1
|
Gallo G, Aulitto M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life (Basel) 2024; 14:1205. [PMID: 39337987 PMCID: PMC11433292 DOI: 10.3390/life14091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Extremophiles, organisms thriving in extreme environments such as hot springs, deep-sea hydrothermal vents, and hypersaline ecosystems, have garnered significant attention due to their remarkable adaptability and biotechnological potential. This review presents recent advancements in isolating and characterizing extremophiles, highlighting their applications in enzyme production, bioplastics, environmental management, and space exploration. The unique biological mechanisms of extremophiles offer valuable insights into life's resilience and potential uses in industry and astrobiology.
Collapse
Affiliation(s)
- Giovanni Gallo
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Martina Aulitto
- Department of Biology, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| |
Collapse
|
2
|
Hu A, Zhao W, Wang J, Qi Q, Xiao X, Jing H. Microbial communities reveal niche partitioning across the slope and bottom zones of the challenger deep. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13314. [PMID: 39086173 PMCID: PMC11291871 DOI: 10.1111/1758-2229.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Widespread marine microbiomes exhibit compositional and functional differentiation as a result of adaptation driven by environmental characteristics. We investigated the microbial communities in both seawater and sediments on the slope (7-9 km) and the bottom (9-11 km) of the Challenger Deep of the Mariana Trench to explore community differentiation. Both metagenome-assembled genomes (MAGs) and 16S rRNA amplicon sequence variants (ASVs) showed that the microbial composition in the seawater was similar to that of sediment on the slope, while distinct from that of sediment in the bottom. This scenario suggested a potentially stronger community interaction between seawater and sediment on the slope, which was further confirmed by community assembly and population movement analyses. The metagenomic analysis also indicates a specific stronger potential of nitrate reduction and sulphate assimilation in the bottom seawater, while more versatile nitrogen and sulphur cycling pathways occur on the slope, reflecting functional differentiations among communities in conjunction with environmental features. This work implies that microbial community differentiation occurred in the different hadal niches, and was likely an outcome of microbial adaptation to the extreme hadal trench environment, especially the associated hydrological and geological conditions, which should be considered and measured in situ in future studies.
Collapse
Affiliation(s)
- Aoran Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- International Center for Deep Life Investigation (IC‐DLI)Shanghai Jiao Tong UniversityShanghaiChina
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- International Center for Deep Life Investigation (IC‐DLI)Shanghai Jiao Tong UniversityShanghaiChina
- School of OceanographyShanghai Jiao Tong UniversityShanghaiChina
| | - Jing Wang
- International Center for Deep Life Investigation (IC‐DLI)Shanghai Jiao Tong UniversityShanghaiChina
- School of OceanographyShanghai Jiao Tong UniversityShanghaiChina
- SJTU Yazhou Bay Institute of Deepsea Sci‐TechYongyou Industrial ParkSanyaChina
| | - Qi Qi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- International Center for Deep Life Investigation (IC‐DLI)Shanghai Jiao Tong UniversityShanghaiChina
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- International Center for Deep Life Investigation (IC‐DLI)Shanghai Jiao Tong UniversityShanghaiChina
- SJTU Yazhou Bay Institute of Deepsea Sci‐TechYongyou Industrial ParkSanyaChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)ZhuhaiGuangdongChina
| | - Hongmei Jing
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)ZhuhaiGuangdongChina
- Institute of Deep‐Sea Science and EngineeringChinese Academy of SciencesSanyaChina
| |
Collapse
|
3
|
Huang Y, Zhang X, Xin Y, Tian J, Li M. Distinct microbial nitrogen cycling processes in the deepest part of the ocean. mSystems 2024; 9:e0024324. [PMID: 38940525 PMCID: PMC11265455 DOI: 10.1128/msystems.00243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
The Mariana Trench (MT) is the deepest part of the ocean on Earth. Previous studies have described the microbial community structures and functional potential in the seawater and surface sediment of MT. Still, the metabolic features and adaptation strategies of the microorganisms involved in nitrogen cycling processes are poorly understood. In this study, comparative metagenomic approaches were used to study microbial nitrogen cycling in three MT habitats, including hadal seawater [9,600-10,500 m below sea level (mbsl)], surface sediments [0-46 cm below seafloor (cmbsf) at a water depth between 7,143 and 8,638 mbsl], and deep sediments (200-306 cmbsf at a water depth of 8,300 mbsl). We identified five new nitrite-oxidizing bacteria (NOB) lineages that had adapted to the oligotrophic MT slope sediment, via their CO2 fixation capability through the reductive tricarboxylic acid (rTCA) or Calvin-Benson-Bassham (CBB) cycle; an anammox bacterium might perform aerobic respiration and utilize sedimentary carbohydrates for energy generation because it contains genes encoding type A cytochrome c oxidase and complete glycolysis pathway. In seawater, abundant alkane-oxidizing Ketobacter species can fix inert N2 released from other denitrifying and/or anammox bacteria. This study further expands our understanding of microbial life in the largely unexplored deepest part of the ocean. IMPORTANCE The metabolic features and adaptation strategies of the nitrogen cycling microorganisms in the deepest part of the ocean are largely unknown. This study revealed that anammox bacteria might perform aerobic respiration in response to nutrient limitation or O2 fluctuations in the Mariana Trench sediments. Meanwhile, an abundant alkane-oxidizing Ketobacter species could fix N2 in hadal seawater. This study provides new insights into the roles of hadal microorganisms in global nitrogen biogeochemical cycles. It substantially expands our understanding of the microbial life in the largely unexplored deepest part of the ocean.
