1
|
Tubbs C, Benton ML, McArthur E, Capra JA, Ruderfer DM. Identifying deleterious noncoding variation through gain and loss of CTCF binding activity. Am J Hum Genet 2025; 112:892-902. [PMID: 40049170 DOI: 10.1016/j.ajhg.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 04/06/2025] Open
Abstract
CCCTC binding factor (CTCF) regulates gene expression through DNA binding at thousands of genomic loci. Genetic variation in these CTCF binding sites (CBSs) is an important driver of phenotypic variation, yet extracting those that are likely to have functional consequences in whole-genome sequencing remains challenging. To address this, we develop a hypothesis-driven framework to identify and prioritize CBS variants in gnomAD. We synthesize CTCF's binding patterns at 1,063,878 genomic loci across 214 biological contexts into a summary of binding activity. We find that high binding activity significantly correlates with both conserved nucleotides (Pearson R = 0.35, p < 2.2 × 10-16) and sequences that contain high-quality CTCF binding motifs (Pearson R = 0.63, p = 2.9 × 10-12). We then use binding activity to evaluate high-confidence allelic binding predictions for 1,253,329 single-nucleotide variations (SNVs) in gnomAD that disrupt a CBS. We find a strong, positive relationship between the mutability-adjusted proportion of singletons (MAPS) metric and the loss of CTCF binding at loci with high in vitro activity (Pearson R = 0.74, p < 2.2 × 10-16). To contextualize these findings, we apply MAPS to other functional classes of variation and find that a subset of 339,380 loss of CTCF binding variants is observed as infrequently as missense variants are. This work nominates these thousands of rare, noncoding variants that disrupt CTCF binding for further functional studies while providing a blueprint for prioritizing variation in other transcription factor binding sequences.
Collapse
Affiliation(s)
- Colby Tubbs
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | - Evonne McArthur
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Douglas M Ruderfer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Digital Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Liu Y, Liu P, Duan S, Lin J, Qi W, Yu Z, Gao X, Sun X, Liu J, Lin J, Zhai S, Qin K, Cao Y, Li J, Liu Y, Chen M, Zou S, Wen C, Wang J, Fu D, Wang J, Bao H, Sun K, Jiang Y, Shen B. CTCF enhances pancreatic cancer progression via FLG-AS1-dependent epigenetic regulation and macrophage polarization. Cell Death Differ 2025; 32:745-762. [PMID: 39616247 PMCID: PMC11982239 DOI: 10.1038/s41418-024-01423-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 04/11/2025] Open
Abstract
CCCTC-binding factor (CTCF) regulates chromatin organization and is upregulated in pancreatic ductal adenocarcinoma (PDAC). We found that CTCF interacts with HNRNPU through a FLG-AS1-dependent mechanism, facilitating the recruitment of EP300 and activation of the m6A reader IGF2BP2. This activation promotes histone lactylation at the promoter region of IGF2BP2 stimulating the proliferation of PDAC cells. IGF2BP2 enhanced the mRNA stability of CSF1 and MYC. Moreover, FLG-AS1 directly interacts with HNRNPU to modulate alternative splicing of CSF1, thus promoting the M2 polarization of tumor associated macrophages (TAMs) in PDAC. The results indicated that CTCF-induced oncogenic modification of histone lactylation, m6A and alternative spilcing as multi-regulation modes of TAMs reprogramming in PDAC and identifies CTCF as a potential therapeutic target for PDAC immunotherapy whose inhibition M2 polarization through the IGF2BP2/CSF1/CSF1R axis. Curaxin combined with gemcitabine treatment has shown promising antitumor efficacy against PDAC.
Collapse
Affiliation(s)
- Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Pengyi Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Jiayu Lin
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhengwei Yu
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Gao
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiuqiao Sun
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Jiewei Lin
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Kai Qin
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Jingwei Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Yang Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Mengmin Chen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Da Fu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Jiancheng Wang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Haili Bao
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Keyan Sun
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
| | - Yu Jiang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
| |
Collapse
|
3
|
Zhang S, Wu Q, Cheng W, Dong W, Kou B. YTHDC1-Mediated lncRNA MSC-AS1 m6A Modification Potentiates Laryngeal Squamous Cell Carcinoma Development via Repressing ATXN7 Transcription. Mol Biotechnol 2025; 67:1659-1673. [PMID: 38637450 DOI: 10.1007/s12033-024-01150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Laryngeal squamous cell carcinoma (LSCC) has the highest mortality rate among head and neck squamous cell carcinoma. This study was designed to investigate the biological effect of long noncoding RNA (lncRNA) MSC antisense RNA 1 (MSC-AS1) on LSCC development and the underlying mechanism. The expression and prognostic value of lncRNAs in head and neck squamous cell carcinoma were predicted in the bioinformatics tools. The overexpression of MSC-AS1 in LSCC patients predicted a poor prognosis. Depletion of MSC-AS1 using shRNA repressed the malignant phenotype of AMC-HN-8 and TU-177 cells. MSC-AS1, mainly localized in the nucleus, interacted closely with the transcription factor CCCTC-binding factor (CTCF). CTCF played anti-tumor effects in vitro and in vivo. Ataxin-7 (ATXN7) was predicted to be a downstream target of CTCF, whose expression was negatively controlled by MSC-AS1. MSC-AS1 was found to block the expression of CTCF, thereby repressing ATXN7. Finally, MSC-AS1 overexpression in LSCC was governed by YTH domain-containing protein 1 (YTHDC1)-mediated m6A modification. In summary, our research identified the YTHDC1/MSC-AS1/CTCF/ATXN7 axis in LSCC development, which indicated that MSC-AS1 is an attractive biomarker in the LSCC treatment.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Qun Wu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Wei Cheng
- Department of General Surgery, Danfeng County Hospital, Shangluo, 726200, Shaanxi, People's Republic of China
| | - Weijiang Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Bo Kou
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Xie L, Song D, Ouyang Z, Ning Y, Liu X, Li L, Xia W, Yang Y. USP27 promotes glycolysis and hepatocellular carcinoma progression by stabilizing PFKFB3 through deubiquitination. Cell Signal 2025; 127:111585. [PMID: 39746496 DOI: 10.1016/j.cellsig.2024.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is associated with a dismal prognosis, primarily due to its high rates of metastasis and recurrence. Metabolic reprogramming, specifically enhanced glycolysis, is a prominent feature of cancer progression. This study identifies ubiquitin-specific peptidase 27 X-linked (USP27) as a significant regulator of glycolysis in HCC. We demonstrate that USP27 stabilizes PFKFB3, a key glycolytic enzyme, through deubiquitination, thereby increasing glycolytic activity and facilitating tumor progression. Furthermore, we reveal that CTCF, a well-known transcription factor, directly binds to the USP27 promoter and upregulates its expression, thereby establishing a connection between transcriptional regulation and metabolic reprogramming in HCC. Knockdown of USP27 or CTCF in HCC cells considerably decreased glycolysis and proliferation, while overexpression had the opposite effect. In vivo studies confirmed that USP27 knockdown suppresses HCC growth and metastasis. Our findings establish the CTCF/USP27/PFKFB3 axis as a novel mechanism driving HCC progression through glycolysis, indicating that targeting this pathway could offer new therapeutic opportunities. These results provide valuable insights into the molecular mechanisms underlying HCC and emphasize the potential of targeting USP27-mediated metabolic pathways as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Longhui Xie
- Department of Hepatobiliary Pancreatic Spleen Surgery, The Central Hospital of Yongzhou, Yongzhou 425000, PR China
| | - Dekun Song
- Department of Hepatobiliary Surgery, Binzhou People's Hospital, Binzhou 256600, PR China
| | - Zhengsheng Ouyang
- Department of Hepatobiliary Pancreatic Spleen Surgery, The Central Hospital of Yongzhou, Yongzhou 425000, PR China; Department of clinical medicine, YongZhou Vocational Technical College, Yongzhou 425000, PR China
| | - Yinkuan Ning
- Department of Interventional Vascular Surgery, The Central Hospital of Shaoyang, Shaoyang 422000, PR China
| | - Xintao Liu
- Department of Hepatobiliary Pancreatic Spleen Surgery, The Central Hospital of Yongzhou, Yongzhou 425000, PR China
| | - Lai Li
- Department of Hepatobiliary Pancreatic Spleen Surgery, The Central Hospital of Yongzhou, Yongzhou 425000, PR China
| | - Wangning Xia
- Department of Hepatobiliary Pancreatic Spleen Surgery, The Central Hospital of Yongzhou, Yongzhou 425000, PR China
| | - Yang Yang
- Department of Oncology, The Central Hospital of Shaoyang, Shaoyang 422000, PR China.
| |
Collapse
|
5
|
Li D, Yang Y, Yin Z, Mao L, Zhang Y, Jiang P, Zhu T, He T, Zhong X, Zheng Q, Zhang W. CCCTC-binding factor regulates splicing factor proline and glutamine-rich to promote malignant growth of osteosarcoma. Am J Transl Res 2025; 17:1495-1509. [PMID: 40092088 PMCID: PMC11909532 DOI: 10.62347/stqk5435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVES CCCTC-binding factor (CTCF) is a candidate tumor regulatory gene that encodes multifunctional transcription factors. While its role in various cancers has been studied, its function and mechanism in osteosarcoma were uncertain. Previous studies have identified splicing factor proline and glutamine-rich (SFPQ) as an oncogene in osteosarcoma. Bioinformatic analysis suggested that CTCF may regulate SFPQ transcriptionally. This study aimed to elucidate the role of CTCF in osteosarcoma and explore its possible regulatory relationship with SFPQ. METHODS Potential transcription factors of SFPQ were identified using an online transcription factor analysis database. The expression levels of CTCF in osteosarcoma cells were assessed using quantitative real-time PCR (qRT-PCR) and western blotting (WB). The effect of CTCF and SFPQ on osteosarcoma cell behavior was evaluated through cell function assays, dual-luciferase reporter assays, and rescue experiments. RESULTS Database analyses (hTFtarget and GEPIA2) indicated a moderate correlation between CTCF and SFPQ. qRT-PCR and WB results confirmed significant CTCF expression in osteosarcoma cells. Overexpression of CTCF enhanced cell proliferation, migration, and invasion. Furthermore, CTCF was found to bind to the promoter region of SFPQ, leading to its upregulation. Rescue experiments demonstrated that SFPQ knockdown attenuated the oncogenic effects of CTCF overexpression. CONCLUSIONS CTCF functions as an oncogene in osteosarcoma by positively regulating SFPQ expression, thereby promoting the malignant properties of osteosarcoma cells. These findings suggest that targeting the CTCF-SFPQ axis may be a therapeutic strategy for osteosarcoma.
