by Cas12a. Single-stranded (ss) DNA probes (19 variants) and combined probes with double-stranded (ds) and ssDNA parts (eight variants) were compared. The cleavage efficiency of dsDNA-probes demonstrated a bell-shaped dependence on their length, with a cleavage maximum of 50%. On the other hand, the cleavage efficiency of ssDNA probes increased monotonously, reaching 70%. The most effective ssDNA probes were integrated with fluorescein, antibodies, and peroxidase conjugates as reporters for fluorescent, lateral flow, and chemiluminescent detection. Long ssDNA probes (120-145 nt) proved the best for detecting Cas12a trans-activity for all of the tested variants. We proposed a test system for the detection of the nucleocapsid (N) gene of SARS-CoV-2 based on Cas12 and the ssDNA-probe attached to the microplate surface; its fluorescent limit of detection was 0.86 nM. Being united with pre-amplification using recombinase polymerase, the system reached a detection limit of 0.01 fM, thus confirming the effectiveness of the chosen ssDNA probe for Cas12-based biosensors.
Collapse
Affiliation(s)
| | | | | | | | - Irina V. Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (K.M.B.); (A.V.I.); (A.V.Z.); (B.B.D.)
| |
Collapse
|
46
|
Wu F, Lu C, Hu W, Guo X, Chen J, Luo Z. Rapid visual detection of Vibrio parahaemolyticus by combining LAMP-CRISPR/Cas12b with heat-labile uracil-DNA glycosylase to eliminate carry-over contamination. J Zhejiang Univ Sci B 2023; 24:749-754. [PMID: 37551560 PMCID: PMC10423967 DOI: 10.1631/jzus.b2200705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/10/2023] [Indexed: 08/09/2023]
Abstract
Vibrio parahaemolyticus is a major pathogen frequently found in seafood. Rapid and accurate detection of this pathogen is important for the control of bacterial foodborne diseases and to ensure food safety. In this study, we established a one-pot system that combines uracil-DNA glycosylase (UDG), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12b (Cas12b) for detecting V. parahaemolyticus in seafood. This detection system can effectively perform identification using a single tube and avoid the risk of carry-over contamination.
Collapse
Affiliation(s)
- Fang Wu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chen Lu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenhao Hu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin Guo
- BestEnzymes Biotech Co., Ltd., Lianyungang 222005, China
| | - Jiayue Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhidan Luo
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
47
|
Pal P, Anand U, Saha SC, Sundaramurthy S, Okeke ES, Kumar M, Radha, Bontempi E, Albertini E, Dey A, Di Maria F. Novel CRISPR/Cas technology in the realm of algal bloom biomonitoring: Recent trends and future perspectives. ENVIRONMENTAL RESEARCH 2023; 231:115989. [PMID: 37119838 DOI: 10.1016/j.envres.2023.115989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
In conjunction with global climate change, progressive ocean warming, and acclivity in pollution and anthropogenic eutrophication, the incidence of harmful algal blooms (HABs) and cyanobacterial harmful algal blooms (CHABs) continue to expand in distribution, frequency, and magnitude. Algal bloom-related toxins have been implicated in human health disorders and ecological dysfunction and are detrimental to the national and global economy. Biomonitoring programs based on traditional monitoring protocols were characterised by some limitations that can be efficiently overdone using the CRISPR/Cas technology. In the present review, the potential and challenges of exploiting the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas technology for early detection of HABs and CHABs-associated toxigenic species were analysed. Based on more than 30 scientific papers, the main results indicate the great potential of CRISPR/Cas technology for this issue, even if the high sensitivity detected for the Cas12 and Cas13 platforms represents a possible interference risk.
Collapse
Affiliation(s)
- Pracheta Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (affiliated to the University of Kalyani), Nabadwip, West Bengal, 741302, India
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Francesco Di Maria
- Dipartimento di Ingegneria, University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy.