Collapse
Affiliation(s)
- Yuhan Huang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinxu Zhang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yu Xin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong, China
| | - Jiwei Tian
- MOE Key Laboratory of Physical Oceanography, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Meng Li
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Ling H, Lv Y, Zhang Y, Zhou NY, Xu Y. Widespread and active piezotolerant microorganisms mediate phenolic compound degradation under high hydrostatic pressure in hadal trenches. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:331-348. [PMID: 38827128 PMCID: PMC11136905 DOI: 10.1007/s42995-024-00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/20/2024] [Indexed: 06/04/2024]
Abstract
Phenolic compounds, as well as other aromatic compounds, have been reported to be abundant in hadal trenches. Although high-throughput sequencing studies have hinted at the potential of hadal microbes to degrade these compounds, direct microbiological, genetic and biochemical evidence under in situ pressures remain absent. Here, a microbial consortium and a pure culture of Pseudomonas, newly isolated from Mariana Trench sediments, efficiently degraded phenol under pressures up to 70 and 60 MPa, respectively, with concomitant increase in biomass. By analyzing a high-pressure (70 MPa) culture metatranscriptome, not only was the entire range of metabolic processes under high pressure generated, but also genes encoding complete phenol degradation via ortho- and meta-cleavage pathways were revealed. The isolate of Pseudomonas also contained genes encoding the complete degradation pathway. Six transcribed genes (dmpKLMNOPsed) were functionally identified to encode a multicomponent hydroxylase catalyzing the hydroxylation of phenol and its methylated derivatives by heterogeneous expression. In addition, key catabolic genes identified in the metatranscriptome of the high-pressure cultures and genomes of bacterial isolates were found to be all widely distributed in 22 published hadal microbial metagenomes. At microbiological, genetic, bioinformatics, and biochemical levels, this study found that microorganisms widely found in hadal trenches were able to effectively drive phenolic compound degradation under high hydrostatic pressures. This information will bridge a knowledge gap concerning the microbial aromatics degradation within hadal trenches. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00224-2.
Collapse
Affiliation(s)
- Hao Ling
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yongxin Lv
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240 China
- State Key of Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240 China
- State Key of Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
5
|
Liu J, Li DW, He X, Liu R, Cheng H, Su C, Chen M, Wang Y, Zhao Z, Xu H, Cheng Z, Wang Z, Pedentchouk N, Lea-Smith DJ, Todd JD, Liu X, Zhao M, Zhang XH. A unique subseafloor microbiosphere in the Mariana Trench driven by episodic sedimentation. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:168-181. [PMID: 38433963 PMCID: PMC10902237 DOI: 10.1007/s42995-023-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/23/2023] [Indexed: 03/05/2024]
Abstract
Hadal trenches are characterized by enhanced and infrequent high-rate episodic sedimentation events that likely introduce not only labile organic carbon and key nutrients but also new microbes that significantly alter the subseafloor microbiosphere. Currently, the role of high-rate episodic sedimentation in controlling the composition of the hadal subseafloor microbiosphere is unknown. Here, analyses of carbon isotope composition in a ~ 750 cm long sediment core from the Challenger Deep revealed noncontinuous deposition, with anomalous 14C ages likely caused by seismically driven mass transport and the funneling effect of trench geomorphology. Microbial community composition and diverse enzyme activities in the upper ~ 27 cm differed from those at lower depths, probably due to sudden sediment deposition and differences in redox condition and organic matter availability. At lower depths, microbial population numbers, and composition remained relatively constant, except at some discrete depths with altered enzyme activity and microbial phyla abundance, possibly due to additional sudden sedimentation events of different magnitude. Evidence is provided of a unique role for high-rate episodic sedimentation events in controlling the subsurface microbiosphere in Earth's deepest ocean floor and highlight the need to perform thorough analysis over a large depth range to characterize hadal benthic populations. Such depositional processes are likely crucial in shaping deep-water geochemical environments and thereby the deep subseafloor biosphere. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00212-y.
Collapse
Affiliation(s)
- Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Da-Wei Li
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Xinxin He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Ronghua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Haojin Cheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Chenglong Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Mengna Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Yonghong Wang
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education/College of Marine Geosciences, Ocean University of China, Qingdao, 266100 China
| | - Zhongsheng Zhao
- Key Laboratory of Physical Oceanography, Ministry of Education/Research Vessel Centre, Ocean University of China, Qingdao, 266100 China
| | - Hanyue Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Zhangyu Cheng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Zicheng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Nikolai Pedentchouk
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - David J. Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Xiaoshou Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Meixun Zhao
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
6
|
Ishola OA, Kublik S, Durai Raj AC, Ohnmacht C, Schulz S, Foesel BU, Schloter M. Comparative Metagenomic Analysis of Bacteriophages and Prophages in Gnotobiotic Mouse Models. Microorganisms 2024; 12:255. [PMID: 38399658 PMCID: PMC10892684 DOI: 10.3390/microorganisms12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Gnotobiotic murine models are important to understand microbiota-host interactions. Despite the role of bacteriophages as drivers for microbiome structure and function, there is no information about the structure and function of the gut virome in gnotobiotic models and the link between bacterial and bacteriophage/prophage diversity. We studied the virome of gnotobiotic murine Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora (ASF, three bacterial species). As reference, the virome of Specific Pathogen-Free (SPF) mice was investigated. A metagenomic approach was used to assess prophages and bacteriophages in the guts of 6-week-old female mice. We identified a positive correlation between bacteria diversity, and bacteriophages and prophages. Caudoviricetes (82.4%) were the most prominent class of phages in all samples with differing relative abundance. However, the host specificity of bacteriophages belonging to class Caudoviricetes differed depending on model bacterial diversity. We further studied the role of bacteriophages in horizontal gene transfer and microbial adaptation to the host's environment. Analysis of mobile genetic elements showed the contribution of bacteriophages to the adaptation of bacterial amino acid metabolism. Overall, our results implicate virome "dark matter" and interactions with the host system as factors for microbial community structure and function which determine host health. Taking the importance of the virome in the microbiome diversity and horizontal gene transfer, reductions in the virome might be an important factor driving losses of microbial biodiversity and the subsequent dysbiosis of the gut microbiome.