Collapse
Affiliation(s)
- Dapeng Li
- Spine Surgery, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Yang Yang
- Spine Surgery, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Zhengyu Yin
- Spine Surgery, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Lianghao Mao
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center (DKFZ)Heidelberg, 69120, Germany
| | - Yiming Zhang
- Spine Surgery, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Pan Jiang
- Spine Surgery, Beijing Jishuitan Hospital Guizhou HospitalGuiyang 550002, Guizhou, China
| | - Tianxiang Zhu
- Department of Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Shenzhen Walgenron Bio-Pharm Co. Ltd.Shenzhen 518118, Guangdong, China
| | - Tongchuan He
- The Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Xinyu Zhong
- Spine Surgery, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Qiping Zheng
- Department of Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Shenzhen Walgenron Bio-Pharm Co. Ltd.Shenzhen 518118, Guangdong, China
- The Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Wenchao Zhang
- Affiliated Jintan Hospital of Jiangsu UniversityChangzhou 213200, Jiangsu, China
| |
Collapse
|
6
|
Lyu H, Chen X, Cheng Y, Zhang T, Wang P, Wong JHY, Wang J, Stasiak L, Sun L, Yang G, Wang L, Yue F. Pioneer factor GATA6 promotes colorectal cancer through 3D genome regulation. SCIENCE ADVANCES 2025; 11:eads4985. [PMID: 39919174 PMCID: PMC11804904 DOI: 10.1126/sciadv.ads4985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
Colorectal cancer (CRC) is one of the most lethal and prevalent malignancies. While the overexpression of pioneer factor GATA6 in CRC has been linked with metastasis, its role in genome-wide gene expression dysregulation remains unclear. Through studies of primary human CRC tissues and analysis of the TCGA data, we found that GATA6 preferentially binds at CRC-specific active enhancers, with enrichment at enhancer-promoter loop anchors. GATA6 protein also physically interacts with CTCF, suggesting its critical role in 3D genome organization. The ablation of GATA6 through AID and CRISPR systems severely impaired cancer cell clonogenicity and proliferation. Mechanistically, GATA6 knockout induced global loss of CRC-specific open chromatins and extensive alterations of critical enhancer-promoter interactions for CRC oncogenes. Last, we showed that GATA6 knockout greatly reduced tumor growth and improved survival in mice. Together, we revealed a previously unidentified mechanism by which GATA6 contributes to the pathogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Huijue Lyu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xintong Chen
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yang Cheng
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Te Zhang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ping Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Josiah Hiu-yuen Wong
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lena Stasiak
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leyu Sun
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Guangyu Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Guneri-Sozeri PY, Adebali O. Transcription factors, nucleotide excision repair, and cancer: A review of molecular interplay. Int J Biochem Cell Biol 2025; 179:106724. [PMID: 39672502 DOI: 10.1016/j.biocel.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Bulky DNA adducts are mostly formed by external factors such as UV irradiation, smoking or treatment with DNA crosslinking agents. If such DNA adducts are not removed by nucleotide excision repair, they can lead to formation of driver mutations that contribute to cancer formation. Transcription factors (TFs) may critically affect both DNA adduct formation and repair efficiency at the binding site to DNA. For example, "hotspot" mutations in melanoma coincide with UV-induced accumulated cyclobutane pyrimidine dimer (CPD) adducts and/or inhibited repair at the binding sites of some TFs. Similarly, anticancer treatment with DNA cross-linkers may additionally generate DNA adducts leading to secondary mutations and the formation of malignant subclones. In addition, some TFs are overexpressed in response to UV irradiation or chemotherapeutic treatment, activating oncogenic and anti-oncogenic pathways independently of nucleotide excision repair itself. This review focuses on the interplay between TFs and nucleotide excision repair during cancer development and progression.
Collapse
Affiliation(s)
| | - Ogün Adebali
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Türkiye.
| |
Collapse
|
8
|
Wang S, Wang Z, Zang C. Genomic clustering tendency of transcription factors reflects phase-separated transcriptional condensates at super-enhancers. Nucleic Acids Res 2025; 53:gkaf015. [PMID: 39868536 PMCID: PMC11760973 DOI: 10.1093/nar/gkaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Many transcription factors (TFs) have been shown to bind to super-enhancers, forming transcriptional condensates to activate transcription in various cellular systems. However, the genomic and epigenomic determinants of phase-separated transcriptional condensate formation remain poorly understood. Questions regarding which TFs tend to associate with transcriptional condensates and what factors influence their association are largely unanswered. Here we systematically analyzed 571 DNA sequence motifs across the human genome and 6650 TF binding profiles across different cell types to identify the molecular features contributing to the formation of transcriptional condensates. We found that the genomic distributions of sequence motifs for different TFs exhibit distinct clustering tendencies. Notably, TF motifs with a high genomic clustering tendency are significantly associated with super-enhancers. TF binding profiles showing a high genomic clustering tendency are further enriched at cell-type-specific super-enhancers. TFs with a high binding clustering tendency also possess high liquid-liquid phase separation abilities. Compared to nonclustered TF binding, densely clustered TF binding sites are more enriched at cell-type-specific super-enhancers with higher chromatin accessibility, elevated chromatin interaction and stronger association with cancer outcomes. Our results indicate that the clustered genomic binding patterns and the phase separation properties of TFs collectively contribute to the formation of transcriptional condensates.
Collapse
Affiliation(s)
- Shengyuan Wang
- Department of Genome Sciences, University of Virginia, PO Box 800717, Charlottesville, VA 22908, USA
| | - Zhenjia Wang
- Department of Genome Sciences, University of Virginia, PO Box 800717, Charlottesville, VA 22908, USA
| | - Chongzhi Zang
- Department of Genome Sciences, University of Virginia, PO Box 800717, Charlottesville, VA 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, PO Box 800733, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22908, USA
- UVA Comprehensive Cancer Center, University of Virginia, PO Box 800334, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Šimon M, Čater M, Kunej T, Morton NM, Horvat S. A bioinformatics toolbox to prioritize causal genetic variants in candidate regions. Trends Genet 2025; 41:33-46. [PMID: 39414414 DOI: 10.1016/j.tig.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
This review addresses the significant challenge of identifying causal genetic variants within quantitative trait loci (QTLs) for complex traits and diseases. Despite progress in detecting the ever-larger number of such loci, establishing causality remains daunting. We advocate for integrating bioinformatics and multiomics analyses to streamline the prioritization of candidate genes' variants. Our case study on the Pla2g4e gene, identified previously as a positional candidate obesity gene through genetic mapping and expression studies, demonstrates how applying multiomic data filtered through regulatory elements containing SNPs can refine the search for causative variants. This approach can yield results that guide more efficient experimental strategies, accelerating genetic research toward functional validation and therapeutic development.
Collapse
Affiliation(s)
- Martin Šimon
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Maša Čater
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Tanja Kunej
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Nicholas M Morton
- Department of Biosciences, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | - Simon Horvat
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia.
| |
Collapse
|
10
|
Chai L, Gao J, Li Z, Sun H, Liu J, Wang Y, Zhang L. Predicting CTCF cell type active binding sites in human genome. Sci Rep 2024; 14:31744. [PMID: 39738353 PMCID: PMC11686126 DOI: 10.1038/s41598-024-82238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025] Open
Abstract
The CCCTC-binding factor (CTCF) is pivotal in orchestrating diverse biological functions across the human genome, yet the mechanisms driving its cell type-active DNA binding affinity remain underexplored. Here, we collected ChIP-seq data from 67 cell lines in ENCODE, constructed a unique dataset of cell type-active CTCF binding sites (CBS), and trained convolutional neural networks (CNN) to dissect the patterns of CTCF binding activity. Our analysis reveals that transcription factors RAD21/SMC3 and chromatin accessibility are more predictive compared to sequence motifs and histone modifications. Integrating them together achieved AUPRC values consistently above 0.868, highlighting their utility in deciphering CTCF transcription factor binding dynamics. This study provides a deeper understanding of the regulatory functions of CTCF via machine learning framework.
Collapse
Affiliation(s)
- Lu Chai
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Jie Gao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zihan Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Hao Sun
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Junjie Liu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yong Wang
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Lirong Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|
11
|
Chakraborty S, Banerjee S. Combatting cellular immortality in cancers by targeting the shelterin protein complex. Biol Direct 2024; 19:120. [PMID: 39578854 PMCID: PMC11585132 DOI: 10.1186/s13062-024-00552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Shelterin proteins (TERF1, TERF2, TPP1, TINF2, POT1) protect telomeres, prevent unwarranted repair activation, and regulate telomerase activity. Alterations in these proteins can lead to cancer progression. This study uses an in-silico approach to examine shelterin in tumour samples across various cancers, employing mutation plots, phylogenetic trees, and sequence alignments. Network pharmacology identified TERF1 as an essential shelterin protein and transcription factors RUNX1, CTCF, and KDM2B as potential biomarkers due to their interactions with miRNAs and shelterin proteins. We performed MCODE analysis to identify subnetworks of ncRNAs interacting with the shelterin proteins. Shelterin expression predicted patient survival in 24 cancer types, with TERF1, TERF2, TINF2, and POT1 significantly expressed in testicular, AML, prostate, breast and renal cancers, respectively, and TPP1 in AML and skin cancer. Spearman and Pearson's analyses showed significant correlations of TERF1 across cancers, with near-significant correlations for all five proteins in different cancer datasets like breast cancer, kidney renal papillary and lung squamous cell carcinoma, skin cutaneous melanoma, etc.,. Shelterin expression correlated with patient survival in breast, renal, lung, skin, uterine, and gastric cancers. Insights into TPP1-associated glycans highlighted glycosylated sites contributing to tumorigenesis. This study provides molecular signatures for further functional and therapeutic research on shelterin, highlighting its potential as a target for anti-cancer therapies and promising prospects for cancer prognosis and prediction.
Collapse
Affiliation(s)
- Sohini Chakraborty
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Satarupa Banerjee
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
12
|
Monteagudo-Sánchez A, Richard Albert J, Scarpa M, Noordermeer D, Greenberg MC. The impact of the embryonic DNA methylation program on CTCF-mediated genome regulation. Nucleic Acids Res 2024; 52:10934-10950. [PMID: 39180406 PMCID: PMC11472158 DOI: 10.1093/nar/gkae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024] Open
Abstract
During mammalian embryogenesis, both the 5-cytosine DNA methylation (5meC) landscape and three dimensional (3D) chromatin architecture are profoundly remodeled during a process known as 'epigenetic reprogramming.' An understudied aspect of epigenetic reprogramming is how the 5meC flux, per se, affects the 3D genome. This is pertinent given the 5meC-sensitivity of DNA binding for a key regulator of chromosome folding: CTCF. We profiled the CTCF binding landscape using a mouse embryonic stem cell (ESC) differentiation protocol that models embryonic 5meC dynamics. Mouse ESCs lacking DNA methylation machinery are able to exit naive pluripotency, thus allowing for dissection of subtle effects of CTCF on gene expression. We performed CTCF HiChIP in both wild-type and mutant conditions to assess gained CTCF-CTCF contacts in the absence of 5meC. We performed H3K27ac HiChIP to determine the impact that ectopic CTCF binding has on cis-regulatory contacts. Using 5meC epigenome editing, we demonstrated that the methyl-mark is able to impair CTCF binding at select loci. Finally, a detailed dissection of the imprinted Zdbf2 locus showed how 5meC-antagonism of CTCF allows for proper gene regulation during differentiation. This work provides a comprehensive overview of how 5meC impacts the 3D genome in a relevant model for early embryonic events.