| |
Collapse
|
48
|
Tanny T, Sallam M, Soda N, Nguyen NT, Alam M, Shiddiky MJA. CRISPR/Cas-Based Diagnostics in Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11765-11788. [PMID: 37506507 DOI: 10.1021/acs.jafc.3c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Pests and disease-causing pathogens frequently impede agricultural production. An early and efficient diagnostic tool is crucial for effective disease management. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated protein (Cas) have recently been harnessed to develop diagnostic tools. The CRISPR/Cas system, composed of the Cas endonuclease and guide RNA, enables precise identification and cleavage of the target nucleic acids. The inherent sensitivity, high specificity, and rapid assay time of the CRISPR/Cas system make it an effective alternative for diagnosing plant pathogens and identifying genetically modified crops. Furthermore, its potential for multiplexing and suitability for point-of-care testing at the field level provide advantages over traditional diagnostic systems such as RT-PCR, LAMP, and NGS. In this review, we discuss the recent developments in CRISPR/Cas based diagnostics and their implications in various agricultural applications. We have also emphasized the major challenges with possible solutions and provided insights into future perspectives and potential applications of the CRISPR/Cas system in agriculture.
Collapse
Affiliation(s)
- Tanzena Tanny
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Mohamed Sallam
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, Mayers Road, Nambour, QLD 4560, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| |
Collapse
|
49
|
Zhou M, Zhang C, Chen M, Hu Z, Li M, Li Z, Wu L, Liang D. A protospacer adjacent motif-free, multiplexed, and quantitative nucleic acid detection platform with barcode-based Cas12a activity. MedComm (Beijing) 2023; 4:e310. [PMID: 37405277 PMCID: PMC10315165 DOI: 10.1002/mco2.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-based biosensors have been developed to facilitate the rapid and sensitive detection of nucleic acids. However, most approaches using CRISPR-based detection have disadvantages associated with the limitations of CRISPR RNA (crRNA), protospacer adjacent motif (PAM) or protospacer flanking sequence restriction, single channel detection, and difficulty in quantitative detection resulting in only some target sites being detected qualitatively. Here, we aimed to develop a barcode-based Cas12a-mediated DNA detection (BCDetection) strategy, which overcomes the aforementioned drawbacks and enables (1) detection with a universal PAM and crRNA without PAM or crRNA restriction, (2) simultaneous detection of multiple targets in a single reaction, and (3) quantitative detection, which can significantly distinguish copy number differences up to as low as a two-fold limit. We could efficiently and simultaneously detect three β-thalassemia mutations in a single reaction using BCDetection. Notably, samples from normal individuals, spinal muscular atrophy (SMA) carriers, and SMA patients were significantly and accurately distinguished using the quantitative detection ability of BCDetection, indicating its potential application in β-thalassemia and SMA carrier screening. Therefore, our findings demonstrate that BCDetection provides a new platform for accurate and efficient quantitative detection using CRISPR/Cas12a, highlighting its bioanalytical applications.
Collapse
Affiliation(s)
- Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Chunhua Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- Department of Medical GeneticsYunnan Maternal and Child Health Care HospitalKunmingYunnanChina
| | - Miaomiao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Zhiqing Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Menglin Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| |
Collapse
|
50
|
Cao G, Xiong Y, Shi M, Qiu Y, Wang Y, Nie F, Huo D, Hou C. Multiple accurate and sensitive arrays for Capripoxvirus (CaPV) differentiation. Anal Chim Acta 2023; 1267:341391. [PMID: 37257965 DOI: 10.1016/j.aca.2023.341391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Capripoxvirus (CaPV) contains three viruses that have caused massive losses in the livestock and dairy industries. Accurate CaPV differentiation has far-reaching implications for effectively controlling outbreaks. However, it has a great challenge to distinguishing three viruses due to high homology of 97%. Here, we established a sensitive CRISPR/Cas12a array based on Multiple-recombinase polymerase amplification (M-RPA) for CaPV differentiation, which provided a more comprehensive and accurate differentiation mode targeting VARV B22R and RPO30 genes. By sensitive CRISPR/Cas12a and M-RPA, the actual detection limits of three viruses were as low as 50, 40 and 60 copies, respectively. Moreover, Lateral flow dipstick (LFD) array based on CRISPR/Cas12a achieved portable and intuitive detection, making it suitable for point-of-care testing. Therefore, CRISPR/Cas12a array and LFD array paved the way for CaPV differentiation in practice. Additionally, we constructed a real-time quantitative PCR (qPCR) array to fill the qPCR technical gap in differentiation and to facilitate the quarantine departments.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Meimei Shi
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing, 400020, PR China
| | - Yue Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yu Wang
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing, 400020, PR China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing, 400020, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|