Collapse
Affiliation(s)
- Oluwaseun A. Ishola
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Abilash Chakravarthy Durai Raj
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Caspar Ohnmacht
- Mucosal Immunology Group, Center of Allery and Environment (ZAUM), Technical University of Munich, Helmholtz Zentrum München, 85764 München, Germany
| | - Stefanie Schulz
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Bärbel U. Foesel
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
- Chair for Environmental Microbiology, TUM School of Life Science, Technical University of Munich, 85354 Freising, Germany
- Central Institute for Nutrition and Health, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
7
|
Zhong M, Li Y, Deng L, Fang J, Yu X. Insight into the adaptation mechanisms of high hydrostatic pressure in physiology and metabolism of hadal fungi from the deepest ocean sediment. mSystems 2024; 9:e0108523. [PMID: 38117068 PMCID: PMC10804941 DOI: 10.1128/msystems.01085-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
High hydrostatic pressure (HHP) influences the life processes of organisms living at depth in the oceans. While filamentous fungi are one of the essential members of deep-sea microorganisms, few works have explored their piezotolerance to HHP. Here, we obtained three homogeneous Aspergillus sydowii from terrestrial, shallow, and hadal areas, respectively, to compare their pressure resistance. A set of all-around evaluation methods including determination of growth rate, metabolic activity, and microscopic staining observation was established and indicated that A. sydowii DM1 from the hadal area displayed significant piezotolerance. Global analysis of transcriptome data under elevated HHP revealed that A. sydowii DM1 proactively modulated cell membrane permeability, hyphae morphology, and septal quantities for seeking a better livelihood under mild pressure. Besides, differentially expressed genes were mainly enriched in the biosynthesis of amino acids, carbohydrate metabolism, cell process, etc., implying how the filamentous fungi respond to elevated pressure at the molecular level. We speculated that A. sydowii DM1 could acclimatize itself to HHP by adopting several strategies, including environmental response pathway HOG-MAPK, stress proteins, and cellular metabolisms.IMPORTANCEFungi play an ecological and biological function in marine environments, while the physiology of filamentous fungi under high hydrostatic pressure (HHP) is an unknown territory due to current technologies. As filamentous fungi are found in various niches, Aspergillus sp. from deep-sea inspire us to the physiological trait of eukaryotes under HHP, which can be considered as a prospective research model. Here, the evaluation methods we constructed would be universal for most filamentous fungi to assess their pressure resistance, and we found that Aspergillus sydowii DM1 from the hadal area owned better piezotolerance and the active metabolisms under HHP indicated the existence of undiscovered metabolic strategies for hadal fungi. Since pressure-related research of marine fungi has been unexpectedly neglected, our study provided an enlightening strategy for them under HHP; we believed that understanding their adaptation and ecological function in original niches will be accelerated in the perceivable future.
Collapse
Affiliation(s)
- Maosheng Zhong
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yongqi Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Ludan Deng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
8
|
Varrella S, Barone G, Corinaldesi C, Giorgetti A, Nomaki H, Nunoura T, Rastelli E, Tangherlini M, Danovaro R, Dell’Anno A. Fungal Abundance and Diversity in the Mariana Trench, the Deepest Ecosystem on Earth. J Fungi (Basel) 2024; 10:73. [PMID: 38248982 PMCID: PMC10820024 DOI: 10.3390/jof10010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Hadal trenches host abundant and diversified benthic prokaryotic assemblages, but information on benthic fungi is still extremely limited. We investigated the fungal abundance and diversity in the Challenger Deep (at ca. 11,000 m depth) and the slope of the Mariana Trench in comparison with three sites of the adjacent abyssal plain. Our results indicate that trench sediments are a hotspot of fungal abundance in terms of the 18S rRNA gene copy number. The fungal diversity (as the number of amplicon sequence variants, ASVs) was relatively low at all sites (10-31 ASVs) but showed a high turnover diversity among stations due to the presence of exclusive fungal taxa belonging to Aspergillaceae, Trichosphaeriaceae, and Nectriaceae. Fungal abundance and diversity were closely linked to sediment organic matter content and composition (i.e., phytopigments and carbohydrates), suggesting a specialization of different fungal taxa for the exploitation of available resources. Overall, these findings provide new insights into the diversity of deep-sea fungi and the potential ecological role in trench sediments and pave the way for a better understanding of their relevance in one of the most extreme ecosystems on Earth.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
- National Biodiversity Future Centre, 90133 Palermo, Italy;
| | - Giulio Barone
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
- Institute for Marine Biological Resources and Biotechnology, National Research Council, Largo Fiera della Pesca 2, 60125 Ancona, Italy
| | - Cinzia Corinaldesi
- National Biodiversity Future Centre, 90133 Palermo, Italy;
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alessio Giorgetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
| | - Hidetaka Nomaki
- X-Star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan;
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, Yokosuka 237-0061, Japan
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
- National Biodiversity Future Centre, 90133 Palermo, Italy;
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.B.); (A.G.); (R.D.)
- National Biodiversity Future Centre, 90133 Palermo, Italy;
| |
Collapse
|
9
|
Li Y, Kan J, Liu F, Lian K, Liang Y, Shao H, McMinn A, Wang H, Wang M. Depth shapes microbiome assembly and network stability in the Mariana Trench. Microbiol Spectr 2024; 12:e0211023. [PMID: 38084983 PMCID: PMC10783068 DOI: 10.1128/spectrum.02110-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Exploring microbial interactions and their stability/resilience from the surface to the hadal ocean is critical for further understanding of the microbiome structure and ecosystem function in the Mariana Trench. Vertical gradients did not destabilize microbial communities after long-term evolution and adaption. The uniform niche breadth, diversity, community complexity, and stability of microbiomes in both upper bathypelagic and hadal waters suggest the consistent roles of microbiomes in elemental cycling and adaptive strategies to overcome extreme environmental conditions. Compared with microeukaryotes, bacteria and archaea play a pivotal role in shaping the stability of the hadal microbiome. The consistent co-occurrence stability of microbiomes across vertical gradients was observed in the Mariana Trench. These results illuminate a key principle of microbiomes inhabiting the deepest trench: although distinct microbial communities occupy specific habitats, the interactions within microbial communities remain consistently stable from the upper bathypelagic to the hadal waters.