Collapse
Affiliation(s)
| | | | - Margherita Scarpa
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91998 Gif-sur-Yvette, France
| | | |
Collapse
|
13
|
Chang LH, Noordermeer D. Permeable TAD boundaries and their impact on genome-associated functions. Bioessays 2024; 46:e2400137. [PMID: 39093600 DOI: 10.1002/bies.202400137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
TAD boundaries are genomic elements that separate biological processes in neighboring domains by blocking DNA loops that are formed through Cohesin-mediated loop extrusion. Most TAD boundaries consist of arrays of binding sites for the CTCF protein, whose interaction with the Cohesin complex blocks loop extrusion. TAD boundaries are not fully impermeable though and allow a limited amount of inter-TAD loop formation. Based on the reanalysis of Nano-C data, a multicontact Chromosome Conformation Capture assay, we propose a model whereby clustered CTCF binding sites promote the successive stalling of Cohesin and subsequent dissociation from the chromatin. A fraction of Cohesin nonetheless achieves boundary read-through. Due to a constant rate of Cohesin dissociation elsewhere in the genome, the maximum length of inter-TAD loops is restricted though. We speculate that the DNA-encoded organization of stalling sites regulates TAD boundary permeability and discuss implications for enhancer-promoter loop formation and other genomic processes.
Collapse
Affiliation(s)
- Li-Hsin Chang
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Blood and Transplant Research Unit in Precision Cellular Therapeutics, National Institute of Health Research, Oxford, UK
| | - Daan Noordermeer
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Tsang F, Stolper R, Hanifi M, Cornell L, Francis H, Davies B, Higgs D, Kassouf M. The characteristics of CTCF binding sequences contribute to enhancer blocking activity. Nucleic Acids Res 2024; 52:10180-10193. [PMID: 39106157 PMCID: PMC11417384 DOI: 10.1093/nar/gkae666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
While the elements encoding enhancers and promoters have been relatively well studied, the full spectrum of insulator elements which bind the CCCTC binding factor (CTCF), is relatively poorly characterized. This is partly due to the genomic context of CTCF sites greatly influencing their roles and activity. Here we have developed an experimental system to determine the ability of minimal, consistently sized, individual CTCF elements to interpose between enhancers and promoters and thereby reduce gene expression during differentiation. Importantly, each element is tested in the identical location thereby minimising the effect of genomic context. We found no correlation between the ability of CTCF elements to block enhancer-promoter activity with the degree of evolutionary conservation; their resemblance to the consensus core sequences; or the number of CTCF core motifs harboured in the element. Nevertheless, we have shown that the strongest enhancer-promoter blockers include a previously described bound element lying upstream of the CTCF core motif. In addition, we found other uncharacterised DNaseI footprints located close to the core motif that may affect function. We have developed an assay of CTCF sequences which will enable researchers to sub-classify individual CTCF elements in a uniform and unbiased way.
Collapse
Affiliation(s)
- Felice H Tsang
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Rosa J Stolper
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Muhammad Hanifi
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Lucy J Cornell
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Helena S Francis
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Mira T Kassouf
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
15
|
Hossain I, Fanfani V, Fischer J, Quackenbush J, Burkholz R. Biologically informed NeuralODEs for genome-wide regulatory dynamics. Genome Biol 2024; 25:127. [PMID: 38773638 PMCID: PMC11106922 DOI: 10.1186/s13059-024-03264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Gene regulatory network (GRN) models that are formulated as ordinary differential equations (ODEs) can accurately explain temporal gene expression patterns and promise to yield new insights into important cellular processes, disease progression, and intervention design. Learning such gene regulatory ODEs is challenging, since we want to predict the evolution of gene expression in a way that accurately encodes the underlying GRN governing the dynamics and the nonlinear functional relationships between genes. Most widely used ODE estimation methods either impose too many parametric restrictions or are not guided by meaningful biological insights, both of which impede either scalability, explainability, or both. RESULTS We developed PHOENIX, a modeling framework based on neural ordinary differential equations (NeuralODEs) and Hill-Langmuir kinetics, that overcomes limitations of other methods by flexibly incorporating prior domain knowledge and biological constraints to promote sparse, biologically interpretable representations of GRN ODEs. We tested the accuracy of PHOENIX in a series of in silico experiments, benchmarking it against several currently used tools. We demonstrated PHOENIX's flexibility by modeling regulation of oscillating expression profiles obtained from synchronized yeast cells. We also assessed the scalability of PHOENIX by modeling genome-scale GRNs for breast cancer samples ordered in pseudotime and for B cells treated with Rituximab. CONCLUSIONS PHOENIX uses a combination of user-defined prior knowledge and functional forms from systems biology to encode biological "first principles" as soft constraints on the GRN allowing us to predict subsequent gene expression patterns in a biologically explainable manner.
Collapse
Affiliation(s)
| | - Viola Fanfani
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonas Fischer
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Rebekka Burkholz
- CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
| |
Collapse
|
16
|
Mobet Y, Wang H, Wei Q, Liu X, Yang D, Zhao H, Yang Y, Ngono Ngane RA, Souopgui J, Xu J, Liu T, Yi P. AKAP8 promotes ovarian cancer progression and antagonizes PARP inhibitor sensitivity through regulating hnRNPUL1 transcription. iScience 2024; 27:109744. [PMID: 38711442 PMCID: PMC11070336 DOI: 10.1016/j.isci.2024.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/08/2023] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
Ovarian cancer (OC) is the highest worldwide cancer mortality cause among gynecologic tumors, but its underlying molecular mechanism remains largely unknown. Here, we report that the RNA binding protein A-kinase anchoring protein 8 (AKAP8) is highly expressed in ovarian cancer and predicts poor prognosis for ovarian cancer patients. AKAP8 promotes ovarian cancer progression through regulating cell proliferation and metastasis. Mechanically, AKAP8 is enriched at chromatin and regulates the transcription of the specific hnRNPUL1 isoform. Moreover, AKAP8 phase separation modulates the hnRNPUL1 short isoform transcription. Ectopic expression of the hnRNPUL1 short isoform could partially rescue the growth inhibition effect of AKAP8-knockdown in ovarian cancer cells. In addition, AKAP8 modulates PARP1 expression through hnRNPUL1, and AKAP8 inhibition enhances PAPR inhibitor cytotoxicity in ovarian cancer. Together, our study uncovers the crucial function of AKAP8 condensation-mediated transcription regulation, and targeting AKAP8 could be potential for improvement of ovarian cancer therapy.
Collapse
Affiliation(s)
- Youchaou Mobet
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Laboratory of Biochemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Haocheng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Dan Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Hongyan Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Rosalie Anne Ngono Ngane
- Laboratory of Biochemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies Campus, 6041 Gosselies, Belgium
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
17
|
Raimer Young HM, Hou PC, Bartosik AR, Atkin N, Wang L, Wang Z, Ratan A, Zang C, Wang YH. DNA fragility at topologically associated domain boundaries is promoted by alternative DNA secondary structure and topoisomerase II activity. Nucleic Acids Res 2024; 52:3837-3855. [PMID: 38452213 PMCID: PMC11040008 DOI: 10.1093/nar/gkae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
CCCTC-binding factor (CTCF) binding sites are hotspots of genome instability. Although many factors have been associated with CTCF binding site fragility, no study has integrated all fragility-related factors to understand the mechanism(s) of how they work together. Using an unbiased, genome-wide approach, we found that DNA double-strand breaks (DSBs) are enriched at strong, but not weak, CTCF binding sites in five human cell types. Energetically favorable alternative DNA secondary structures underlie strong CTCF binding sites. These structures coincided with the location of topoisomerase II (TOP2) cleavage complex, suggesting that DNA secondary structure acts as a recognition sequence for TOP2 binding and cleavage at CTCF binding sites. Furthermore, CTCF knockdown significantly increased DSBs at strong CTCF binding sites and at CTCF sites that are located at topologically associated domain (TAD) boundaries. TAD boundary-associated CTCF sites that lost CTCF upon knockdown displayed increased DSBs when compared to the gained sites, and those lost sites are overrepresented with G-quadruplexes, suggesting that the structures act as boundary insulators in the absence of CTCF, and contribute to increased DSBs. These results model how alternative DNA secondary structures facilitate recruitment of TOP2 to CTCF binding sites, providing mechanistic insight into DNA fragility at CTCF binding sites.
Collapse
Affiliation(s)
- Heather M Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Pei-Chi Hou
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Anna R Bartosik
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
| | - Aakrosh Ratan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| |
Collapse
|
18
|
Tian M, Wang Z, Su Z, Shibata E, Shibata Y, Dutta A, Zang C. Integrative analysis of DNA replication origins and ORC-/MCM-binding sites in human cells reveals a lack of overlap. eLife 2024; 12:RP89548. [PMID: 38567819 PMCID: PMC10990492 DOI: 10.7554/elife.89548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the origin recognition complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and five ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all datasets, only 0.27% (20,250 shared origins) were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques, suggesting extensive variability in origin usage and identification. Also, 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF-binding sites, G-quadruplex sites, and activating histone marks, these overlaps are comparable or less than that of known transcription start sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ~13,000 reproducible ORC-binding sites in human cancer cells, and only 4.5% were within 1 kb of the ~11,000 union MCM2-7-binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, Saccharomyces cerevisiae. Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.
Collapse
Affiliation(s)
- Mengxue Tian
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Public Health Sciences, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
19
|
Wang W, Gao R, Yang D, Ma M, Zang R, Wang X, Chen C, Kou X, Zhao Y, Chen J, Liu X, Lu J, Xu B, Liu J, Huang Y, Chen C, Wang H, Gao S, Zhang Y, Gao Y. ADNP modulates SINE B2-derived CTCF-binding sites during blastocyst formation in mice. Genes Dev 2024; 38:168-188. [PMID: 38479840 PMCID: PMC10982698 DOI: 10.1101/gad.351189.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
CTCF is crucial for chromatin structure and transcription regulation in early embryonic development. However, the kinetics of CTCF chromatin occupation in preimplantation embryos have remained unclear. In this study, we used CUT&RUN technology to investigate CTCF occupancy in mouse preimplantation development. Our findings revealed that CTCF begins binding to the genome prior to zygotic genome activation (ZGA), with a preference for CTCF-anchored chromatin loops. Although the majority of CTCF occupancy is consistently maintained, we identified a specific set of binding sites enriched in the mouse-specific short interspersed element (SINE) family B2 that are restricted to the cleavage stages. Notably, we discovered that the neuroprotective protein ADNP counteracts the stable association of CTCF at SINE B2-derived CTCF-binding sites. Knockout of Adnp in the zygote led to impaired CTCF binding signal recovery, failed deposition of H3K9me3, and transcriptional derepression of SINE B2 during the morula-to-blastocyst transition, which further led to unfaithful cell differentiation in embryos around implantation. Our analysis highlights an ADNP-dependent restriction of CTCF binding during cell differentiation in preimplantation embryos. Furthermore, our findings shed light on the functional importance of transposable elements (TEs) in promoting genetic innovation and actively shaping the early embryo developmental process specific to mammals.