Collapse
Affiliation(s)
- Yi Li
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Jinjun Kan
- Microbiology Division, Stroud Water Research Center, Avondale, Pennsylvania, USA
| | - Feilong Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Kaiyue Lian
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Hualong Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| |
Collapse
|
10
|
Rosani U, Corinaldesi C, Luongo G, Sollitto M, Dal Monego S, Licastro D, Bongiorni L, Venier P, Pallavicini A, Dell’Anno A. Viral Diversity in Benthic Abyssal Ecosystems: Ecological and Methodological Considerations. Viruses 2023; 15:2282. [PMID: 38140524 PMCID: PMC10747316 DOI: 10.3390/v15122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Viruses are the most abundant 'biological entities' in the world's oceans. However, technical and methodological constraints limit our understanding of their diversity, particularly in benthic abyssal ecosystems (>4000 m depth). To verify advantages and limitations of analyzing virome DNA subjected either to random amplification or unamplified, we applied shotgun sequencing-by-synthesis to two sample pairs obtained from benthic abyssal sites located in the North-eastern Atlantic Ocean at ca. 4700 m depth. One amplified DNA sample was also subjected to single-molecule long-read sequencing for comparative purposes. Overall, we identified 24,828 viral Operational Taxonomic Units (vOTUs), belonging to 22 viral families. Viral reads were more abundant in the amplified DNA samples (38.5-49.9%) compared to the unamplified ones (4.4-5.8%), with the latter showing a greater viral diversity and 11-16% of dsDNA viruses almost undetectable in the amplified samples. From a procedural point of view, the viromes obtained by direct sequencing (without amplification step) provided a broader overview of both ss and dsDNA viral diversity. Nevertheless, our results suggest that the contextual use of random amplification of the same sample and long-read technology can improve the assessment of viral assemblages by reducing off-target reads.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy;
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Gabriella Luongo
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Marco Sollitto
- Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34127 Trieste, Italy; (M.S.); (A.P.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Simeone Dal Monego
- Laboratorio di Genomica ed Epigenomica, AREA Scienze Park, Padriciano 99, 34149 Trieste, Italy; (S.D.M.); (D.L.)
| | - Danilo Licastro
- Laboratorio di Genomica ed Epigenomica, AREA Scienze Park, Padriciano 99, 34149 Trieste, Italy; (S.D.M.); (D.L.)
| | - Lucia Bongiorni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Tesa 104–Arsenale, Castello 2737/F, 30122 Venezia, Italy;
| | - Paola Venier
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy;
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34127 Trieste, Italy; (M.S.); (A.P.)
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| |
Collapse
|
11
|
Peng Y, Lu Z, Pan D, Shi LD, Zhao Z, Liu Q, Zhang C, Jia K, Li J, Hubert CRJ, Dong X. Viruses in deep-sea cold seep sediments harbor diverse survival mechanisms and remain genetically conserved within species. THE ISME JOURNAL 2023; 17:1774-1784. [PMID: 37573455 PMCID: PMC10504277 DOI: 10.1038/s41396-023-01491-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Deep sea cold seep sediments have been discovered to harbor novel, abundant, and diverse bacterial and archaeal viruses. However, little is known about viral genetic features and evolutionary patterns in these environments. Here, we examined the evolutionary ecology of viruses across active and extinct seep stages in the area of Haima cold seeps in the South China Sea. A total of 338 viral operational taxonomic units are identified and linked to 36 bacterial and archaeal phyla. The dynamics of host-virus interactions are informed by diverse antiviral defense systems across 43 families found in 487 microbial genomes. Cold seep viruses are predicted to harbor diverse adaptive strategies to persist in this environment, including counter-defense systems, auxiliary metabolic genes, reverse transcriptases, and alternative genetic code assignments. Extremely low nucleotide diversity is observed in cold seep viral populations, being influenced by factors including microbial host, sediment depth, and cold seep stage. Most cold seep viral genes are under strong purifying selection with trajectories that differ depending on whether cold seeps are active or extinct. This work sheds light on the understanding of environmental adaptation mechanisms and evolutionary patterns of viruses in the sub-seafloor biosphere.
Collapse
Affiliation(s)
- Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Zijian Lu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Donald Pan
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhao Zhao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Qing Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
12
|
Zhang ZF, Liu LR, Pan YP, Pan J, Li M. Long-read assembled metagenomic approaches improve our understanding on metabolic potentials of microbial community in mangrove sediments. MICROBIOME 2023; 11:188. [PMID: 37612768 PMCID: PMC10464287 DOI: 10.1186/s40168-023-01630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Mangrove wetlands are coastal ecosystems with important ecological features and provide habitats for diverse microorganisms with key roles in nutrient and biogeochemical cycling. However, the overall metabolic potentials and ecological roles of microbial community in mangrove sediment are remained unanswered. In current study, the microbial and metabolic profiles of prokaryotic and fungal communities in mangrove sediments were investigated using metagenomic analysis based on PacBio single-molecule real time (SMRT) and Illumina sequencing techniques. RESULTS Comparing to Illumina short reads, the incorporation of PacBio long reads significantly contributed to more contiguous assemblies, yielded more than doubled high-quality metagenome-assembled genomes (MAGs), and improved the novelty of the MAGs. Further metabolic reconstruction for recovered MAGs showed that prokaryotes potentially played an essential role in carbon cycling in mangrove sediment, displaying versatile metabolic potential for degrading organic carbons, fermentation, autotrophy, and carbon fixation. Mangrove fungi also functioned as a player in carbon cycling, potentially involved in the degradation of various carbohydrate and peptide substrates. Notably, a new candidate bacterial phylum named as Candidatus Cosmopoliota with a ubiquitous distribution is proposed. Genomic analysis revealed that this new phylum is capable of utilizing various types of organic substrates, anaerobic fermentation, and carbon fixation with the Wood-Ljungdahl (WL) pathway and the reverse tricarboxylic acid (rTCA) cycle. CONCLUSIONS The study not only highlights the advantages of HiSeq-PacBio Hybrid assembly for a more complete profiling of environmental microbiomes but also expands our understanding of the microbial diversity and potential roles of distinct microbial groups in biogeochemical cycling in mangrove sediment. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Present Address: Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Li-Rui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue-Ping Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
13
|