Collapse
Affiliation(s)
- Wen Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dongxu Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingli Ma
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruge Zang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Chuan Chen
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Xuelian Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxu Lu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ben Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Juntao Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanxin Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chaoqun Chen
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yong Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yawei Gao
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| |
Collapse
|
20
|
Monteagudo-Sánchez A, Noordermeer D, Greenberg MVC. The impact of DNA methylation on CTCF-mediated 3D genome organization. Nat Struct Mol Biol 2024; 31:404-412. [PMID: 38499830 DOI: 10.1038/s41594-024-01241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
Cytosine DNA methylation is a highly conserved epigenetic mark in eukaryotes. Although the role of DNA methylation at gene promoters and repetitive elements has been extensively studied, the function of DNA methylation in other genomic contexts remains less clear. In the nucleus of mammalian cells, the genome is spatially organized at different levels, and strongly influences myriad genomic processes. There are a number of factors that regulate the three-dimensional (3D) organization of the genome, with the CTCF insulator protein being among the most well-characterized. Pertinently, CTCF binding has been reported as being DNA methylation-sensitive in certain contexts, perhaps most notably in the process of genomic imprinting. Therefore, it stands to reason that DNA methylation may play a broader role in the regulation of chromatin architecture. Here we summarize the current understanding that is relevant to both the mammalian DNA methylation and chromatin architecture fields and attempt to assess the extent to which DNA methylation impacts the folding of the genome. The focus is in early embryonic development and cellular transitions when the epigenome is in flux, but we also describe insights from pathological contexts, such as cancer, in which the epigenome and 3D genome organization are misregulated.
Collapse
Affiliation(s)
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | |
Collapse
|
21
|
Liu X, Gillis N, Jiang C, McCofie A, Shaw TI, Tan AC, Zhao B, Wan L, Duckett DR, Teng M. An Epigenomic fingerprint of human cancers by landscape interrogation of super enhancers at the constituent level. PLoS Comput Biol 2024; 20:e1011873. [PMID: 38335222 PMCID: PMC10883583 DOI: 10.1371/journal.pcbi.1011873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Super enhancers (SE), large genomic elements that activate transcription and drive cell identity, have been found with cancer-specific gene regulation in human cancers. Recent studies reported the importance of understanding the cooperation and function of SE internal components, i.e., the constituent enhancers (CE). However, there are no pan-cancer studies to identify cancer-specific SE signatures at the constituent level. Here, by revisiting pan-cancer SE activities with H3K27Ac ChIP-seq datasets, we report fingerprint SE signatures for 28 cancer types in the NCI-60 cell panel. We implement a mixture model to discriminate active CEs from inactive CEs by taking into consideration ChIP-seq variabilities between cancer samples and across CEs. We demonstrate that the model-based estimation of CE states provides improved functional interpretation of SE-associated regulation. We identify cancer-specific CEs by balancing their active prevalence with their capability of encoding cancer type identities. We further demonstrate that cancer-specific CEs have the strongest per-base enhancer activities in independent enhancer sequencing assays, suggesting their importance in understanding critical SE signatures. We summarize fingerprint SEs based on the cancer-specific statuses of their component CEs and build an easy-to-use R package to facilitate the query, exploration, and visualization of fingerprint SEs across cancers.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Nancy Gillis
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Chang Jiang
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Anthony McCofie
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Aik-Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah, United States of America
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lixin Wan
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Derek R Duckett
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| |
Collapse
|
22
|
Ben S, Li S, Gu D, Zhao L, Xu S, Ding Z, Chen S, Cheng Y, Xin J, Du M, Wang M. Benzo[a]pyrene exposure affects colorectal cancer susceptibility by regulating ERβ-mediated LINC02977 transcription. ENVIRONMENT INTERNATIONAL 2024; 184:108443. [PMID: 38277997 DOI: 10.1016/j.envint.2024.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Environmental pollutants known as polycyclic aromatic hydrocarbons (PAHs) are produced through the incomplete combustion of organic material. While PAHs have been investigated as genotoxicants, they can also operate through nongenotoxic pathways in estrogen-dependent malignancies, such as breast, cervical and ovarian cancer. However, whether PAHs induce colorectal cancer (CRC) risk through estrogenic effects is still illusive. Here, we systematically investigated the abnormal expression and activation of estrogen receptor beta (ERβ) regulated by PAHs in CRC as well as the underlying mechanisms of ERβ-mediated CRC risk. Based on the 300 plasma samples from CRC patients and healthy controls detected by GC-MS/MS, we found that the plasma concentrations of benzo[a]pyrene (BaP) were significantly higher in CRC cases than in healthy controls, with significant estrogenic effects. Moreover, histone deacetylase 2 (HDAC2)-induced deacetylation of the promoter decreases ERβ expression, which is associated with poor overall survival and advanced tumor stage. The study also revealed that BaP and estradiol (E2) had different carcinogenic effects, with BaP promoting cell proliferation and inhibiting apoptosis, while E2 had the opposite effects. Additionally, this study mapped ERβ genomic binding regions by performing ChIP-seq and ATAC-seq and identified genetic variants of rs1411680 and its high linkage disequilibrium SNP rs6477937, which were significantly associated with CRC risk through meta-analysis of two independent Chinese population genome-wide association studies comprising 2,248 cases and 3,173 controls and then validation in a large-scale European population. By integrating data from functional genomics, we validated the regulatory effect of rs6477937 as an ERβ binding-disrupting SNP that mediated allele-specific expression of LINC02977 in a long-range chromosomal interaction manner, which was found to be highly expressed in CRC tissues. Overall, this study suggests that the different active effects on ERβ by PAHs and endogenous E2 may play a crucial role in the development and progression of CRC and highlights the potential of targeting ERβ and its downstream targets for CRC prevention and treatment.
Collapse
Affiliation(s)
- Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210000, Jiangsu, China
| | - Lingyan Zhao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenya Xu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhutao Ding
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yifei Cheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mulong Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
23
|
Cho HJ, Wang Z, Cong Y, Bekiranov S, Zhang A, Zang C. DARDN: A Deep-Learning Approach for CTCF Binding Sequence Classification and Oncogenic Regulatory Feature Discovery. Genes (Basel) 2024; 15:144. [PMID: 38397134 PMCID: PMC10888155 DOI: 10.3390/genes15020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Characterization of gene regulatory mechanisms in cancer is a key task in cancer genomics. CCCTC-binding factor (CTCF), a DNA binding protein, exhibits specific binding patterns in the genome of cancer cells and has a non-canonical function to facilitate oncogenic transcription programs by cooperating with transcription factors bound at flanking distal regions. Identification of DNA sequence features from a broad genomic region that distinguish cancer-specific CTCF binding sites from regular CTCF binding sites can help find oncogenic transcription factors in a cancer type. However, the presence of long DNA sequences without localization information makes it difficult to perform conventional motif analysis. Here, we present DNAResDualNet (DARDN), a computational method that utilizes convolutional neural networks (CNNs) for predicting cancer-specific CTCF binding sites from long DNA sequences and employs DeepLIFT, a method for interpretability of deep learning models that explains the model's output in terms of the contributions of its input features. The method is used for identifying DNA sequence features associated with cancer-specific CTCF binding. Evaluation on DNA sequences associated with CTCF binding sites in T-cell acute lymphoblastic leukemia (T-ALL) and other cancer types demonstrates DARDN's ability in classifying DNA sequences surrounding cancer-specific CTCF binding from control constitutive CTCF binding and identifying sequence motifs for transcription factors potentially active in each specific cancer type. We identify potential oncogenic transcription factors in T-ALL, acute myeloid leukemia (AML), breast cancer (BRCA), colorectal cancer (CRC), lung adenocarcinoma (LUAD), and prostate cancer (PRAD). Our work demonstrates the power of advanced machine learning and feature discovery approach in finding biologically meaningful information from complex high-throughput sequencing data.
Collapse
Affiliation(s)
- Hyun Jae Cho
- Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA;
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA; (Z.W.); (Y.C.)
| | - Yidan Cong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA; (Z.W.); (Y.C.)
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA;
| | - Aidong Zhang
- Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA;
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA; (Z.W.); (Y.C.)
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA;
| |
Collapse
|
24
|
Yan Q, Su X, Chen Y, Wang Z, Han W, Xia Q, Mao Y, Si J, Li H, Duan S. LINC00941: a novel player involved in the progression of human cancers. Hum Cell 2024; 37:167-180. [PMID: 37995050 DOI: 10.1007/s13577-023-01002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
LINC00941, also known as lncRNA-MUF, is an intergenic non-coding RNA located on chromosome 12p11.21. It actively participates in a complex competing endogenous RNA network, regulating the expression of microRNA and its downstream proteins. Through transcriptional and post-transcriptional regulation, LINC00941 plays a vital role in multiple signaling pathways, influencing cell behaviors such as tumor cell proliferation, epithelial-mesenchymal transition, migration, and invasion. Noteworthy is its consistently high expression in various tumor types, closely correlating with clinicopathological features and cancer prognoses. Elevated LINC00941 levels are associated with adverse clinical outcomes, including increased tumor size, extensive lymphatic metastasis, and distant metastasis, leading to poorer survival rates across different cancers. Additionally, LINC00941 and its associated genes are linked to various targeted drugs available in the market. In this comprehensive review, we systematically summarize existing studies, detailing LINC00941's differential expression, clinicopathological and prognostic implications, regulatory mechanisms, and associated therapeutic drugs. Our analysis includes relevant charts and incorporates bioinformatics analyses to verify LINC00941's differential expression in pan-cancer and explore potential transcriptional regulation patterns of downstream targets. This work not only establishes a robust data foundation but also guides future research directions. Given its potential as a significant cancer biomarker and therapeutic target, further investigation into LINC00941's differential expression and regulatory mechanisms is essential.
Collapse
Affiliation(s)
- Qibin Yan
- Institute of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Pharmacy, Hangzhou City University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinming Su
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yunzhu Chen
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Wenbo Han
- Department of Pharmacy, Hangzhou City University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qing Xia
- Institute of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yunan Mao
- Department of Pharmacy, Hangzhou City University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiahua Si
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hanbing Li
- Institute of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Wang P, Fan N, Yang W, Cao P, Liu G, Zhao Q, Guo P, Li X, Lin X, Jiang N, Nashun B. Transcriptional regulation of FACT involves Coordination of chromatin accessibility and CTCF binding. J Biol Chem 2024; 300:105538. [PMID: 38072046 PMCID: PMC10808957 DOI: 10.1016/j.jbc.2023.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Histone chaperone FACT (facilitates chromatin transcription) is well known to promote chromatin recovery during transcription. However, the mechanism how FACT regulates genome-wide chromatin accessibility and transcription factor binding has not been fully elucidated. Through loss-of-function studies, we show here that FACT component Ssrp1 is required for DNA replication and DNA damage repair and is also essential for progression of cell phase transition and cell proliferation in mouse embryonic fibroblast cells. On the molecular level, absence of the Ssrp1 leads to increased chromatin accessibility, enhanced CTCF binding, and a remarkable change in dynamic range of gene expression. Our study thus unequivocally uncovers a unique mechanism by which FACT complex regulates transcription by coordinating genome-wide chromatin accessibility and CTCF binding.