Zhu XY, Li Y, Xue CX, Lidbury IDEA, Todd JD, Lea-Smith DJ, Tian J, Zhang XH, Liu J. Deep-sea Bacteroidetes from the Mariana Trench specialize in hemicellulose and pectin degradation typically associated with terrestrial systems. MICROBIOME 2023; 11:175. [PMID: 37550707 PMCID: PMC10405439 DOI: 10.1186/s40168-023-01618-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Hadal trenches (>6000 m) are the deepest oceanic regions on Earth and depocenters for organic materials. However, how these enigmatic microbial ecosystems are fueled is largely unknown, particularly the proportional importance of complex polysaccharides introduced through deposition from the photic surface waters above. In surface waters, Bacteroidetes are keystone taxa for the cycling of various algal-derived polysaccharides and the flux of carbon through the photic zone. However, their role in the hadal microbial loop is almost unknown. RESULTS Here, culture-dependent and culture-independent methods were used to study the potential of Bacteroidetes to catabolize diverse polysaccharides in Mariana Trench waters. Compared to surface waters, the bathypelagic (1000-4000 m) and hadal (6000-10,500 m) waters harbored distinct Bacteroidetes communities, with Mesoflavibacter being enriched at ≥ 4000 m and Bacteroides and Provotella being enriched at 10,400-10,500 m. Moreover, these deep-sea communities possessed distinct gene pools encoding for carbohydrate active enzymes (CAZymes), suggesting different polysaccharide sources are utilised in these two zones. Compared to surface counterparts, deep-sea Bacteroidetes showed significant enrichment of CAZyme genes frequently organized into polysaccharide utilization loci (PULs) targeting algal/plant cell wall polysaccharides (i.e., hemicellulose and pectin), that were previously considered an ecological trait associated with terrestrial Bacteroidetes only. Using a hadal Mesoflavibacter isolate (MTRN7), functional validation of this unique genetic potential was demonstrated. MTRN7 could utilize pectic arabinans, typically associated with land plants and phototrophic algae, as the carbon source under simulated deep-sea conditions. Interestingly, a PUL we demonstrate is likely horizontally acquired from coastal/land Bacteroidetes was activated during growth on arabinan and experimentally shown to encode enzymes that hydrolyze arabinan at depth. CONCLUSIONS Our study implies that hadal Bacteroidetes exploit polysaccharides poorly utilized by surface populations via an expanded CAZyme gene pool. We propose that sinking cell wall debris produced in the photic zone can serve as an important carbon source for hadal heterotrophs and play a role in shaping their communities and metabolism. Video Abstract.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chun-Xu Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ian D E A Lidbury
- Molecular Microbiology: Biochemistry to Disease, School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
14
|
Liu R, Wang X, Huang R, Zhang XH, Wang X. Profundirhabdus halotolerans gen. nov., sp. nov., an haloalkaliphilic actinobacterium isolated from seawater of the Mariana Trench. Int J Syst Evol Microbiol 2023; 73. [PMID: 37610809 DOI: 10.1099/ijsem.0.006016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
A Gram-stain-positive, strictly aerobic, rod-shaped actinobacterium, designated strain ZYF776T, was isolated from seawater of the Mariana Trench collected at a depth of 4000 m. Results of 16S rRNA gene sequence analysis indicated that strain ZYF776T was a member of the class Nitriliruptoria and closely related to Nitriliruptor alkaliphilus DSM 45188T (member of the order Nitriliruptorales, 94.94 % sequence similarity) and Egicoccus halophilus KCTC 33612T (member of the order Egicoccales, 94.46 %). Strain ZYF776T was catalase-positive and oxidase-negative. Growth occurred at 16-37 °C (optimum, 28 °C), in the presence of 0-13 % NaCl (w/v; optimum, 4 %) and at pH 7.0-10.0 (optimum, pH 8.0). Cell-wall hydrolysates of strain ZYF776T contained meso-diaminopimelic (peptidoglycan type A1γ), with ribose, rhamnose and a smaller amount of xylose as the cell-wall sugars. The major menaquinone was MK-10. The predominant fatty acids (>10 %) were C16:0, C17:1 ω8c and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). The polar lipid profile mainly contained diphosphatidylglycerol, phosphatidylglycerol and phosphoglycolipid. The genomic DNA G+C content of strain ZYF776T was 68.7 mol%. The genome of strain ZYF776T was about 5.61 Mbp in size, which was larger than those of the reference strains N. alkaliphilus DSM45188T (5.56 Mbp) and E. halophilus KCTC 33612T (3.98 Mbp). The average nucleotide identity and digital DNA-DNA hybridization values between ZYF776T and the related strains N. alkaliphilus DSM 45188T and E. halophilus KCTC 33612T were 76.7 and 20.3 % and 75.8 and 20.0 %, respectively. Based on the polyphasic evidence, a novel genus and species with the name Profundirhabdus halotolerans gen. nov., sp. nov. is proposed. The type strain is ZYF776T (=JCM 33008T=MCCC 1K03555T).
Collapse
Affiliation(s)
- Ronghua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Xinyue Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Rong Huang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, PR China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, PR China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| |
Collapse
|
15
|
Wu J, Wang L, Du J, Liu Y, Hu L, Wei H, Fang J, Liu R. Biogeographic distribution, ecotype partitioning and controlling factors of Chloroflexi in the sediments of six hadal trenches of the Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163323. [PMID: 37030385 DOI: 10.1016/j.scitotenv.2023.163323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/02/2023] [Accepted: 04/02/2023] [Indexed: 05/27/2023]
Abstract
The hadal trenches are "hot spots" for mineralization of organic matter in the deep ocean. Chloroflexi are one of the most dominant and active taxa in trench sediments, serving as important drivers of carbon cycles in hadal trenches. However, current understanding on hadal Chloroflexi is largely restricted to individual trench. This study systematically analyzed the diversity, biogeographic distribution, ecotype partitioning as well as environmental drivers of Chloroflexi in the sediments of hadal trenches, by reanalyzing 16S rRNA gene libraries of 372 samples from 6 trenches around the Pacific Ocean. The results showed that Chloroflexi averagely account for 10.10 % and up to 59.95 % of total microbial communities in the trench sediments. Positive correlations between relative abundance of Chloroflexi and depths down the vertical sediment profiles were observed in all of the sediment cores analyzed, suggesting the increasing significance of Chloroflexi in deeper sediment layers. Overall, trench sediment Chloroflexi were mainly composed of the classes Dehalococcidia, Anaerolineae and JG30-KF-CM66, and four orders i.e. SAR202, Anaerolineales, norank JG30-KF-CM66 and S085, were identified as core taxa that were dominant and prevalent in the hadal trench sediments. A total of 22 subclusters were identified within these core orders, and distinct patterns of ecotype partitioning related with depths down the vertical sediment profiles were observed, suggesting the great diversification of metabolic potentials and environment preference of different Chloroflexi lineages. The spatial distribution of hadal Chloroflexi were found to be significantly related with multiple environmental factors, while depths down the vertical sediment profiles explained the highest proportion of variations. These results provide valuable information for further exploring the roles of Chloroflexi in biogeochemical cycle of the hadal zone, and lay the foundation for understanding the adaptive mechanisms and evolutionary characteristics of microorganisms in hadal trenches.