Collapse
Affiliation(s)
- Peijun Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Na Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanting Yang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China
| | - Pengbo Cao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China
| | - Guojun Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Qi Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Pengfei Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xihe Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Buhe Nashun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
26
|
Yu L, Li J, Xiao M. LncRNA SLC7A11-AS1 stabilizes CTCF by inhibiting its UBE3A-mediated ubiquitination to promote melanoma metastasis. Am J Cancer Res 2023; 13:6256-6269. [PMID: 38187043 PMCID: PMC10767361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Malignant melanoma (MM) is one of the most aggressive types of skin cancer. Long non-coding RNAs (lncRNAs) are important regulatory factors in the pathogenesis of various diseases. Here, we found that the lncRNA SLC7A11-AS1 was highly expressed in MM. Therefore, we investigated its regulatory role in the migration and invasion of MM cells and the associated mechanism. SLC7A11-AS1 and CTCF levels in MM cell lines were detected using RT-qPCR and western blotting, and their regulatory effects on the migratory and invasive abilities were determined using CCK-8, EdU, transwell, wound-healing assays and mouse model. RNA pull-down and RIP assays were performed to explore the association of SLC7A11-AS1 and CTCF and the correlation between CTCF and UBE3A. SLC7A11-AS1 and CTCF were highly expressed in MM cells. The knockdown of SLC7A11-AS1 decreased the expression of CTCF. Mechanistically, SLC7A11-AS1 inhibited the degradation of CTCF by inhibiting the ubiquitination by UBE3A. The knockdown of both SLC7A11-AS1 and CTCF inhibited the migration and invasion of MM cells and attenuated MM-to-lung metastasis in a mouse model. Taken together, SLC7A11-AS1 promoted the invasive and migratory abilities of MM cells by inhibiting the UBE3A-regulated ubiquitination of CTCF. Therefore, SLC7A11-AS1 may be a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Lingling Yu
- Department of Dermatology, Shanghai Eighth People's Hospital Shanghai, China
| | - Jing Li
- Department of Dermatology, Shanghai Eighth People's Hospital Shanghai, China
| | - Ming Xiao
- Department of Dermatology, Shanghai Eighth People's Hospital Shanghai, China
| |
Collapse
|
27
|
Bose S, Saha S, Goswami H, Shanmugam G, Sarkar K. Involvement of CCCTC-binding factor in epigenetic regulation of cancer. Mol Biol Rep 2023; 50:10383-10398. [PMID: 37840067 DOI: 10.1007/s11033-023-08879-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
A major global health burden continues to be borne by the complex and multifaceted disease of cancer. Epigenetic changes, which are essential for the emergence and spread of cancer, have drawn a huge amount of attention recently. The CCCTC-binding factor (CTCF), which takes part in a wide range of cellular processes including genomic imprinting, X chromosome inactivation, 3D chromatin architecture, local modifications of histone, and RNA polymerase II-mediated gene transcription, stands out among the diverse array of epigenetic regulators. CTCF not only functions as an architectural protein but also modulates DNA methylation and histone modifications. Epigenetic regulation of cancer has already been the focus of plenty of studies. Understanding the role of CTCF in the cancer epigenetic landscape may lead to the development of novel targeted therapeutic strategies for cancer. CTCF has already earned its status as a tumor suppressor gene by acting like a homeostatic regulator of genome integrity and function. Moreover, CTCF has a direct effect on many important transcriptional regulators that control the cell cycle, apoptosis, senescence, and differentiation. As we learn more about CTCF-mediated epigenetic modifications and transcriptional regulations, the possibility of utilizing CTCF as a diagnostic marker and therapeutic target for cancer will also increase. Thus, the current review intends to promote personalized and precision-based therapeutics for cancer patients by shedding light on the complex interplay between CTCF and epigenetic processes.
Collapse
Affiliation(s)
- Sayani Bose
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Srawsta Saha
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Harsita Goswami
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
28
|
Liu Y, Qi W, Yin J, He X, Duan S, Bao H, Li C, Shi M, Wang J, Song S. High CTCF expression mediated by FGD5-AS1/miR-19a-3p axis is associated with immunosuppression and pancreatic cancer progression. Heliyon 2023; 9:e22584. [PMID: 38144356 PMCID: PMC10746436 DOI: 10.1016/j.heliyon.2023.e22584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The most common reason for cancer-related death globally is predicted to be pancreatic cancer (PC), one of the deadliest cancers. The CCCTC-binding factor (CTCF) regulates the three-dimensional structure of chromatin, was reported to be highly regulated in various malignancies. However, the underlying biological functions and possible pathways via which CTCF promotes PC progression remain unclear. Herein, we examined the CTCF function in PC and discovered that CTCF expression in PC tissues was significantly raised compared to neighboring healthy tissues. Additionally, Kaplan-Meier survival analysis demonstrated a strong connection between elevated CTCF expression and poor patient prognosis. A study of the ROC curve (receiver operating characteristic) revealed an AUC value for CTCF of 0.968. Subsequent correlation analysis exhibited a strong relationship between immunosuppression and CTCF expression in PC. CTCF knockdown significantly inhibited the malignant biological process of PC in vitro and in vivo, suggesting that CTCF may be a potential PC treatment target. We also identified the FGD5 antisense RNA 1 (FGD5-AS1)/miR-19a-3p axis as a possible upstream mechanism for CTCF overexpression. In conclusion, our data suggest that ceRNA-mediated CTCF overexpression contributes to the suppression of anti-tumor immune responses in PC and could be a predictive biomarker and potential PC treatment target.
Collapse
Affiliation(s)
- Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Pancreatic Neoplams Translational Medicine
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxin Yin
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Pancreatic Neoplams Translational Medicine
| | - Xirui He
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Songqi Duan
- Department of Zoology, College of Life Science, Nankai University, Tianjin, 300071 China
| | - Haili Bao
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Pancreatic Neoplams Translational Medicine
| | - Chen Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Pancreatic Neoplams Translational Medicine
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Pancreatic Neoplams Translational Medicine
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shaohua Song
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Pancreatic Neoplams Translational Medicine
| |
Collapse
|
29
|
Tian M, Wang Z, Su Z, Shibata E, Shibata Y, Dutta A, Zang C. Integrative analysis of DNA replication origins and ORC/MCM binding sites in human cells reveals a lack of overlap. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550556. [PMID: 37546918 PMCID: PMC10402023 DOI: 10.1101/2023.07.25.550556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Based on experimentally determined average inter-origin distances of ∼100 kb, DNA replication initiates from ∼50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the Origin Recognition Complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and 5 ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ∼7.5 million union origins identified by all datasets, only 0.27% were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques (20,250 shared origins), suggesting extensive variability in origin usage and identification. 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF binding sites, G-quadruplex sites and activating histone marks, these overlaps are comparable or less than that of known Transcription Start Sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ∼13,000 reproducible ORC binding sites in human cancer cells, and only 4.5% were within 1 kb of the ∼11,000 union MCM2-7 binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, S. cerevisiae . Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.
Collapse
|
30
|
Li Q, Wang X, Xu S, Chen B, Wu T, Liu J, Zhao G, Wu L. Remodeling of Chromatin Accessibility Regulates the Radiological Responses of NSCLC A549 Cells to High-LET Carbon Ions. Radiat Res 2023; 200:474-488. [PMID: 37815204 DOI: 10.1667/rade-23-00097.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
Carbon-ion radiation therapy (CIRT) may offer remarkable advantages in cancer treatment with its unique physical and biological characteristics. However, the underlying epigenetic regulatory mechanisms of cancer response to CIRT remain to be identified. In this study, we showed consistent but different degrees of biological effects induced in NSCLC A549 cells by carbon ions of different LET. The genome-wide chromatin accessibility and transcriptional profiles of carbon ion-treated A549 cells were performed using transposase-accessible chromatin sequencing (ATAC-seq) and RNA-seq, respectively, and further gene regulatory network analysis was performed by integrating the two sets of genomic data. Alterations in chromatin accessibility by carbon ions of different LET predominantly occurred in intron, distal intergenic and promoter regions of differential chromatin accessibility regions. The transcriptional changes were mainly regulated by proximal chromatin accessibility. Notably, CCCTC-binding factor (CTCF) was identified as a key transcription factor in the cellular response to carbon ions. The target genes regulated by CTCF in response to carbon ions were found to be closely associated with the LET of carbon ions, particularly in the regulation of gene transcription within the DNA replication- and metabolism-related signaling pathways. This study provides a regulatory profile of genes involved in key signaling pathways and highlighted key regulatory elements in NSCLC A549 cells during CIRT, which expands our understanding of the epigenetic mechanisms of carbon ion-induced biological effects and reveals an important role for LET in the regulation of changes in chromatin accessibility, although further research is needed.
Collapse
Affiliation(s)
- Qian Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, P. R. China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Biao Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Tao Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jie Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Guoping Zhao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Lijun Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| |
Collapse
|
31
|
Lee GE, Byun J, Lee CJ, Cho YY. Molecular Mechanisms for the Regulation of Nuclear Membrane Integrity. Int J Mol Sci 2023; 24:15497. [PMID: 37895175 PMCID: PMC10607757 DOI: 10.3390/ijms242015497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Jiin Byun
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Chungcheongnam-do, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
- RCD Control and Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
32
|
Piroeva KV, McDonald C, Xanthopoulos C, Fox C, Clarkson CT, Mallm JP, Vainshtein Y, Ruje L, Klett LC, Stilgenbauer S, Mertens D, Kostareli E, Rippe K, Teif VB. Nucleosome repositioning in chronic lymphocytic leukemia. Genome Res 2023; 33:1649-1661. [PMID: 37699659 PMCID: PMC10691546 DOI: 10.1101/gr.277298.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
The location of nucleosomes in the human genome determines the primary chromatin structure and regulates access to regulatory regions. However, genome-wide information on deregulated nucleosome occupancy and its implications in primary cancer cells is scarce. Here, we conducted a genome-wide comparison of high-resolution nucleosome maps in peripheral blood B cells from patients with chronic lymphocytic leukemia (CLL) and healthy individuals at single-base-pair resolution. Our investigation uncovered significant changes of nucleosome positioning in CLL. Globally, the spacing between nucleosomes-the nucleosome repeat length (NRL)-is shortened in CLL. This effect is stronger in the more aggressive IGHV-unmutated CLL subtype than in the IGHV-mutated CLL subtype. Changes in nucleosome occupancy at specific sites are linked to active chromatin remodeling and reduced DNA methylation. Nucleosomes lost or gained in CLL marks differential binding of 3D chromatin organizers such as CTCF as well as immune response-related transcription factors and delineated mechanisms of epigenetic deregulation. The principal component analysis of nucleosome occupancy in cancer-specific regions allowed the classification of samples between cancer subtypes and normal controls. Furthermore, patients could be better assigned to CLL subtypes according to differential nucleosome occupancy than based on DNA methylation or gene expression. Thus, nucleosome positioning constitutes a novel readout to dissect molecular mechanisms of disease progression and to stratify patients. Furthermore, we anticipate that the global nucleosome repositioning detected in our study, such as changes in the NRL, can be exploited for liquid biopsy applications based on cell-free DNA to stratify patients and monitor disease progression.