Collapse
Affiliation(s)
- Jiaxin Wu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China; National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China; National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Jiangtao Du
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China; National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Yuheng Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China; National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Lin Hu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China; National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Hui Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China; National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, USA
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China; National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
16
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
17
|
Liu Y, Zhang Z, Ji M, Hu A, Wang J, Jing H, Liu K, Xiao X, Zhao W. Comparison of prokaryotes between Mount Everest and the Mariana Trench. MICROBIOME 2022; 10:215. [PMID: 36476562 PMCID: PMC9727886 DOI: 10.1186/s40168-022-01403-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mount Everest and the Mariana Trench represent the highest and deepest places on Earth, respectively. They are geographically separated, with distinct extreme environmental parameters that provide unique habitats for prokaryotes. Comparison of prokaryotes between Mount Everest and the Mariana Trench will provide a unique perspective to understanding the composition and distribution of environmental microbiomes on Earth. RESULTS Here, we compared prokaryotic communities between Mount Everest and the Mariana Trench based on shotgun metagenomic analysis. Analyzing 25 metagenomes and 1176 metagenome-assembled genomes showed distinct taxonomic compositions between Mount Everest and the Mariana Trench, with little taxa overlap, and significant differences in genome size, GC content, and predicted optimal growth temperature. However, community metabolic capabilities exhibited striking commonality, with > 90% of metabolic modules overlapping among samples of Mount Everest and the Mariana Trench, with the only exception for CO2 fixations (photoautotrophy in Mount Everest but chemoautotrophy in the Mariana Trench). Most metabolic pathways were common but performed by distinct taxa in the two extreme habitats, even including some specialized metabolic pathways, such as the versatile degradation of various refractory organic matters, heavy metal metabolism (e.g., As and Se), stress resistance, and antioxidation. The metabolic commonality indicated the overall consistent roles of prokaryotes in elemental cycling and common adaptation strategies to overcome the distinct stress conditions despite the intuitively huge differences in Mount Everest and the Mariana Trench. CONCLUSION Our results, the first comparison between prokaryotes in the highest and the deepest habitats on Earth, may highlight the principles of prokaryotic diversity: although taxa are habitat-specific, primary metabolic functions could be always conserved. Video abstract.
Collapse
Affiliation(s)
- Yongqin Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Mukan Ji
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| | - Aoran Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Wang
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, China
| | - Hongmei Jing
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China.
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China.
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, China.
| |
Collapse
|
18
|
Wang F, Zhang Y, Jing H, Liu H. Spatial variation and metabolic diversity of microbial communities in the surface sediments of the Mariana Trench. Front Microbiol 2022; 13:1051999. [PMID: 36545198 PMCID: PMC9760864 DOI: 10.3389/fmicb.2022.1051999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
Mariana Trench represents the deepest and one of least explored biosphere on Earth, and its carbon sources include euphotic sinking, lateral transportation and diffusion from underlying crust, etc. By far the spatial variation of microbial community with associated organic carbon degradation potential in the surface sediments of the Mariana Trench were still largely unknown. Based on the high-throughput 16S rRNA amplicon sequencing, significantly different microbial community structure was overserved between the shallow (<10,000 m) and deep stations (>10,000 m), which could be explained by spatial variation of Chloroflexi, Proteobacteria and Crenarchaeota, with sampling depth and total organic carbon (TOC) content as the environmental driving forces. During the 109-day incubation with Biolog EcoPlate™ microplate, polymers and carbohydrates were preferentially used, followed by amino acids and carboxylic acids, and microbial metabolic diversity was significantly different between the shallow and deep stations. The metabolic diversity of microorganisms at most shallow stations was significantly lower than that at deep stations. This could potentially be attributed the metabolic capabilities of different microbial groups with varied ecological niches, and reflected the initial preference of carbon source by the nature microbes as well. Our study obtained a rough assessment of physiological and taxonomic characteristics of the trench sediment microbial community with polyphasic approaches. Distinct microbial structure and potential carbon metabolic functions in different sampling depths might led to the differentiation of ecological niches, which enable various microorganisms to make full use of the limited resources in the deep sea, and provided a research basis for further exploration of the carbon cycle in different deep-sea regions.
Collapse
Affiliation(s)
- Fangzhou Wang
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongmei Jing
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China,*Correspondence: Hongmei Jing,
| | - Hao Liu
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
19
|
Twing KI, Ward LM, Kane ZK, Sanders A, Price RE, Pendleton HL, Giovannelli D, Brazelton WJ, McGlynn SE. Microbial ecology of a shallow alkaline hydrothermal vent: Strýtan Hydrothermal Field, Eyjafördur, northern Iceland. Front Microbiol 2022; 13:960335. [PMID: 36466646 PMCID: PMC9713835 DOI: 10.3389/fmicb.2022.960335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/05/2022] [Indexed: 10/20/2023] Open
Abstract
Strýtan Hydrothermal Field (SHF) is a submarine system located in Eyjafördur in northern Iceland composed of two main vents: Big Strýtan and Arnarnesstrýtan. The vents are shallow, ranging from 16 to 70 m water depth, and vent high pH (up to 10.2), moderate temperature (T max ∼70°C), anoxic, fresh fluids elevated in dissolved silica, with slightly elevated concentrations of hydrogen and methane. In contrast to other alkaline hydrothermal vents, SHF is unique because it is hosted in basalt and therefore the high pH is not created by serpentinization. While previous studies have assessed the geology and geochemistry of this site, the microbial diversity of SHF has not been explored in detail. Here we present a microbial diversity survey of the actively venting fluids and chimneys from Big Strýtan and Arnarnesstrýtan, using 16S rRNA gene amplicon sequencing. Community members from the vent fluids are mostly aerobic heterotrophic bacteria; however, within the chimneys oxic, low oxygen, and anoxic habitats could be distinguished, where taxa putatively capable of acetogenesis, sulfur-cycling, and hydrogen metabolism were observed. Very few archaea were observed in the samples. The inhabitants of SHF are more similar to terrestrial hot spring samples than other marine sites. It has been hypothesized that life on Earth (and elsewhere in the solar system) could have originated in an alkaline hydrothermal system, however all other studied alkaline submarine hydrothermal systems to date are fueled by serpentinization. SHF adds to our understandings of hydrothermal vents in relationship to microbial diversity, evolution, and possibly the origin of life.
Collapse
Affiliation(s)
- Katrina I. Twing
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, United States
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - L. M. Ward
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Department of Geosciences, Smith College, Northampton, MA, United States
| | - Zachary K. Kane
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Alexa Sanders
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Roy Edward Price
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - H. Lizethe Pendleton
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - William J. Brazelton
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, United States
| | - Shawn E. McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Center for Sustainable Resource Science, RIKEN, Saitama, Japan
| |
Collapse
|
20
|
Zhou YL, Mara P, Vik D, Edgcomb VP, Sullivan MB, Wang Y. Ecogenomics reveals viral communities across the Challenger Deep oceanic trench. Commun Biol 2022; 5:1055. [PMID: 36192584 PMCID: PMC9529941 DOI: 10.1038/s42003-022-04027-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the environmental challenges and nutrient scarcity, the geographically isolated Challenger Deep in Mariana trench, is considered a dynamic hotspot of microbial activity. Hadal viruses are the least explored microorganisms in Challenger Deep, while their taxonomic and functional diversity and ecological impact on deep-sea biogeochemistry are poorly described. Here, we collect 13 sediment cores from slope and bottom-axis sites across the Challenger Deep (down to ~11 kilometers depth), and identify 1,628 previously undescribed viral operational taxonomic units at species level. Community-wide analyses reveals 1,299 viral genera and distinct viral diversity across the trench, which is significantly higher at the bottom-axis vs. slope sites of the trench. 77% of these viral genera have not been previously identified in soils, deep-sea sediments and other oceanic settings. Key prokaryotes involved in hadal carbon and nitrogen cycling are predicted to be potential hosts infected by these viruses. The detected putative auxiliary metabolic genes suggest that viruses at Challenger Deep could modulate the carbohydrate and sulfur metabolisms of their potential hosts, and stabilize host's cell membranes under extreme hydrostatic pressures. Our results shed light on hadal viral metabolic capabilities, contribute to understanding deep sea ecology and on functional adaptions of hadal viruses for future research.
Collapse
Affiliation(s)
- Ying-Li Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Paraskevi Mara
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Dean Vik
- Department of Microbiology and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Matthew B Sullivan
- Department of Microbiology and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
21
|
Jing H, Xiao X, Zhang Y, Li Z, Jian H, Luo Y, Han Z. Composition and Ecological Roles of the Core Microbiome along the Abyssal-Hadal Transition Zone Sediments of the Mariana Trench. Microbiol Spectr 2022; 10:e0198821. [PMID: 35768947 PMCID: PMC9241748 DOI: 10.1128/spectrum.01988-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
The unique geological features of hadal trenches are known to influence both the structure and ecological function of microbial communities. It is also well known that heterotrophs and chemoautotrophs dominate the hadal and abyssal pelagic zones, respectively. Here, a metagenomic investigation was conducted on sediment samples obtained from the abyssal-hadal transition zone in the Mariana Trench to gain a better understanding of the general diversity and potential function of the core microbiome in this zone. A high level of cosmopolitanism existed in the core microbiome referred from a high community similarity among different stations. Niche differentiation along the fine-scale of different sediment layers was observed, especially for major archaeal groups, largely due to sediment depth and the source of organic matter. A prevalence of nitrogen biogeochemical cycles driven by various nitrifying groups with the capability of dark carbon fixation in the abyssal-hadal biosphere was also demonstrated. The predominance of heterotrophic over chemolithoautotrophic pathways in this transition zone was found, and a high abundance of genes related to respiration and carbon fixation (i.e., the intact Calvin and rTCA cycles) were detected as well, which might reflect the intensive microbial activities known to occur in this deep biosphere. The presence of those metabolic processes and associated microbes were reflected by functional and genetic markers generated from the metagenomic data in the current study. However, their roles and contributions to the nitrogen/carbon biogeochemical cycles and flux in the abyssal-hadal transition zone still need further analysis. IMPORTANCE The Mariana Trench is the deepest oceanic region on earth, its microbial ecological exploration has become feasible with the rapid progress of submersible and metagenomic sequencing. We investigated the community compositions and metabolic functions of the core microbiome along the abyssal-hadal transition zone of the Mariana Trench, although most studies by far were focused on the pelagic zone. We found a predominance of heterotrophic groups and related metabolic pathways, which were closely associated with nitrogen biogeochemical cycles driven by various nitrifying groups with the capability of dark carbon fixation.
Collapse
Affiliation(s)
- Hongmei Jing
- Chinese Academy of Sciences (CAS) Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, ZhuHai, China
- Hong Kong University of Science and Technology (HKUST)-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Xiang Xiao
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yingfeng Luo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhuang Han
- Chinese Academy of Sciences (CAS) Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
22
|
A Prototype Design and Sea Trials of an 11,000 m Autonomous and Remotely-Operated Vehicle Dream Chaser. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
To better study the biology and ecology of hadal trenches for marine scientists, the Hadal Science and Technology Research Center (HAST) of Shanghai Ocean University proposed to construct a movable laboratory that includes a mothership, several full-ocean-depth (FOD) submersibles, and FOD landers to obtain samples in the hadal trenches. Among these vehicles, the project of an FOD autonomous and remotely-operated vehicle (ARV) named “Dream Chaser” was started in July 2018. The ARV could work in both remotely-operated and autonomous-operated modes, and serves large-range underwater observation, on-site sampling, surveying, mapping, etc. This paper proposed a novel three-body design of the FOD ARV. A detailed illustration of the whole system design method is provided. Numerical simulations and experimental tests for various sub-systems and disciplines have been conducted, such as resistance analysis using the computational fluid mechanics method and structural strength analysis for FOD hydrostatic pressure using the finite element method and pressure chamber tests. In addition, components tests and the entire system tests have been performed on land, underwater, and in the pressure chamber in the laboratory of HAST, and the results are discussed. Extensive experiments of two critical components, i.e., the thrusters and ballast-abandoning system, have been conducted and further analyzed in this paper. Finally, the procedures and results of lake trials, South China Sea trials and the first phase of Mariana Trench sea trials of the ARV in 2020 are also introduced. This paper provides a design method for the novel three-body FOD ARV. More importantly, the lessons learned from the FOD pressure test, lake tests, and sea trials, no matter the success or failure, will guide future endeavors and the application of ARV Dream Chaser and underwater vehicles of this kind.