Collapse
Affiliation(s)
- Kristan V Piroeva
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Charlotte McDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Charalampos Xanthopoulos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Chelsea Fox
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Christopher T Clarkson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Jan-Philipp Mallm
- German Cancer Research Center (DKFZ) Heidelberg, Single Cell Open Lab, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, 69120 Heidelberg, Germany
| | - Yevhen Vainshtein
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, 70569 Stuttgart, Germany
| | - Luminita Ruje
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Lara C Klett
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, 69120 Heidelberg, Germany
| | - Stephan Stilgenbauer
- Division of CLL, University Hospital Ulm, Department of Internal Medicine III, 89081 Ulm, Germany
| | - Daniel Mertens
- Division of CLL, University Hospital Ulm, Department of Internal Medicine III, 89081 Ulm, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Cooperation Unit Mechanisms of Leukemogenesis, 69120 Heidelberg, Germany
| | - Efterpi Kostareli
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom;
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, 69120 Heidelberg, Germany;
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, 69120 Heidelberg, Germany
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom;
| |
Collapse
|
33
|
Tang J, Shu D, Fang Z, Yang G. Prominin 2 decreases cisplatin sensitivity in non-small cell lung cancer and is modulated by CTCC binding factor. Radiol Oncol 2023; 57:325-336. [PMID: 37665741 PMCID: PMC10476904 DOI: 10.2478/raon-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/21/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the major pathological type of lung cancer and accounts for the majority of lung cancer-related deaths worldwide. We investigated the molecular mechanism of prominin 2 (PROM2) involved in cisplatin resistance in NSCLC. PATIENTS AND METHODS The GEO database was analyzed to obtain differential genes to target PROM2. Immunohistochemistry and western blotting were used to detect protein expression levels. To examine the role of PROM2 in NSCLC, we overexpressed or knocked down PROM2 by transfection of plasmid or small interfering RNA. In functional experiments, CCK8 was used to detect cell viability. Cell migration and invasion and apoptosis were detected by transwell assay and flow cytometry, respectively. Mechanistically, the regulation of PROM2 by CTCF was detected by ChIP-PCR. In vivo experiments confirmed the role of PROM2 in NSCLC. RESULTS GEO data analysis revealed that PROM2 was up-regulated in NSCLC, but its role in NSCLC remains unclear. Our clinical samples confirmed that the expression of PROM2 was markedly increased in NSCLC tissue. Functionally, Overexpression of PROM2 promotes cell proliferation, migration and invasion, and cisplatin resistance. CTCF up-regulates PROM2 expression by binding to its promoter region. In vivo experiments confirmed that PROM2 knockdown could inhibit tumor growth and increase the sensitivity of tumor cells to cisplatin. CONCLUSIONS PROM2 up-regulation in NSCLC can attenuate the sensitivity of NSCLC cells to cisplatin and promote the proliferation, migration and invasion of tumor cells. PROM2 may provide a new target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jiyang Tang
- Department of Thoracic Surgery, The Third Affiliated Hospital of ZunYi Medical University (The First People's Hospital of ZunYi), Zunyi, Guizhou, China
| | - Dejun Shu
- Department of Thoracic Surgery, The Third Affiliated Hospital of ZunYi Medical University (The First People's Hospital of ZunYi), Zunyi, Guizhou, China
| | - Zhimin Fang
- Department of Thoracic Surgery, The Third Affiliated Hospital of ZunYi Medical University (The First People's Hospital of ZunYi), Zunyi, Guizhou, China
| | - Gaolan Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of ZunYi Medical University (The First People's Hospital of ZunYi), Zunyi, Guizhou, China
| |
Collapse
|
34
|
Hu X, Wu J, Feng Y, Ma H, Zhang E, Zhang C, Sun Q, Wang T, Ge Y, Zong D, Chen W, He X. METTL3-stabilized super enhancers-lncRNA SUCLG2-AS1 mediates the formation of a long-range chromatin loop between enhancers and promoters of SOX2 in metastasis and radiosensitivity of nasopharyngeal carcinoma. Clin Transl Med 2023; 13:e1361. [PMID: 37658588 PMCID: PMC10474317 DOI: 10.1002/ctm2.1361] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Super enhancers (SE) play pivotal roles in cell identity and diseases occur including tumorigenesis. The depletion of SE-associated lncRNA transcripts, also known as super-lncRNA, causes the activity of SE to be dysregulated. METHODS We screened and identified an elevated metastasis-associated SE-lncRNA SUCLG2-AS1 in nasopharyngeal carcinoma (NPC) using RNA-sequencing, real-time quantitative polymerase chain reaction (RT-qPCR) and bioinformatics. Western blotting, RT-qPCR, methylated RNA immunoprecipitation (MeRIP), RNA immunoprecipitation, chromatin immunoprecipitation, RNA pull-down and 3C (chromosome conformation capture assays) were used for mechanistic studies. RESULTS SUCLG2-AS1 was correlated with a poor prognosis. SUCLG2-AS1 promotes NPC cell invasion and metastasis while repressing apoptosis and radiosensitivity in vitro and in vivo. Mechanistically, high SUCLG2-AS1 expression occurred in an m6A-dependent manner. SUCLG2-AS1 was found to be located in the SE region of SOX2, and it regulated the expression of SOX2 via long-range chromatin loop formation, which via mediating CTCF (transcription factor) occupied the SE and promoter region of SOX2, thus regulating the metastasis and radiosensitivity of NPC. CONCLUSIONS Taken together, our data suggest that SUCLG2-AS1 may serve as a novel intervention target for the clinical treatment of NPC.
Collapse
Affiliation(s)
- Xinyu Hu
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Jianfeng Wu
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Yong Feng
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Hongxia Ma
- Department of Epidemiology and BiostatisticsInternational Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
| | - Erbao Zhang
- Department of Epidemiology and BiostatisticsInternational Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
| | - Chang Zhang
- Department of Epidemiology and BiostatisticsInternational Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
| | - Qi Sun
- Department of Epidemiology and BiostatisticsInternational Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
| | - Tingting Wang
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Yizhi Ge
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Dan Zong
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Wei Chen
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Xia He
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| |
Collapse
|
35
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
36
|
Xu H, Yi X, Fan X, Wu C, Wang W, Chu X, Zhang S, Dong X, Wang Z, Wang J, Zhou Y, Zhao K, Yao H, Zheng N, Wang J, Chen Y, Plewczynski D, Sham PC, Chen K, Huang D, Li MJ. Inferring CTCF-binding patterns and anchored loops across human tissues and cell types. PATTERNS (NEW YORK, N.Y.) 2023; 4:100798. [PMID: 37602215 PMCID: PMC10436006 DOI: 10.1016/j.patter.2023.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 08/22/2023]
Abstract
CCCTC-binding factor (CTCF) is a transcription regulator with a complex role in gene regulation. The recognition and effects of CTCF on DNA sequences, chromosome barriers, and enhancer blocking are not well understood. Existing computational tools struggle to assess the regulatory potential of CTCF-binding sites and their impact on chromatin loop formation. Here we have developed a deep-learning model, DeepAnchor, to accurately characterize CTCF binding using high-resolution genomic/epigenomic features. This has revealed distinct chromatin and sequence patterns for CTCF-mediated insulation and looping. An optimized implementation of a previous loop model based on DeepAnchor score excels in predicting CTCF-anchored loops. We have established a compendium of CTCF-anchored loops across 52 human tissue/cell types, and this suggests that genomic disruption of these loops could be a general mechanism of disease pathogenesis. These computational models and resources can help investigate how CTCF-mediated cis-regulatory elements shape context-specific gene regulation in cell development and disease progression.
Collapse
Affiliation(s)
- Hang Xu
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Xianfu Yi
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xutong Fan
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chengyue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shijie Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaobao Dong
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jianhua Wang
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ke Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hongcheng Yao
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, The University of Hong Kong, Hong Kong 999077, China
| | - Nan Zheng
- Department of Network Security and Informatization, Tianjin Medical University, Tianjin 300070, China
| | - Junwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Pak Chung Sham
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, The University of Hong Kong, Hong Kong 999077, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Dandan Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Mulin Jun Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
37
|
Cao Y, Liu S, Cui K, Tang Q, Zhao K. Hi-TrAC detects active sub-TADs and reveals internal organizations of super-enhancers. Nucleic Acids Res 2023; 51:6172-6189. [PMID: 37177993 PMCID: PMC10325921 DOI: 10.1093/nar/gkad378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The spatial folding of eukaryotic genome plays a key role in genome function. We report here that our recently developed method, Hi-TrAC, which specializes in detecting chromatin loops among accessible genomic regions, can detect active sub-TADs with a median size of 100 kb, most of which harbor one or two cell specifically expressed genes and regulatory elements such as super-enhancers organized into nested interaction domains. These active sub-TADs are characterized by highly enriched histone mark H3K4me1 and chromatin-binding proteins, including Cohesin complex. Deletion of selected sub-TAD boundaries have different impacts, such as decreased chromatin interaction and gene expression within the sub-TADs or compromised insulation between the sub-TADs, depending on the specific chromatin environment. We show that knocking down core subunit of the Cohesin complex using shRNAs in human cells or decreasing the H3K4me1 modification by deleting the H3K4 methyltransferase Mll4 gene in mouse Th17 cells disrupted the sub-TADs structure. Our data also suggest that super-enhancers exist as an equilibrium globule structure, while inaccessible chromatin regions exist as a fractal globule structure. In summary, Hi-TrAC serves as a highly sensitive and inexpensive approach to study dynamic changes of active sub-TADs, providing more explicit insights into delicate genome structures and functions.
Collapse
Affiliation(s)
- Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qingsong Tang
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Wang J, Nakato R. Comprehensive multiomics analyses reveal pervasive involvement of aberrant cohesin binding in transcriptional and chromosomal disorder of cancer cells. iScience 2023; 26:106908. [PMID: 37283809 PMCID: PMC10239702 DOI: 10.1016/j.isci.2023.106908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
Chromatin organization, whose malfunction causes various diseases including cancer, is fundamentally controlled by cohesin. While cancer cells have been found with mutated or misexpressed cohesin genes, there is no comprehensive survey about the presence and role of abnormal cohesin binding in cancer cells. Here, we systematically identified ∼1% of cohesin-binding sites (701-2,633) as cancer-aberrant binding sites of cohesin (CASs). We integrated CASs with large-scale transcriptomics, epigenomics, 3D genomics, and clinical information. CASs represent tissue-specific epigenomic signatures enriched for cancer-dysregulated genes with functional and clinical significance. CASs exhibited alterations in chromatin compartments, loops within topologically associated domains, and cis-regulatory elements, indicating that CASs induce dysregulated genes through misguided chromatin structure. Cohesin depletion data suggested that cohesin binding at CASs actively regulates cancer-dysregulated genes. Overall, our comprehensive investigation suggests that aberrant cohesin binding is an essential epigenomic signature responsible for dysregulated chromatin structure and transcription in cancer cells.
Collapse
Affiliation(s)
- Jiankang Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
39
|
Bacabac M, Xu W. Oncogenic super-enhancers in cancer: mechanisms and therapeutic targets. Cancer Metastasis Rev 2023; 42:471-480. [PMID: 37059907 PMCID: PMC10527203 DOI: 10.1007/s10555-023-10103-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Activation of oncogenes to sustain proliferative signaling and initiate metastasis are important hallmarks of cancer. Oncogenes are amplified or overexpressed in cancer cells and overexpression is often controlled at the level of transcription. Gene expression is tightly controlled by many cis-regulatory elements and trans-acting factors. Large clusters of enhancers known as "super-enhancers" drive robust expression of cell-fate determining transcription factors in cell identity. Cancer cells can take advantage of super-enhancers and become transcriptionally addicted to them leading to tumorigenesis and metastasis. Additionally, the cis-regulatory landscape of cancer includes aberrant super-enhancers that are not present in normal cells. The landscape of super-enhancers in cancer is characterized by high levels of histone H3K27 acetylation and bromodomain-containing protein 4 (BRD4), and Mediator complex. These chromatin features facilitate the identification of cancer type-specific and cell-type-specific super-enhancers that control the expression of important oncogenes to stimulate their growth. Disruption of super-enhancers via inhibiting BRD4 or other epigenetic proteins is a potential therapeutic option. Here, we will describe the discovery of super-enhancers and their unique characteristics compared to typical enhancers. Then, we will highlight how super-enhancer-associated genes contribute to cancer progression in different solid tumor types. Lastly, we will cover therapeutic targets and their epigenetic modulators.
Collapse
Affiliation(s)
- Megan Bacabac
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
- School of Medicine and Public Health, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.
- School of Medicine and Public Health, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
40
|
Smits WK, Vermeulen C, Hagelaar R, Kimura S, Vroegindeweij EM, Buijs-Gladdines JGCAM, van de Geer E, Verstegen MJAM, Splinter E, van Reijmersdal SV, Buijs A, Galjart N, van Eyndhoven W, van Min M, Kuiper R, Kemmeren P, Mullighan CG, de Laat W, Meijerink JPP. Elevated enhancer-oncogene contacts and higher oncogene expression levels by recurrent CTCF inactivating mutations in acute T cell leukemia. Cell Rep 2023; 42:112373. [PMID: 37060567 PMCID: PMC10750298 DOI: 10.1016/j.celrep.2023.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
Monoallelic inactivation of CCCTC-binding factor (CTCF) in human cancer drives altered methylated genomic states, altered CTCF occupancy at promoter and enhancer regions, and deregulated global gene expression. In patients with T cell acute lymphoblastic leukemia (T-ALL), we find that acquired monoallelic CTCF-inactivating events drive subtle and local genomic effects in nearly half of t(5; 14) (q35; q32.2) rearranged patients, especially when CTCF-binding sites are preserved in between the BCL11B enhancer and the TLX3 oncogene. These solitary intervening sites insulate TLX3 from the enhancer by inducing competitive looping to multiple binding sites near the TLX3 promoter. Reduced CTCF levels or deletion of the intervening CTCF site abrogates enhancer insulation by weakening competitive looping while favoring TLX3 promoter to BCL11B enhancer looping, which elevates oncogene expression levels and leukemia burden.
Collapse
Affiliation(s)
- Willem K Smits
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Carlo Vermeulen
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Shunsuke Kimura
- Laboratory of Pathology, St. Jude's Children's Research Hospital, Memphis TN, USA
| | | | | | - Ellen van de Geer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjon J A M Verstegen
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | | | | | - Arjan Buijs
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | - Roland Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Charles G Mullighan
- Laboratory of Pathology, St. Jude's Children's Research Hospital, Memphis TN, USA
| | - Wouter de Laat
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | | |
Collapse
|
41
|
Thieme E, Bruss N, Sun D, Dominguez EC, Coleman D, Liu T, Roleder C, Martinez M, Garcia-Mansfield K, Ball B, Pirrotte P, Wang L, Xia Z, Danilov AV. CDK9 inhibition induces epigenetic reprogramming revealing strategies to circumvent resistance in lymphoma. Mol Cancer 2023; 22:64. [PMID: 36998071 PMCID: PMC10061728 DOI: 10.1186/s12943-023-01762-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) exhibits significant genetic heterogeneity which contributes to drug resistance, necessitating development of novel therapeutic approaches. Pharmacological inhibitors of cyclin-dependent kinases (CDK) demonstrated pre-clinical activity in DLBCL, however many stalled in clinical development. Here we show that AZD4573, a selective inhibitor of CDK9, restricted growth of DLBCL cells. CDK9 inhibition (CDK9i) resulted in rapid changes in the transcriptome and proteome, with downmodulation of multiple oncoproteins (eg, MYC, Mcl-1, JunB, PIM3) and deregulation of phosphoinotiside-3 kinase (PI3K) and senescence pathways. Following initial transcriptional repression due to RNAPII pausing, we observed transcriptional recovery of several oncogenes, including MYC and PIM3. ATAC-Seq and ChIP-Seq experiments revealed that CDK9i induced epigenetic remodeling with bi-directional changes in chromatin accessibility, suppressed promoter activation and led to sustained reprograming of the super-enhancer landscape. A CRISPR library screen suggested that SE-associated genes in the Mediator complex, as well as AKT1, confer resistance to CDK9i. Consistent with this, sgRNA-mediated knockout of MED12 sensitized cells to CDK9i. Informed by our mechanistic findings, we combined AZD4573 with either PIM kinase or PI3K inhibitors. Both combinations decreased proliferation and induced apoptosis in DLBCL and primary lymphoma cells in vitro as well as resulted in delayed tumor progression and extended survival of mice xenografted with DLBCL in vivo. Thus, CDK9i induces reprogramming of the epigenetic landscape, and super-enhancer driven recovery of select oncogenes may contribute to resistance to CDK9i. PIM and PI3K represent potential targets to circumvent resistance to CDK9i in the heterogeneous landscape of DLBCL.
Collapse
Affiliation(s)
- Elana Thieme
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Nur Bruss
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Duanchen Sun
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- grid.5288.70000 0000 9758 5690Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA
- grid.27255.370000 0004 1761 1174Present address: School of Mathematics, Shandong University, Jinan, 250100 Shandong China
| | - Edward C. Dominguez
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Daniel Coleman
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Tingting Liu
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Carly Roleder
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Melissa Martinez
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Krystine Garcia-Mansfield
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Brian Ball
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Patrick Pirrotte
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Lili Wang
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Zheng Xia
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- grid.5288.70000 0000 9758 5690Biomedical Engineering Department, Oregon Health & Science University, Portland, OR USA
| | - Alexey V. Danilov
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| |
Collapse
|
42
|
Hossain I, Fanfani V, Quackenbush J, Burkholz R. Biologically informed NeuralODEs for genome-wide regulatory dynamics. RESEARCH SQUARE 2023:rs.3.rs-2675584. [PMID: 36993392 PMCID: PMC10055646 DOI: 10.21203/rs.3.rs-2675584/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Models that are formulated as ordinary differential equations (ODEs) can accurately explain temporal gene expression patterns and promise to yield new insights into important cellular processes, disease progression, and intervention design. Learning such ODEs is challenging, since we want to predict the evolution of gene expression in a way that accurately encodes the causal gene-regulatory network (GRN) governing the dynamics and the nonlinear functional relationships between genes. Most widely used ODE estimation methods either impose too many parametric restrictions or are not guided by meaningful biological insights, both of which impedes scalability and/or explainability. To overcome these limitations, we developed PHOENIX, a modeling framework based on neural ordinary differential equations (NeuralODEs) and Hill-Langmuir kinetics, that can flexibly incorporate prior domain knowledge and biological constraints to promote sparse, biologically interpretable representations of ODEs. We test accuracy of PHOENIX in a series of in silico experiments benchmarking it against several currently used tools for ODE estimation. We also demonstrate PHOENIX's flexibility by studying oscillating expression data from synchronized yeast cells and assess its scalability by modelling genome-scale breast cancer expression for samples ordered in pseudotime. Finally, we show how the combination of user-defined prior knowledge and functional forms from systems biology allows PHOENIX to encode key properties of the underlying GRN, and subsequently predict expression patterns in a biologically explainable way.
Collapse
Affiliation(s)
- Intekhab Hossain
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Viola Fanfani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rebekka Burkholz
- Helmholtz Center for Information Security (CISPA), Saarbrücken, Germany
| |
Collapse
|
43
|
Zhang G, Xu X, Zhu L, Li S, Chen R, Lv N, Li Z, Wang J, Li Q, Zhou W, Yang P, Liu J. A Novel Molecular Classification Method for Glioblastoma Based on Tumor Cell Differentiation Trajectories. Stem Cells Int 2023; 2023:2826815. [PMID: 37964983 PMCID: PMC10643041 DOI: 10.1155/2023/2826815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2023] Open
Abstract
The latest 2021 WHO classification redefines glioblastoma (GBM) as the hierarchical reporting standard by eliminating glioblastoma, IDH-mutant and only retaining the tumor entity of "glioblastoma, IDH-wild type." Knowing that subclassification of tumors based on molecular features is supposed to facilitate the therapeutic choice and increase the response rate in cancer patients, it is necessary to carry out molecular classification of the newly defined GBM. Although differentiation trajectory inference based on single-cell sequencing (scRNA-seq) data holds great promise for identifying cell heterogeneity, it has not been used in the study of GBM molecular classification. Single-cell transcriptome sequencing data from 10 GBM samples were used to identify molecular classification based on differentiation trajectories. The expressions of identified features were validated by public bulk RNA-sequencing data. Clinical feasibility of the classification system was examined in tissue samples by immunohistochemical (IHC) staining and immunofluorescence, and their clinical significance was investigated in public cohorts and clinical samples with complete clinical follow-up information. By analyzing scRNA-seq data of 10 GBM samples, four differentiation trajectories from the glioblastoma stem cell-like (GSCL) cluster were identified, based on which malignant cells were classified into five characteristic subclusters. Each cluster exhibited different potential drug sensitivities, pathways, functions, and transcriptional modules. The classification model was further examined in TCGA and CGGA datasets. According to the different abundance of five characteristic cell clusters, the patients were classified into five groups which we named Ac-G, Class-G, Neo-G, Opc-G, and Undiff-G groups. It was found that the Undiff-G group exhibited the worst overall survival (OS) in both TCGA and CGGA cohorts. In addition, the classification model was verified by IHC staining in 137 GBM samples to further clarify the difference in OS between the five groups. Furthermore, the novel biomarkers of glioblastoma stem cells (GSCs) were also described. In summary, we identified five classifications of GBM and found that they exhibited distinct drug sensitivities and different prognoses, suggesting that the new grouping system may be able to provide important prognostic information and have certain guiding significance for the treatment of GBM, and identified the GSCL cluster in GBM tissues and described its characteristic program, which may help develop new potential therapeutic targets for GSCs in GBM.