Collapse
|
23
|
Cario A, Larzillière M, Nguyen O, Alain K, Marre S. High-Pressure Microfluidics for Ultra-Fast Microbial Phenotyping. Front Microbiol 2022; 13:866681. [PMID: 35677901 PMCID: PMC9168469 DOI: 10.3389/fmicb.2022.866681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
Here, we present a novel methodology based on high-pressure microfluidics to rapidly perform temperature-based phenotyping of microbial strains from deep-sea environments. The main advantage concerns the multiple on-chip temperature conditions that can be achieved in a single experiment at pressures representative of the deep-sea, overcoming the conventional limitations of large-scale batch metal reactors to conduct fast screening investigations. We monitored the growth of the model strain Thermococcus barophilus over 40 temperature and pressure conditions, without any decompression, in only 1 week, whereas it takes weeks or months with conventional approaches. The results are later compared with data from the literature. An additional example is also shown for a hydrogenotrophic methanogen strain (Methanothermococcus thermolithotrophicus), demonstrating the robustness of the methodology. These microfluidic tools can be used in laboratories to accelerate characterizations of new isolated species, changing the widely accepted paradigm that high-pressure microbiology experiments are time-consuming.
Collapse
Affiliation(s)
- Anaïs Cario
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
- *Correspondence: Anaïs Cario,
| | - Marina Larzillière
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
- CNRS, Univ. Brest, Ifremer, IRP 1211 MicrobSea, Unité de Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Plouzané, France
| | - Olivier Nguyen
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
| | - Karine Alain
- CNRS, Univ. Brest, Ifremer, IRP 1211 MicrobSea, Unité de Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Plouzané, France
| | - Samuel Marre
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
- Samuel Marre,
| |
Collapse
|
24
|
Liu J, Ge X, Ding H, Yang S, Sun Y, Li Y, Ji X, Li Y, Lu A. Effect of Photoreduction of Semiconducting Iron Mineral-Goethite on Microbial Community in the Marine Euphotic Zone. Front Microbiol 2022; 13:846441. [PMID: 35479644 PMCID: PMC9037543 DOI: 10.3389/fmicb.2022.846441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
Marine euphotic zone is the pivotal region for interplay of light-mineral-microorganism and elements cycle, in which semiconducting minerals exist widely and iron-bearing goethite is a typical and widespread one. In this work, we have conducted in-depth researches on the effect of ferrous [Fe(II)] ions dissolved by photoreduction of goethite on microbial community structure and diversity. The mineral phase, structure and morphology of synthesized goethite were characterized by Raman, X-ray diffraction (XRD), energy disperse spectroscopy (EDS), environmental scanning electron microscope (ESEM), and atomic force microscope (AFM). Photoelectrochemical measurements tested photoelectric response and redox activity of goethite, having proved its significant property of photoelectric response with 44.11% increment of the average photocurrent density relative to the dark current density. The photoreduction experiments of goethite were conducted under light condition in simulated seawater. It has suggested the photoreduction of goethite could occur and Fe(III) was reduced to Fe(II). The dissolved Fe(II) from the photoreduction of goethite under light condition was nearly 11 times than that group without light after a 10-day reaction. Furthermore, results of microbial community sequencing analysis indicated that dissolved Fe(II) could affect the structure and regulate the decrease of microbial community diversity. The emergence of dominant bacteria associated with iron oxidation and transport protein has suggested their obvious selectivity and adaptability in the environment with adding dissolved Fe(II). This work revealed the photoreduction process of semiconducting goethite was remarkable, giving rise to a non-negligible dissolved Fe(II) and its selective effect on the structure, diversity, as well as the function of microbial community. This light-induced interaction between minerals and microorganisms may also further regulate correlative metabolic pathways of carbon cycle in the marine euphotic zone.
Collapse
Affiliation(s)
| | | | - Hongrui Ding
- Beijing Key Laboratory of Mineral Environmental Function, The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| | | | | | | | | | | | - Anhuai Lu
- Beijing Key Laboratory of Mineral Environmental Function, The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| |
Collapse
|
25
|
Zhou H, Chen P, Zhang M, Chen J, Fang J, Li X. Revealing the Viral Community in the Hadal Sediment of the New Britain Trench. Genes (Basel) 2021; 12:genes12070990. [PMID: 34209474 PMCID: PMC8306916 DOI: 10.3390/genes12070990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Marine viruses are widely distributed and influence matter and energy transformation in ecosystems by modulating hosts’ metabolism. The hadal trenches represent the deepest marine habitat on Earth, for which the viral communities and related biogeochemical functions are least explored and poorly understood. Here, using the sediment samples (8720 m below sea level) collected from the New Britain Trench (NBT), we investigated the viral community, diversity, and genetic potentials in the hadal sediment habitat for the first time by deep shotgun metagenomic sequencing. We found the NBT sediment viral community was dominated by Siphoviridae, Myoviridae, Podoviridae, Mimiviridae, and Phycodnaviridae, which belong to the dsDNA viruses. However, the large majority of them remained uncharacterized. We found the hadal sediment virome had some common components by comparing the hadal sediment viruses with those of hadal aquatic habitats and those of bathypelagic and terrestrial habitats. It was also distinctive in community structure and had many novel viral clusters not associated with the other habitual virome included in our analyses. Further phylogenetic analysis on its Caudovirales showed novel diversities, including new clades specially evolved in the hadal sediment habitat. Annotation of the NBT sediment viruses indicated the viruses might influence microbial hydrocarbon biodegradation and carbon and sulfur cycling via metabolic augmentation through auxiliary metabolic genes (AMGs). Our study filled in the knowledge gaps on the virome of the hadal sediment habitats and provided insight into the evolution and the potential metabolic functions of the hadal sediment virome.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (H.Z.); (P.C.); (M.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (H.Z.); (P.C.); (M.Z.)
| | - Mengjie Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (H.Z.); (P.C.); (M.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawang Chen
- Ocean College, Zhejiang University, Zhoushan 316021, China
- Correspondence: (J.C.); (J.F.); (X.L.)
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (J.C.); (J.F.); (X.L.)
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (H.Z.); (P.C.); (M.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.C.); (J.F.); (X.L.)
| |
Collapse
|