Collapse
Affiliation(s)
- Guanghao Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaolong Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Luojiang Zhu
- Neurosurgery Department, 922th Hospital of Joint Logistics Support Force, PLA, China
| | - Sisi Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Rundong Chen
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Nan Lv
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zifu Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jing Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qiang Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wang Zhou
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
44
|
Hyle J, Djekidel MN, Williams J, Wright S, Shao Y, Xu B, Li C. Auxin-inducible degron 2 system deciphers functions of CTCF domains in transcriptional regulation. Genome Biol 2023; 24:14. [PMID: 36698211 PMCID: PMC9878928 DOI: 10.1186/s13059-022-02843-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/29/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND CTCF is a well-established chromatin architectural protein that also plays various roles in transcriptional regulation. While CTCF biology has been extensively studied, how the domains of CTCF function to regulate transcription remains unknown. Additionally, the original auxin-inducible degron 1 (AID1) system has limitations in investigating the function of CTCF. RESULTS We employ an improved auxin-inducible degron technology, AID2, to facilitate the study of acute depletion of CTCF while overcoming the limitations of the previous AID system. As previously observed through the AID1 system and steady-state RNA analysis, the new AID2 system combined with SLAM-seq confirms that CTCF depletion leads to modest nascent and steady-state transcript changes. A CTCF domain sgRNA library screening identifies the zinc finger (ZF) domain as the region within CTCF with the most functional relevance, including ZFs 1 and 10. Removal of ZFs 1 and 10 reveals genomic regions that independently require these ZFs for DNA binding and transcriptional regulation. Notably, loci regulated by either ZF1 or ZF10 exhibit unique CTCF binding motifs specific to each ZF. CONCLUSIONS By extensively comparing the AID1 and AID2 systems for CTCF degradation in SEM cells, we confirm that AID2 degradation is superior for achieving miniAID-tagged protein degradation without the limitations of the AID1 system. The model we create that combines AID2 depletion of CTCF with exogenous overexpression of CTCF mutants allows us to demonstrate how peripheral ZFs intricately orchestrate transcriptional regulation in a cellular context for the first time.
Collapse
Affiliation(s)
- Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Justin Williams
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
45
|
A novel molecular classification method for osteosarcoma based on tumor cell differentiation trajectories. Bone Res 2023; 11:1. [PMID: 36588108 PMCID: PMC9806110 DOI: 10.1038/s41413-022-00233-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 01/03/2023] Open
Abstract
Subclassification of tumors based on molecular features may facilitate therapeutic choice and increase the response rate of cancer patients. However, the highly complex cell origin involved in osteosarcoma (OS) limits the utility of traditional bulk RNA sequencing for OS subclassification. Single-cell RNA sequencing (scRNA-seq) holds great promise for identifying cell heterogeneity. However, this technique has rarely been used in the study of tumor subclassification. By analyzing scRNA-seq data for six conventional OS and nine cancellous bone (CB) samples, we identified 29 clusters in OS and CB samples and discovered three differentiation trajectories from the cancer stem cell (CSC)-like subset, which allowed us to classify OS samples into three groups. The classification model was further examined using the TARGET dataset. Each subgroup of OS had different prognoses and possible drug sensitivities, and OS cells in the three differentiation branches showed distinct interactions with other clusters in the OS microenvironment. In addition, we verified the classification model through IHC staining in 138 OS samples, revealing a worse prognosis for Group B patients. Furthermore, we describe the novel transcriptional program of CSCs and highlight the activation of EZH2 in CSCs of OS. These findings provide a novel subclassification method based on scRNA-seq and shed new light on the molecular features of CSCs in OS and may serve as valuable references for precision treatment for and therapeutic development in OS.
Collapse
|
46
|
Zablon HA, VonHandorf A, Puga A. Mechanisms of chromate carcinogenesis by chromatin alterations. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:1-23. [PMID: 36858770 DOI: 10.1016/bs.apha.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a dynamic environment, organisms must constantly mount an adaptive response to new environmental conditions in order to survive. Novel patterns of gene expression, driven by attendant changes in chromatin architecture, aid in adaptation and survival. Critical mechanisms in the control of gene transcription govern new spatiotemporal chromatin-chromatin interactions that make regulatory DNA elements accessible to the transcription factors that control the response. Consequently, agents that disrupt chromatin structure are likely to have a direct impact on the transcriptional programs of cells and organisms and to drive alterations in fundamental physiological processes. In this regard, hexavalent chromium (Cr(VI)) is of special interest because it interacts directly with cellular proteins, DNA, and other macromolecules, and is likely to upset cell functions that may cause generalized damage to the organism. Here, we will highlight chromium-mediated mechanisms that disrupt chromatin architecture and discuss how these mechanisms are integral to its carcinogenic properties. Emerging evidence indicates that Cr(VI) targets euchromatin, particularly in genomic locations flanking the binding sites of the essential transcription factors CTCF and AP1, and, in so doing, they disrupt nucleosomal architecture. Ultimately, the ensuing changes, if occurring in critical regulatory domains, may establish a new chromatin state, either toxic or adaptive, that will be governed by the corresponding gene transcription changes in key biological processes associated with that state.
Collapse
Affiliation(s)
- Hesbon A Zablon
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew VonHandorf
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
47
|
Saha S, Pradhan N, B N, Mahadevappa R, Minocha S, Kumar S. Cancer plasticity: Investigating the causes for this agility. Semin Cancer Biol 2023; 88:138-156. [PMID: 36584960 DOI: 10.1016/j.semcancer.2022.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Cancer is not a hard-wired phenomenon but an evolutionary disease. From the onset of carcinogenesis, cancer cells continuously adapt and evolve to satiate their ever-growing proliferation demands. This results in the formation of multiple subtypes of cancer cells with different phenotypes, cellular compositions, and consequently displaying varying degrees of tumorigenic identity and function. This phenomenon is referred to as cancer plasticity, during which the cancer cells exist in a plethora of cellular states having distinct phenotypes. With the advent of modern technologies equipped with enhanced resolution and depth, for example, single-cell RNA-sequencing and advanced computational tools, unbiased cancer profiling at a single-cell resolution are leading the way in understanding cancer cell rewiring both spatially and temporally. In this review, the processes and mechanisms that give rise to cancer plasticity include both intrinsic genetic factors such as epigenetic changes, differential expression due to changes in DNA, RNA, or protein content within the cancer cell, as well as extrinsic environmental factors such as tissue perfusion, extracellular milieu are detailed and their influence on key cancer plasticity hallmarks such as epithelial-mesenchymal transition (EMT) and cancer cell stemness (CSCs) are discussed. Due to therapy evasion and drug resistance, tumor heterogeneity caused by cancer plasticity has major therapeutic ramifications. Hence, it is crucial to comprehend all the cellular and molecular mechanisms that control cellular plasticity. How this process evades therapy, and the therapeutic avenue of targeting cancer plasticity must be diligently investigated.
Collapse
Affiliation(s)
- Shubhraneel Saha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nikita Pradhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha B
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ravikiran Mahadevappa
- Department of Biotechnology, School of Science, Gandhi Institute of Technology and Management, Deemed to be University, Bengaluru, Karnataka 562163, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
48
|
Jin Q, Gutierrez Diaz B, Pieters T, Zhou Y, Narang S, Fijalkwoski I, Borin C, Van Laere J, Payton M, Cho BK, Han C, Sun L, Serafin V, Yacu G, Von Loocke W, Basso G, Veltri G, Dreveny I, Ben-Sahra I, Goo YA, Safgren SL, Tsai YC, Bornhauser B, Suraneni PK, Gaspar-Maia A, Kandela I, Van Vlierberghe P, Crispino JD, Tsirigos A, Ntziachristos P. Oncogenic deubiquitination controls tyrosine kinase signaling and therapy response in acute lymphoblastic leukemia. SCIENCE ADVANCES 2022; 8:eabq8437. [PMID: 36490346 PMCID: PMC9733937 DOI: 10.1126/sciadv.abq8437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia.
Collapse
Affiliation(s)
- Qi Jin
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Blanca Gutierrez Diaz
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Yalu Zhou
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sonali Narang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, NY, USA
| | - Igor Fijalkwoski
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Cristina Borin
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jolien Van Laere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
| | - Monique Payton
- Division of Experimental Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Byoung-Kyu Cho
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Cuijuan Han
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Limin Sun
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Valentina Serafin
- Oncohematology Laboratory, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| | - George Yacu
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Wouter Von Loocke
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Giuseppe Basso
- Oncohematology Laboratory, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| | - Giulia Veltri
- Oncohematology Laboratory, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Ingrid Dreveny
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Young Ah Goo
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Stephanie L. Safgren
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Yi-Chien Tsai
- University Children’s Hospital, Division of Pediatric Oncology, University of Zurich, Zurich, Switzerland
| | - Beat Bornhauser
- University Children’s Hospital, Division of Pediatric Oncology, University of Zurich, Zurich, Switzerland
| | | | - Alexandre Gaspar-Maia
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Irawati Kandela
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - John D. Crispino
- Division of Experimental Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, NY, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
49
|
Epigenomic landscape study reveals molecular subtypes and EBV-associated regulatory epigenome reprogramming in nasopharyngeal carcinoma. EBioMedicine 2022; 86:104357. [DOI: 10.1016/j.ebiom.2022.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
|
50
|
Interplay Between the Histone Variant H2A.Z and the Epigenome in Pancreatic Cancer. Arch Med Res 2022; 53:840-858. [PMID: 36470770 DOI: 10.1016/j.arcmed.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND The oncogenic process is orchestrated by a complex network of chromatin remodeling elements that shape the cancer epigenome. Histone variant H2A.Z regulates DNA control elements such as promoters and enhancers in different types of cancer; however, the interplay between H2A.Z and the pancreatic cancer epigenome is unknown. OBJECTIVE This study analyzed the role of H2A.Z in different DNA regulatory elements. METHODS We performed Chromatin Immunoprecipitation Sequencing assays (ChiP-seq) with total H2A.Z and acetylated H2A.Z (acH2A.Z) antibodies and analyzed published data from ChIP-seq, RNA-seq, bromouridine labeling-UV and sequencing (BruUV-seq), Hi-C and ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) in the pancreatic cancer cell line PANC-1. RESULTS The results indicate that total H2A.Z facilitates the recruitment of RNA polymerase II and transcription factors at promoters and enhancers allowing the expression of pro-oncogenic genes. Interestingly, we demonstrated that H2A.Z is enriched in super-enhancers (SEs) contributing to the transcriptional activation of key genes implicated in tumor development. Importantly, we established that H2A.Z contributes to the three-dimensional (3D) genome organization of pancreatic cancer and that it is a component of the Topological Associated Domains (TADs) boundaries in PANC-1 and that total H2A.Z and acH2A.Z are associated with A and B compartments, respectively. CONCLUSIONS H2A.Z participates in the biology and development of pancreatic cancer by generating a pro-oncogenic transcriptome through its posttranslational modifications, interactions with different partners, and regulatory elements, contributing to the oncogenic 3D genome organization. These data allow us to understand the molecular mechanisms that promote an oncogenic transcriptome in pancreatic cancer mediated by H2A.Z.
Collapse
|